Datawarehousing and Analytics. Data-Warehouse-, Data-Mining- und OLAP-Technologien. Advanced Information Management

Size: px
Start display at page:

Download "Datawarehousing and Analytics. Data-Warehouse-, Data-Mining- und OLAP-Technologien. Advanced Information Management"

Transcription

1 Anwendersoftware a Datawarehousing and Analytics Data-Warehouse-, Data-Mining- und OLAP-Technologien Advanced Information Management Bernhard Mitschang, Holger Schwarz Universität Stuttgart Winter Term 2014/2015

2 Departments of Institute of Parallel and Distributed Systems (IPVS) Applications of Parallel and Distributed Systems Prof. B. Mitschang, Prof. M. Herschel Machine Learning and Robotics Prof. M. Toussaint Parallel Systems Prof. S. Simon Simulation of Large Systems Prof. M. Mehl, Jun.-Prof. D. Pflüger Distributed Systems Prof. K. Rothermel 2 Infrastructure Dipl.-Inf. M. Matthiesen Universität Stuttgart

3 Applications of Parallel and Distributed Systems Data and Metadata Repository Technologies, Data Warehouse and Data Mining, Domain-specific query optimization and processing, Product Data Management, Data Integration Content and Semantics Focussed Semantic Search, Scalable Content Management Information Systems and Applications Database Middleware, Information Services, Generative Application Development, Model-driven Engineering, Technical Information Systems Data in the Cloud Federated Systems / Application Integration Metadata Management Content Management Business Intelligence / Business Processes Query Optimization 3 Universität Stuttgart

4 How to contact us Anwendersoftware a Lecture Bernhard Mitschang Office: Tel.: Exercises and assignments Holger Schwarz Office: Tel.:

5 Planned Schedule Anwendersoftware a Monday 9/29/14 Tuesday 9/30/14 Wednesday 10/1/14 Thursday 10/2/14 Tuesday 10/7/14 Wednesday 10/8/14 09:00 11:15 Chapter 1 Introduction Chapter 2 Data Warehouse Architecture Chapter 3 Design Process Conceptual Design Logical Design Chapter 4 Monitoring Extraction Transformation Load Tools Chapter 6 Data Mining Introduction Applications KDD Chapter 7 SQL & OLAP SQL & Mining Database Support Materialized Summary Data Derivability Break 12:00 14:15 Chapter 2 Data Marts Operational Data Store Meta Data Chapter 3 Extended Dimension Table Design Extended Fact Table Design Physical Design Chapter 5 OLAP Architecture Storage of Data Cubes Chapter 6 Assoc. Rules Clustering Classification Regression Tools and Trends Chapter Examples and Miscellaneous Wrap up Intro to Assignments Break 15:00 16:30 Intro SQL and ODPS Issues of data integration Data Warehouse Architecture Conceptual and Logical Data Warehouse Design Monitoring Storage of Data Cubes ETL Transformation Cleansing 15:00 17:15 Data Mining Classification Clustering Association Rules Lectures Exercises 5

6 Exercises and Assignments Anwendersoftware a Type Description Date Exercise Assignment Assignment Detailed discussion of major topics, case studies, examples etc. (all) Hands-on training for topics related to dbms (groups of 2-3 students) Hands-on training for ETL, OLAP and data mining (groups of 2-3 students) September 29 October 8 Introduction on October 8 Due: TBA Introduction on October 8 Due: TBA 6

7 Anwendersoftware a Teaching Materials General information: Slides, exercises, assignments, Login to ILIAS: https://ilias3.uni-stuttgart.de/login.php Search and Join the course "Data Warehousing and Analytics" Repository -> Engineering -> Computer Science -> Lehrveranstaltungen WS 14/15 7

8 Anwendersoftware a Exams IMSE Exam: Friday, December 12 Informatik / Softwaretechnik / Infotech / Wirtschaftsinformatik / Register at your examination office Make an appointment for the oral exam Appointments for oral exams Annemarie Roesler Tel

9 Anwendersoftware a Books [BG04] A. Bauer, H. Günzel: Data Warehouse Systeme. 2. Aufl., dpunkt, [Len03] [KR+98] W. Lehner: Datenbanktechnologie für Data-Warehouse-Systeme. dpunkt, R. Kimball, L. Reeves, M. Ross, W. Thornthwaite: The Data Warehouse Lifecycle Toolkit. Wiley, [Inm05] W. H. Inmon: Building the Data Warehouse. 4th Edition, Wiley, [HK00] J. Han, M. Kamber: Data Mining Concepts and Techniques. Morgan Kaufmann, 2nd Edition, [JL+02] M. Jarke, M. Lenzerini, Y. Vassiliou, P. Vassiliadis: Fundamentals of Data Warehouses. Springer, [Kim96] R. Kimball: The Data Warehouse Toolkit. Wiley, 1996 [LN07] U. Leser, F. Naumann: Informationsintegration, dpunkt, [Wes01] P. Westerman: Data Warehousing. Morgan Kaufmann

10 Anwendersoftware a Papers [Ber98] [CD97] [HLV00] [Zeh03] P. Bernstein: Repositories and Object Oriented Databases, SIGMOD Record 27(1):88-96, S. Chaudhuri, U. Dayal: An Overview of Data Warehousing and OLAP Technology, SIGMOD Record 26(1):65-74, B. Hüsemann, J. Lechtenbörger, G. Vossen: Conceptual Data Warehouse Design. Proc. of the Second International Workshop on Design and Management of Data Warehouses, Stockholm, T. Zeh: Data Warehousing als Organisationskonzept des Datenmanagements. In: Informatik Forschung und Entwicklung, Band 18, Heft 1, August

Data-Warehouse-, Data-Mining- und OLAP-Technologien

Data-Warehouse-, Data-Mining- und OLAP-Technologien Anwendersoftware a Data-Warehouse-, Data-Mining- und OLAP-Technologien Chapter 1: Introduction Bernhard Mitschang Universität Stuttgart Winter Term 2014/2015 Overview Motivation Retail Scenario Heterogeneous

More information

SENG 520, Experience with a high-level programming language. (304) 579-7726, Jeff.Edgell@comcast.net

SENG 520, Experience with a high-level programming language. (304) 579-7726, Jeff.Edgell@comcast.net Course : Semester : Course Format And Credit hours : Prerequisites : Data Warehousing and Business Intelligence Summer (Odd Years) online 3 hr Credit SENG 520, Experience with a high-level programming

More information

Data-Warehouse-, Data-Mining- und OLAP-Technologien

Data-Warehouse-, Data-Mining- und OLAP-Technologien Data-Warehouse-, Data-Mining- und OLAP-Technologien Chapter 2: Data Warehouse Architecture Bernhard Mitschang Universität Stuttgart Winter Term 2014/2015 Overview Data Warehouse Architecture Data Sources

More information

A Design and implementation of a data warehouse for research administration universities

A Design and implementation of a data warehouse for research administration universities A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon

More information

Data warehouses. Data Mining. Abraham Otero. Data Mining. Agenda

Data warehouses. Data Mining. Abraham Otero. Data Mining. Agenda Data warehouses 1/36 Agenda Why do I need a data warehouse? ETL systems Real-Time Data Warehousing Open problems 2/36 1 Why do I need a data warehouse? Why do I need a data warehouse? Maybe you do not

More information

Subject Description Form

Subject Description Form Subject Description Form Subject Code Subject Title COMP417 Data Warehousing and Data Mining Techniques in Business and Commerce Credit Value 3 Level 4 Pre-requisite / Co-requisite/ Exclusion Objectives

More information

Indexing Techniques for Data Warehouses Queries. Abstract

Indexing Techniques for Data Warehouses Queries. Abstract Indexing Techniques for Data Warehouses Queries Sirirut Vanichayobon Le Gruenwald The University of Oklahoma School of Computer Science Norman, OK, 739 sirirut@cs.ou.edu gruenwal@cs.ou.edu Abstract Recently,

More information

Data Integration and ETL Process

Data Integration and ETL Process Data Integration and ETL Process Krzysztof Dembczyński Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland Software Development Technologies Master studies, second

More information

Course Design Document. IS417: Data Warehousing and Business Analytics

Course Design Document. IS417: Data Warehousing and Business Analytics Course Design Document IS417: Data Warehousing and Business Analytics Version 2.1 20 June 2009 IS417 Data Warehousing and Business Analytics Page 1 Table of Contents 1. Versions History... 3 2. Overview

More information

An Introduction to Data Warehousing. An organization manages information in two dominant forms: operational systems of

An Introduction to Data Warehousing. An organization manages information in two dominant forms: operational systems of An Introduction to Data Warehousing An organization manages information in two dominant forms: operational systems of record and data warehouses. Operational systems are designed to support online transaction

More information

A Data Warehouse Engineering Process

A Data Warehouse Engineering Process A Data Warehouse Engineering Process Sergio Luján-Mora and Juan Trujillo D. of Software and Computing Systems, University of Alicante Carretera de San Vicente s/n, Alicante, Spain {slujan,jtrujillo}@dlsi.ua.es

More information

Dimensional Modeling for Data Warehouse

Dimensional Modeling for Data Warehouse Modeling for Data Warehouse Umashanker Sharma, Anjana Gosain GGS, Indraprastha University, Delhi Abstract Many surveys indicate that a significant percentage of DWs fail to meet business objectives or

More information

COURSE SYLLABUS. Enterprise Information Systems and Business Intelligence

COURSE SYLLABUS. Enterprise Information Systems and Business Intelligence MASTER PROGRAMS Autumn Semester 2008/2009 COURSE SYLLABUS Enterprise Information Systems and Business Intelligence Instructor: Malov Andrew, Master of Computer Sciences, Assistant,aomalov@mail.ru Organization

More information

Upon successful completion of this course, a student will meet the following outcomes:

Upon successful completion of this course, a student will meet the following outcomes: College of San Mateo Official Course Outline 1. COURSE ID: CIS 364 TITLE: Enterprise Data Warehousing Semester Units/Hours: 4.0 units; a minimum of 48.0 lecture hours/semester; a minimum of 48.0 lab hours/semester

More information

INTEGRATION OF HETEROGENEOUS DATABASES IN ACADEMIC ENVIRONMENT USING OPEN SOURCE ETL TOOLS

INTEGRATION OF HETEROGENEOUS DATABASES IN ACADEMIC ENVIRONMENT USING OPEN SOURCE ETL TOOLS INTEGRATION OF HETEROGENEOUS DATABASES IN ACADEMIC ENVIRONMENT USING OPEN SOURCE ETL TOOLS Azwa A. Aziz, Abdul Hafiz Abdul Wahid, Nazirah Abd. Hamid, Azilawati Rozaimee Fakulti Informatik, Universiti Sultan

More information

What is Management Reporting from a Data Warehouse and What Does It Have to Do with Institutional Research?

What is Management Reporting from a Data Warehouse and What Does It Have to Do with Institutional Research? What is Management Reporting from a Data Warehouse and What Does It Have to Do with Institutional Research? Emily Thomas Stony Brook University AIRPO Winter Workshop January 2006 Data to Information Historically

More information

Introduction to Data Warehouses

Introduction to Data Warehouses Introduction to Data Warehouses Krzysztof Dembczyński Institute of Computing Science Laboratory of Intelligent Decision Support Systems Politechnika Poznańska (Poznań University of Technology) Intelligent

More information

Turkish Journal of Engineering, Science and Technology

Turkish Journal of Engineering, Science and Technology Turkish Journal of Engineering, Science and Technology 03 (2014) 106-110 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Integrating Data Warehouse with OLAP Server

More information

8. Business Intelligence Reference Architectures and Patterns

8. Business Intelligence Reference Architectures and Patterns 8. Business Intelligence Reference Architectures and Patterns Winter Semester 2008 / 2009 Prof. Dr. Bernhard Humm Darmstadt University of Applied Sciences Department of Computer Science 1 Prof. Dr. Bernhard

More information

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

More information

Data Warehousing and Data Mining

Data Warehousing and Data Mining Data Warehousing and Data Mining Part I: Data Warehousing Gao Cong gaocong@cs.aau.dk Slides adapted from Man Lung Yiu and Torben Bach Pedersen Course Structure Business intelligence: Extract knowledge

More information

MIS636 AWS Data Warehousing and Business Intelligence Course Syllabus

MIS636 AWS Data Warehousing and Business Intelligence Course Syllabus MIS636 AWS Data Warehousing and Business Intelligence Course Syllabus I. Contact Information Professor: Joseph Morabito, Ph.D. Office: Babbio 419 Office Hours: By Appt. Phone: 201-216-5304 Email: jmorabit@stevens.edu

More information

Data Warehousing and Data Mining in Business Applications

Data Warehousing and Data Mining in Business Applications 133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business

More information

Towards Real-Time Data Integration and Analysis for Embedded Devices

Towards Real-Time Data Integration and Analysis for Embedded Devices Towards Real-Time Data Integration and Analysis for Embedded Devices Michael Soffner, Norbert Siegmund, Mario Pukall, Veit Köppen Otto-von-Guericke University of Magdeburg {soffner, nsiegmun, pukall, vkoeppen}@ovgu.de

More information

Chapter 5. Warehousing, Data Acquisition, Data. Visualization

Chapter 5. Warehousing, Data Acquisition, Data. Visualization Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives

More information

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing

More information

Data Mining - Introduction

Data Mining - Introduction Data Mining - Introduction Peter Brezany Institut für Scientific Computing Universität Wien Tel. 4277 39425 Sprechstunde: Di, 13.00-14.00 Outline Business Intelligence and its components Knowledge discovery

More information

Outline Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications

Outline Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications Outline Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications Introduction to the BI Roadmap Business Intelligence Framework DW role in BI From Chaos to Architecture

More information

Data Warehousing Systems: Foundations and Architectures

Data Warehousing Systems: Foundations and Architectures Data Warehousing Systems: Foundations and Architectures Il-Yeol Song Drexel University, http://www.ischool.drexel.edu/faculty/song/ SYNONYMS None DEFINITION A data warehouse (DW) is an integrated repository

More information

An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies

An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies Ashish Gahlot, Manoj Yadav Dronacharya college of engineering Farrukhnagar, Gurgaon,Haryana Abstract- Data warehousing, Data Mining,

More information

BIPM H6001: Bus Intel & Process Modelling

BIPM H6001: Bus Intel & Process Modelling Short Title: Full Title: Bus Intel & APPROVED Bus Intel & Module Code: BIPM H6001 Credits: 7.5 NFQ Level: 9 Field of Study: Management and administration Module Delivered in no programmes Reviewed By:

More information

Data Integration and ETL Process

Data Integration and ETL Process Data Integration and ETL Process Krzysztof Dembczyński Institute of Computing Science Laboratory of Intelligent Decision Support Systems Politechnika Poznańska (Poznań University of Technology) Software

More information

The Evolution of the Data Warehouse Systems in Recent Years

The Evolution of the Data Warehouse Systems in Recent Years Jacek Maślankowski * The Evolution of the Data Warehouse Systems in Recent Years Introduction Although data warehouses are used in enterprises for a long time, they has evaluated recently. In the last

More information

Flexible Data Warehouse Parameters: Toward Building an Integrated Architecture

Flexible Data Warehouse Parameters: Toward Building an Integrated Architecture Flexible Data Warehouse Parameters: Toward Building an Integrated Architecture Mustafa Musa Jaber, Mohd Khanapi Abd Ghani, Nanna Suryana, Mohammed Aal Mohammed, and Thamir Abbas Abstract Clinical databases

More information

Big Data Governance Certification Self-Study Kit Bundle

Big Data Governance Certification Self-Study Kit Bundle Big Data Governance Certification Bundle This certification bundle provides you with the self-study materials you need to prepare for the exams required to complete the Big Data Governance Certification.

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518 International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 Over viewing issues of data mining with highlights of data warehousing Rushabh H. Baldaniya, Prof H.J.Baldaniya,

More information

IST722 Data Warehousing

IST722 Data Warehousing IST722 Data Warehousing Components of the Data Warehouse Michael A. Fudge, Jr. Recall: Inmon s CIF The CIF is a reference architecture Understanding the Diagram The CIF is a reference architecture CIF

More information

OLAP, Knowledge Discovery from Database, Social Security Fund, Oracle Warehouse Builder, Oracle Discoverer.

OLAP, Knowledge Discovery from Database, Social Security Fund, Oracle Warehouse Builder, Oracle Discoverer. ABSTRACT Mohamed Salah GOUIDER 1, Amine FARHAT 2 BESTMOD Laboratory Institut Supérieur de Gestion 41, rue de la liberté, cite Bouchoucha Bardo, 2000, Tunis, TUNISIA ms.gouider@isg.rnu.tn 1, farhat_amine@yahoo.fr

More information

Valuation Factors for the Necessity of Data Persistence in Enterprise Data Warehouses on In-Memory Databases

Valuation Factors for the Necessity of Data Persistence in Enterprise Data Warehouses on In-Memory Databases Valuation Factors for the Necessity of Data Persistence in Enterprise Data Warehouses on In-Memory Databases Author: Supervisor: Thorsten Winsemann Otto-von-Guericke Universität Magdeburg, Germany Kanalstraße

More information

INTEROPERABILITY IN DATA WAREHOUSES

INTEROPERABILITY IN DATA WAREHOUSES INTEROPERABILITY IN DATA WAREHOUSES Riccardo Torlone Roma Tre University http://torlone.dia.uniroma3.it/ SYNONYMS Data warehouse integration DEFINITION The term refers to the ability of combining the content

More information

Microsoft Data Warehouse in Depth

Microsoft Data Warehouse in Depth Microsoft Data Warehouse in Depth 1 P a g e Duration What s new Why attend Who should attend Course format and prerequisites 4 days The course materials have been refreshed to align with the second edition

More information

A Critical Review of Data Warehouse

A Critical Review of Data Warehouse Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 95-103 Research India Publications http://www.ripublication.com A Critical Review of Data Warehouse Sachin

More information

Overview. DW Source Integration, Tools, and Architecture. End User Applications (EUA) EUA Concepts. DW Front End Tools. Source Integration

Overview. DW Source Integration, Tools, and Architecture. End User Applications (EUA) EUA Concepts. DW Front End Tools. Source Integration DW Source Integration, Tools, and Architecture Overview DW Front End Tools Source Integration DW architecture Original slides were written by Torben Bach Pedersen Aalborg University 2007 - DWML course

More information

Data Warehousing. Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1

Data Warehousing. Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1 Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 2 A Few Words About

More information

Data Warehousing. Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1

Data Warehousing. Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1 Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 13 Part II Overview

More information

Syllabus. HMI 7437: Data Warehousing and Data/Text Mining for Healthcare

Syllabus. HMI 7437: Data Warehousing and Data/Text Mining for Healthcare Syllabus HMI 7437: Data Warehousing and Data/Text Mining for Healthcare 1. Instructor Illhoi Yoo, Ph.D Office: 404 Clark Hall Email: muteaching@gmail.com Office hours: TBA Classroom: TBA Class hours: TBA

More information

Original Research Articles

Original Research Articles Original Research Articles Researchers Sweety Patel Department of Computer Science, Fairleigh Dickinson University, USA Email- sweetu83patel@yahoo.com Different Data Warehouse Architecture Creation Criteria

More information

BIG DATA COURSE 1 DATA QUALITY STRATEGIES - CUSTOMIZED TRAINING OUTLINE. Prepared by:

BIG DATA COURSE 1 DATA QUALITY STRATEGIES - CUSTOMIZED TRAINING OUTLINE. Prepared by: BIG DATA COURSE 1 DATA QUALITY STRATEGIES - CUSTOMIZED TRAINING OUTLINE Cerulium Corporation has provided quality education and consulting expertise for over six years. We offer customized solutions to

More information

The University of Jordan

The University of Jordan The University of Jordan Master in Web Intelligence Non Thesis Department of Business Information Technology King Abdullah II School for Information Technology The University of Jordan 1 STUDY PLAN MASTER'S

More information

ETL-EXTRACT, TRANSFORM & LOAD TESTING

ETL-EXTRACT, TRANSFORM & LOAD TESTING ETL-EXTRACT, TRANSFORM & LOAD TESTING Rajesh Popli Manager (Quality), Nagarro Software Pvt. Ltd., Gurgaon, INDIA rajesh.popli@nagarro.com ABSTRACT Data is most important part in any organization. Data

More information

Lection 3-4 WAREHOUSING

Lection 3-4 WAREHOUSING Lection 3-4 DATA WAREHOUSING Learning Objectives Understand d the basic definitions iti and concepts of data warehouses Understand data warehousing architectures Describe the processes used in developing

More information

Data Warehousing, Data Mining, OLAP and OLTP Technologies Are Essential Elements to Support Decision-Making Process in Industries

Data Warehousing, Data Mining, OLAP and OLTP Technologies Are Essential Elements to Support Decision-Making Process in Industries International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-2, Issue-6, May 2013 Data Warehousing, Data Mining, OLAP and OLTP Technologies Are Essential Elements

More information

Week 3 lecture slides

Week 3 lecture slides Week 3 lecture slides Topics Data Warehouses Online Analytical Processing Introduction to Data Cubes Textbook reference: Chapter 3 Data Warehouses A data warehouse is a collection of data specifically

More information

Data Warehousing and OLAP Technology for Knowledge Discovery

Data Warehousing and OLAP Technology for Knowledge Discovery 542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories

More information

Oracle9i Data Warehouse Review. Robert F. Edwards Dulcian, Inc.

Oracle9i Data Warehouse Review. Robert F. Edwards Dulcian, Inc. Oracle9i Data Warehouse Review Robert F. Edwards Dulcian, Inc. Agenda Oracle9i Server OLAP Server Analytical SQL Data Mining ETL Warehouse Builder 3i Oracle 9i Server Overview 9i Server = Data Warehouse

More information

Data warehouse life-cycle and design

Data warehouse life-cycle and design SYNONYMS Data Warehouse design methodology Data warehouse life-cycle and design Matteo Golfarelli DEIS University of Bologna Via Sacchi, 3 Cesena Italy matteo.golfarelli@unibo.it DEFINITION The term data

More information

BUILDING OLAP TOOLS OVER LARGE DATABASES

BUILDING OLAP TOOLS OVER LARGE DATABASES BUILDING OLAP TOOLS OVER LARGE DATABASES Rui Oliveira, Jorge Bernardino ISEC Instituto Superior de Engenharia de Coimbra, Polytechnic Institute of Coimbra Quinta da Nora, Rua Pedro Nunes, P-3030-199 Coimbra,

More information

Big Data Governance Certification Self-Study Kit Bundle

Big Data Governance Certification Self-Study Kit Bundle Big Data Governance Certification Bundle This certification bundle provides you with the self-study materials you need to prepare for the exams required to complete the Big Data Governance Certification.

More information

Middleware for Heterogeneous and Distributed Information Systems

Middleware for Heterogeneous and Distributed Information Systems Prof. Dr.-Ing. Stefan Deßloch AG Heterogene Informationssysteme Geb. 36, Raum 329 Tel. 0631/205 3275 dessloch@informatik.uni-kl.de Middleware for Heterogeneous and Distributed Information Systems http://wwwlgis.informatik.uni-kl.de/cms/courses/middleware/

More information

Data Warehouse Schema Design

Data Warehouse Schema Design Data Warehouse Schema Design Jens Lechtenbörger Dept. of Information Systems University of Münster Leonardo-Campus 3 D-48149 Münster, Germany lechten@wi.uni-muenster.de 1 Introduction A data warehouse

More information

The GOBIA Method: Towards Goal-Oriented Business Intelligence Architectures

The GOBIA Method: Towards Goal-Oriented Business Intelligence Architectures The GOBIA Method: Towards Goal-Oriented Business Intelligence Architectures David Fekete 1 and Gottfried Vossen 1,2 1 ERCIS, Leonardo-Campus 3, 48149 Münster, Germany, firstname.lastname@ercis.de 2 University

More information

Information Systems 2

Information Systems 2 Information Systems 2 Information Systems 2 Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems & Institute for Computer Science

More information

A Comparative Study on Operational Database, Data Warehouse and Hadoop File System T.Jalaja 1, M.Shailaja 2

A Comparative Study on Operational Database, Data Warehouse and Hadoop File System T.Jalaja 1, M.Shailaja 2 RESEARCH ARTICLE A Comparative Study on Operational base, Warehouse Hadoop File System T.Jalaja 1, M.Shailaja 2 1,2 (Department of Computer Science, Osmania University/Vasavi College of Engineering, Hyderabad,

More information

CASE STUDY - BUILDING A DATA WAREHOUSE FOR HIGHER EDUCATION IN THE COURSE OF MICROSTRATEGY S UNIVERSITY PROGRAM

CASE STUDY - BUILDING A DATA WAREHOUSE FOR HIGHER EDUCATION IN THE COURSE OF MICROSTRATEGY S UNIVERSITY PROGRAM CASE STUDY - BUILDING A DATA WAREHOUSE FOR HIGHER EDUCATION IN THE COURSE OF MICROSTRATEGY S UNIVERSITY PROGRAM Michael Boehnlein University of Bamberg, Feldkirchenstr. 21, D-96045 Bamberg, Germany +49-951-863-2514

More information

GRADUATE ENTREPRENEUR ANALYTICAL REPORTS (GEAR) USING DATA WAREHOUSE MODEL: A CASE STUDY AT CEDI, UNIVERSITI UTARA MALAYSIA (UUM).

GRADUATE ENTREPRENEUR ANALYTICAL REPORTS (GEAR) USING DATA WAREHOUSE MODEL: A CASE STUDY AT CEDI, UNIVERSITI UTARA MALAYSIA (UUM). GRADUATE ENTREPRENEUR ANALYTICAL REPORTS (GEAR) USING DATA WAREHOUSE MODEL: A CASE STUDY AT CEDI, UNIVERSITI UTARA MALAYSIA (UUM). Muhamad Shahbani Abu Bakar 1 and Hayder Naser Khraibet. 1 INTRODUCTION

More information

Data Warehouses and Business Intelligence ITP 487 (3 Units) Fall 2013. Objective

Data Warehouses and Business Intelligence ITP 487 (3 Units) Fall 2013. Objective Data Warehouses and Business Intelligence ITP 487 (3 Units) Objective Fall 2013 While the increased capacity and availability of data gathering and storage systems have allowed enterprises to store more

More information

Key organizational factors in data warehouse architecture selection

Key organizational factors in data warehouse architecture selection Key organizational factors in data warehouse architecture selection Ravi Kumar Choudhary ABSTRACT Deciding the most suitable architecture is the most crucial activity in the Data warehouse life cycle.

More information

SQL Server 2012 Business Intelligence Boot Camp

SQL Server 2012 Business Intelligence Boot Camp SQL Server 2012 Business Intelligence Boot Camp Length: 5 Days Technology: Microsoft SQL Server 2012 Delivery Method: Instructor-led (classroom) About this Course Data warehousing is a solution organizations

More information

IST722 Syllabus. Instructor Paul Morarescu Email pcmorare@syr.edu Phone 315-443-4371 Office hours (phone) Thus 10:00-12:00 EST

IST722 Syllabus. Instructor Paul Morarescu Email pcmorare@syr.edu Phone 315-443-4371 Office hours (phone) Thus 10:00-12:00 EST IST722 Syllabus Instructor Paul Morarescu Email pcmorare@syr.edu Phone 315-443-4371 Office hours (phone) Thus 10:00-12:00 EST Course Description This course provides concepts, principles, and tools for

More information

COURSE DESCRIPTION Spring 2014. PREREQUISITES - Recommended INF1343. - Recommended that students have some basic statistics background.

COURSE DESCRIPTION Spring 2014. PREREQUISITES - Recommended INF1343. - Recommended that students have some basic statistics background. COURSE DESCRIPTION Spring 2014 COURSE NAME COURSE CODE DESCRIPTION Data Analytics: Introduction, Methods and Practical Approaches INF2190H The influx of data that is created, gathered, stored and accessed

More information

CSE532 Theory of Database Systems Course Information. CSE 532, Theory of Database Systems Stony Brook University http://www.cs.stonybrook.

CSE532 Theory of Database Systems Course Information. CSE 532, Theory of Database Systems Stony Brook University http://www.cs.stonybrook. CSE532 Theory of Database Systems Course Information CSE 532, Theory of Database Systems Stony Brook University http://www.cs.stonybrook.edu/~cse532 Course Description The 3 credits course will cover advanced

More information

Analysis Patterns in Dimensional Data Modeling

Analysis Patterns in Dimensional Data Modeling Analysis Patterns in Dimensional Data Modeling Stephan Schneider 1, Dirk Frosch-Wilke 1 1 University of Applied Sciences Kiel, Institute of Business Information Systems, Sokratesplatz. 2, 24149 Kiel, Germany

More information

BUSINESS INTELLIGENCE AS SUPPORT TO KNOWLEDGE MANAGEMENT

BUSINESS INTELLIGENCE AS SUPPORT TO KNOWLEDGE MANAGEMENT ISSN 1804-0519 (Print), ISSN 1804-0527 (Online) www.academicpublishingplatforms.com BUSINESS INTELLIGENCE AS SUPPORT TO KNOWLEDGE MANAGEMENT JELICA TRNINIĆ, JOVICA ĐURKOVIĆ, LAZAR RAKOVIĆ Faculty of Economics

More information

Jagir Singh, Greeshma, P Singh University of Northern Virginia. Abstract

Jagir Singh, Greeshma, P Singh University of Northern Virginia. Abstract 224 Business Intelligence Journal July DATA WAREHOUSING Ofori Boateng, PhD Professor, University of Northern Virginia BMGT531 1900- SU 2011 Business Intelligence Project Jagir Singh, Greeshma, P Singh

More information

Establish and maintain Center of Excellence (CoE) around Data Architecture

Establish and maintain Center of Excellence (CoE) around Data Architecture Senior BI Data Architect - Bensenville, IL The Company s Information Management Team is comprised of highly technical resources with diverse backgrounds in data warehouse development & support, business

More information

Doctoral Program in Informatics Data Warehousing Systems Proposal for a Course (2011-2012)

Doctoral Program in Informatics Data Warehousing Systems Proposal for a Course (2011-2012) Doctoral Program in Informatics Data Warehousing Systems Proposal for a Course (2011-2012) MAP-i Joint Doctoral Program in Informatics University of Minho, University of Porto, and University of Aveiro

More information

OLAP Theory-English version

OLAP Theory-English version OLAP Theory-English version On-Line Analytical processing (Business Intelligence) [Ing.J.Skorkovský,CSc.] Department of corporate economy Agenda The Market Why OLAP (On-Line-Analytic-Processing Introduction

More information

14. Data Warehousing & Data Mining

14. Data Warehousing & Data Mining 14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,

More information

Translational Data Warehouse DesignStrategies for Supporting the Ontology Mapper Project 2008

Translational Data Warehouse DesignStrategies for Supporting the Ontology Mapper Project 2008 Strategies for Supporting the Ontology Mapper Project 2008 The CTSA Ontology Mapper and Discovery Suite: A Rules-Based Approach to Integrated Data Repository Deployment Translational Data Warehousing Design

More information

Data W a Ware r house house and and OLAP Week 5 1

Data W a Ware r house house and and OLAP Week 5 1 Data Warehouse and OLAP Week 5 1 Midterm I Friday, March 4 Scope Homework assignments 1 4 Open book Team Homework Assignment #7 Read pp. 121 139, 146 150 of the text book. Do Examples 3.8, 3.10 and Exercise

More information

An Approach for Facilating Knowledge Data Warehouse

An Approach for Facilating Knowledge Data Warehouse International Journal of Soft Computing Applications ISSN: 1453-2277 Issue 4 (2009), pp.35-40 EuroJournals Publishing, Inc. 2009 http://www.eurojournals.com/ijsca.htm An Approach for Facilating Knowledge

More information

Analyzing Polls and News Headlines Using Business Intelligence Techniques

Analyzing Polls and News Headlines Using Business Intelligence Techniques Analyzing Polls and News Headlines Using Business Intelligence Techniques Eleni Fanara, Gerasimos Marketos, Nikos Pelekis and Yannis Theodoridis Department of Informatics, University of Piraeus, 80 Karaoli-Dimitriou

More information

Foundations of Business Intelligence: Databases and Information Management

Foundations of Business Intelligence: Databases and Information Management Chapter 5 Foundations of Business Intelligence: Databases and Information Management 5.1 See Markers-ORDER-DB Logically Related Tables Relational Approach: Physically Related Tables: The Relationship Screen

More information

Data Search. Searching and Finding information in Unstructured and Structured Data Sources

Data Search. Searching and Finding information in Unstructured and Structured Data Sources 1 Data Search Searching and Finding information in Unstructured and Structured Data Sources Erik Fransen Senior Business Consultant 11.00-12.00 P.M. November, 3 IRM UK, DW/BI 2009, London Centennium BI

More information

Module compendium of the Master s degree course of Information Systems

Module compendium of the Master s degree course of Information Systems Module compendium of the Master s degree course of Information Systems Information Management: Managing IT in the Information Age Information Management: Theories and Architectures Process Management:

More information

CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved

CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information

More information

Extending UML 2 Activity Diagrams with Business Intelligence Objects *

Extending UML 2 Activity Diagrams with Business Intelligence Objects * Extending UML 2 Activity Diagrams with Business Intelligence Objects * Veronika Stefanov, Beate List, Birgit Korherr Women s Postgraduate College for Internet Technologies Institute of Software Technology

More information

Mario Guarracino. Data warehousing

Mario Guarracino. Data warehousing Data warehousing Introduction Since the mid-nineties, it became clear that the databases for analysis and business intelligence need to be separate from operational. In this lecture we will review the

More information

Course Outline: Course: Implementing a Data Warehouse with Microsoft SQL Server 2012 Learning Method: Instructor-led Classroom Learning

Course Outline: Course: Implementing a Data Warehouse with Microsoft SQL Server 2012 Learning Method: Instructor-led Classroom Learning Course Outline: Course: Implementing a Data with Microsoft SQL Server 2012 Learning Method: Instructor-led Classroom Learning Duration: 5.00 Day(s)/ 40 hrs Overview: This 5-day instructor-led course describes

More information

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013 An Architecture for Creation of Multimedia Data Warehouse 1 Meenakshi Srivastava, 2 Dr. S.K.Singh, 3 Dr. S.Q.Abbas 1 Assistant Professor, Amity University,Lucknow Campus, India, 2 Professor, Amity University

More information

Data Mining and Business Intelligence CIT-6-DMB. http://blackboard.lsbu.ac.uk. Faculty of Business 2011/2012. Level 6

Data Mining and Business Intelligence CIT-6-DMB. http://blackboard.lsbu.ac.uk. Faculty of Business 2011/2012. Level 6 Data Mining and Business Intelligence CIT-6-DMB http://blackboard.lsbu.ac.uk Faculty of Business 2011/2012 Level 6 Table of Contents 1. Module Details... 3 2. Short Description... 3 3. Aims of the Module...

More information

Big Data Architect Certification Self-Study Kit Bundle

Big Data Architect Certification Self-Study Kit Bundle Big Data Architect Certification Bundle This certification bundle provides you with the self-study materials you need to prepare for the exams required to complete the Big Data Architect Certification.

More information

Data Warehouse Architecture Overview

Data Warehouse Architecture Overview Data Warehousing 01 Data Warehouse Architecture Overview DW 2014/2015 Notice! Author " João Moura Pires (jmp@di.fct.unl.pt)! This material can be freely used for personal or academic purposes without any

More information

COMM 437 DATABASE DESIGN AND ADMINISTRATION

COMM 437 DATABASE DESIGN AND ADMINISTRATION COMM 437 DATABASE DESIGN AND ADMINISTRATION If you are reading this, you would have already read countless articles about the power of information in improving decision making, enhancing strategic position

More information

DATA WAREHOUSING APPLICATIONS: AN ANALYTICAL TOOL FOR DECISION SUPPORT SYSTEM

DATA WAREHOUSING APPLICATIONS: AN ANALYTICAL TOOL FOR DECISION SUPPORT SYSTEM DATA WAREHOUSING APPLICATIONS: AN ANALYTICAL TOOL FOR DECISION SUPPORT SYSTEM MOHAMMED SHAFEEQ AHMED Guest Lecturer, Department of Computer Science, Gulbarga University, Gulbarga, Karnataka, India (e-mail:

More information

Dynamic Data in terms of Data Mining Streams

Dynamic Data in terms of Data Mining Streams International Journal of Computer Science and Software Engineering Volume 2, Number 1 (2015), pp. 1-6 International Research Publication House http://www.irphouse.com Dynamic Data in terms of Data Mining

More information

An Instructional Design for Data Warehousing: Using Design Science Research and Project-based Learning

An Instructional Design for Data Warehousing: Using Design Science Research and Project-based Learning An Instructional Design for Data Warehousing: Using Design Science Research and Project-based Learning Roelien Goede North-West University, South Africa Abstract The business intelligence industry is supported

More information

A Survey of ETL Tools

A Survey of ETL Tools RESEARCH ARTICLE International Journal of Computer Techniques - Volume 2 Issue 5, Sep Oct 2015 A Survey of ETL Tools Mr. Nilesh Mali 1, Mr.SachinBojewar 2 1 (Department of Computer Engineering, University

More information

Data Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc.

Data Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc. Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc. Introduction Abstract warehousing has been around for over a decade. Therefore, when you read the articles

More information