# w ki w kj k=1 w2 ki k=1 w2 kj F. Aiolli - Sistemi Informativi 2007/2008

Save this PDF as:

Size: px
Start display at page:

Download "w ki w kj k=1 w2 ki k=1 w2 kj F. Aiolli - Sistemi Informativi 2007/2008"

## Transcription

1 RSV of the Vector Space Model The matching function RSV is the cosine of the angle between the two vectors RSV(d i,q j )=cos(α)= n k=1 w kiw kj d i 2 q j 2 = n k=1 n w ki w kj n k=1 w2 ki k=1 w2 kj 8 Note that Given two vectors (either docs or queries), their similarity is determined by their direction and verse but not their distance! You can think of them as lying on the sphere of unit radius The following three option returns the same value Cosine of two generic vectors x 1 and x 2 Cosine of two vectors v(x 1 ) and v(x 2 ), where v(x) is a length-normalized vector of x The inner product of vectors v(x 1 ) and v(x 2 ) 9

2 Normalized vectors For normalized vectors, the cosine is simply the dot product: r cos( d j r, d k r ) = d j r d k 10 Exercise Euclidean distance between vectors: d j d k = n i = 1 ( d d ) i, j i, k Show that, for normalized vectors, Euclidean distance gives the same proximity ordering as the cosine measure 2 11

3 12 The effect of normalization From the p.o.v. of ranking, the three previous options are also equivalent to computing the (inverse of) distance between v(x 1 ) and v(x 2 ) Normalization implies that the RSV computes a qualitative similarity (what kind of information they contain) instead of quantitative (how much information they contain). It has experimentally be proven to yield improved results We can verify that in the VSM, RSV(d,d)=1 (ideal document property). Boolean, Fuzzy Logic, and other models also have this property 13

4 Example Docs: Austen's Sense and Sensibility, Pride and Prejudice; Bronte's Wuthering Heights SaS PaP WH affection jealous gossip SaS PaP WH affection 0,996 0,993 0,847 jealous 0,087 0,120 0,466 gossip 0,017 0,000 0,254 cos(sas, PAP) =.996 x x x 0.0 = cos(sas, WH) =.996 x x x.254 = Advantages of the VSM 1. Flexibility. The most decisive factor in imposing VSM. The same intuitive geometric interpretation has been re-applied, apart from relevance feedback, in different contexts Automatic document categorization Automatic document filtering Document clustering Term-term similarity computation (terms are indexed by documents, dual) 15

5 2. Possibility to attribute weights to the IREPs of both documents and queries thus allowing automatically indexed document bases 3. Ranked output and output magnitude control 4. Automatic query acquisition 5. No output flattening ; each query term contributes to the ranking in an equal way, depending on its weights 6. Much better effectiveness than the BM and the FLM 16 Disadvantages of the VSM Impossibility of formulating structured queries: there are no operators Or (synonyms or quasi-synonyms) And (compulsory occurrence of index terms) Not (compulsory absence of index terms) Prox (specification of noun phrases) The VSM is based on the hypothesis that the terms are pairwise stochastically independent (binary independence hypothesis). A more recent extension of the VSM relaxes this hypothesis, allowing the Cartesian axes to be non-orthogonal 17

6 On Similarity Measures Any two arbitrary objects are equally similar unless we use domain knowledge! Inner Product Jaccard and Dice Similarity Overlap Coefficient Conversion from a distance Kernel Functions (beyond vectors) 18 Inner Product Dice Jaccard Overlap Coef. Binary case d i q j 2 d i q j d i + q j d i q j d i q j d i q j min( d i, q j ) Non-binary case d i q j 2d i q j d i 2 + q j 2 d i q j d i 2 + q j 2 d i q j d i q j min( d i 2, q j 2 ) 19

7 Conversion from a distance Minkowsky Distances L p (x,z)=( n i x i z i p ) 1 p When p =, L = max i ( x i -z i ) A similarity measure taking values in [0,1] can always be defined as s p,λ (x,z)=e λl p(x,z) Where λ (0,+ ) is a constant parameter 20 Kernel functions A kernel function K(x,z) is a (generally non-linear) function which corresponds to an inner product in some expanded feature space, i.e. K(x,z)=φ(x) φ(z) Example: For 2-dimensional spaces x=(x 1,x 2 ) is a kernel where K(x,z)=(1+x y) 2 φ(x)=(1,x 2 1, 2x 1 x 2,x 2 2, 2x 1, 2x 2 ) 21

8 Polynomial Kernels: RBF Kernels K(x,z)=(x z+u) p Other Kernels K(x,z)=e λ x z 2 Also, there are kernels for structured data: strings, sequences, trees, graphs, an so on 22 Polynomial kernels allows to model features which are conjunctions (up to the order of the polynomial) Radial Basis Function kernels is equivalent to map into an infinite dimensional Hilbert space A string kernel allows to have features that are subsequences of words 23

### TF-IDF. David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt

TF-IDF David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt Administrative Homework 3 available soon Assignment 2 available soon Popular media article

### Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval

Information Retrieval INFO 4300 / CS 4300! Retrieval models Older models» Boolean retrieval» Vector Space model Probabilistic Models» BM25» Language models Web search» Learning to Rank Search Taxonomy!

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### MACHINE LEARNING. Introduction. Alessandro Moschitti

MACHINE LEARNING Introduction Alessandro Moschitti Department of Computer Science and Information Engineering University of Trento Email: moschitti@disi.unitn.it Course Schedule Lectures Tuesday, 14:00-16:00

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### Notes on Support Vector Machines

Notes on Support Vector Machines Fernando Mira da Silva Fernando.Silva@inesc.pt Neural Network Group I N E S C November 1998 Abstract This report describes an empirical study of Support Vector Machines

### Eng. Mohammed Abdualal

Islamic University of Gaza Faculty of Engineering Computer Engineering Department Information Storage and Retrieval (ECOM 5124) IR HW 5+6 Scoring, term weighting and the vector space model Exercise 6.2

### Support Vector Machines Explained

March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

### Big Data Analytics CSCI 4030

High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

### Binary and Ranked Retrieval

Binary and Ranked Retrieval Binary Retrieval RSV(d i,q j ) {0,1} Does not allow the user to control the magnitude of the output. In fact, for a given query, the system may return under-dimensioned output

### Medical Information Management & Mining. You Chen Jan,15, 2013 You.chen@vanderbilt.edu

Medical Information Management & Mining You Chen Jan,15, 2013 You.chen@vanderbilt.edu 1 Trees Building Materials Trees cannot be used to build a house directly. How can we transform trees to building materials?

### Statistical Models in Data Mining

Statistical Models in Data Mining Sargur N. Srihari University at Buffalo The State University of New York Department of Computer Science and Engineering Department of Biostatistics 1 Srihari Flood of

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### A Comparison Framework of Similarity Metrics Used for Web Access Log Analysis

A Comparison Framework of Similarity Metrics Used for Web Access Log Analysis Yusuf Yaslan and Zehra Cataltepe Istanbul Technical University, Computer Engineering Department, Maslak 34469 Istanbul, Turkey

### Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

### Students will understand 1. use numerical bases and the laws of exponents

Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?

### DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar

### Homework 2. Page 154: Exercise 8.10. Page 145: Exercise 8.3 Page 150: Exercise 8.9

Homework 2 Page 110: Exercise 6.10; Exercise 6.12 Page 116: Exercise 6.15; Exercise 6.17 Page 121: Exercise 6.19 Page 122: Exercise 6.20; Exercise 6.23; Exercise 6.24 Page 131: Exercise 7.3; Exercise 7.5;

### Spazi vettoriali e misure di similaritá

Spazi vettoriali e misure di similaritá R. Basili Corso di Web Mining e Retrieval a.a. 2008-9 April 10, 2009 Outline Outline Spazi vettoriali a valori reali Operazioni tra vettori Indipendenza Lineare

### A 0.9 0.9. Figure A: Maximum circle of compatibility for position A, related to B and C

MEASURING IN WEIGHTED ENVIRONMENTS (Moving from Metric to Order Topology) Claudio Garuti Fulcrum Ingenieria Ltda. claudiogaruti@fulcrum.cl Abstract: This article addresses the problem of measuring closeness

### Data Mining Techniques Chapter 11: Automatic Cluster Detection

Data Mining Techniques Chapter 11: Automatic Cluster Detection Clustering............................................................. 2 k-means Clustering......................................................

### Discrete Optimization

Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### Introduction to Information Retrieval http://informationretrieval.org

Introduction to Information Retrieval http://informationretrieval.org IIR 6&7: Vector Space Model Hinrich Schütze Institute for Natural Language Processing, University of Stuttgart 2011-08-29 Schütze:

### Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

### discuss how to describe points, lines and planes in 3 space.

Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position

### Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours

MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT

### Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

### Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Chapter 3 Linear Least Squares Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

### 9 Multiplication of Vectors: The Scalar or Dot Product

Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

### Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009

Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level

### with functions, expressions and equations which follow in units 3 and 4.

Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

### Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

### A Survey of Kernel Clustering Methods

A Survey of Kernel Clustering Methods Maurizio Filippone, Francesco Camastra, Francesco Masulli and Stefano Rovetta Presented by: Kedar Grama Outline Unsupervised Learning and Clustering Types of clustering

### Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

### MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

### 1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

### Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are

Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

### Neural Networks. CAP5610 Machine Learning Instructor: Guo-Jun Qi

Neural Networks CAP5610 Machine Learning Instructor: Guo-Jun Qi Recap: linear classifier Logistic regression Maximizing the posterior distribution of class Y conditional on the input vector X Support vector

### Hierarchical Clustering

Hierarchical Clustering Basics Please read the introduction to principal component analysis first. There, we explain how spectra can be treated as data points in a multi-dimensional space, which is required

### Mathematics Common Core Cluster. Mathematics Common Core Standard. Domain

Mathematics Common Core Domain Mathematics Common Core Cluster Mathematics Common Core Standard Number System Know that there are numbers that are not rational, and approximate them by rational numbers.

### An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

### Support Vector Machines with Clustering for Training with Very Large Datasets

Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France theodoros.evgeniou@insead.fr Massimiliano

### CAB TRAVEL TIME PREDICTI - BASED ON HISTORICAL TRIP OBSERVATION

CAB TRAVEL TIME PREDICTI - BASED ON HISTORICAL TRIP OBSERVATION N PROBLEM DEFINITION Opportunity New Booking - Time of Arrival Shortest Route (Distance/Time) Taxi-Passenger Demand Distribution Value Accurate

### Linear functions Increasing Linear Functions. Decreasing Linear Functions

3.5 Increasing, Decreasing, Max, and Min So far we have been describing graphs using quantitative information. That s just a fancy way to say that we ve been using numbers. Specifically, we have described

### Common Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS)

CCSS Key: The Number System (NS) Expressions & Equations (EE) Functions (F) Geometry (G) Statistics & Probability (SP) Common Core State Standard I Can Statements 8 th Grade Mathematics 8.NS.1. Understand

### Lecture 14: Section 3.3

Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

### Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

### CHARACTERISTICS IN FLIGHT DATA ESTIMATION WITH LOGISTIC REGRESSION AND SUPPORT VECTOR MACHINES

CHARACTERISTICS IN FLIGHT DATA ESTIMATION WITH LOGISTIC REGRESSION AND SUPPORT VECTOR MACHINES Claus Gwiggner, Ecole Polytechnique, LIX, Palaiseau, France Gert Lanckriet, University of Berkeley, EECS,

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### Online edition (c)2009 Cambridge UP

DRAFT! April 1, 2009 Cambridge University Press. Feedback welcome. 109 6 Scoring, term weighting and the vector space model Thus far we have dealt with indexes that support Boolean queries: a document

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

### Essential Mathematics for Computer Graphics fast

John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

### 1 o Semestre 2007/2008

Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Outline 1 2 3 4 5 Outline 1 2 3 4 5 Exploiting Text How is text exploited? Two main directions Extraction Extraction

### Predictive Dynamix Inc

Predictive Modeling Technology Predictive modeling is concerned with analyzing patterns and trends in historical and operational data in order to transform data into actionable decisions. This is accomplished

### Text Analytics. Models for Information Retrieval 1. Ulf Leser

Text Analytics Models for Information Retrieval 1 Ulf Leser Content of this Lecture IR Models Boolean Model Vector Space Model Relevance Feedback in the VSM Probabilistic Model Latent Semantic Indexing

### Analyzing The Role Of Dimension Arrangement For Data Visualization in Radviz

Analyzing The Role Of Dimension Arrangement For Data Visualization in Radviz Luigi Di Caro 1, Vanessa Frias-Martinez 2, and Enrique Frias-Martinez 2 1 Department of Computer Science, Universita di Torino,

### Figure 2.1: Center of mass of four points.

Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

### COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

### Math Department Student Learning Objectives Updated April, 2014

Math Department Student Learning Objectives Updated April, 2014 Institutional Level Outcomes: Victor Valley College has adopted the following institutional outcomes to define the learning that all students

### GRADE 8 SKILL VOCABULARY MATHEMATICAL PRACTICES Define rational number. 8.NS.1

Common Core Math Curriculum Grade 8 ESSENTIAL DOMAINS AND QUESTIONS CLUSTERS How do you convert a rational number into a decimal? How do you use a number line to compare the size of two irrational numbers?

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### Linear Algebra: Vectors

A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector

### Towards Online Recognition of Handwritten Mathematics

Towards Online Recognition of Handwritten Mathematics Vadim Mazalov, joint work with Oleg Golubitsky and Stephen M. Watt Ontario Research Centre for Computer Algebra Department of Computer Science Western

### COMBINING THE METHODS OF FORECASTING AND DECISION-MAKING TO OPTIMISE THE FINANCIAL PERFORMANCE OF SMALL ENTERPRISES

COMBINING THE METHODS OF FORECASTING AND DECISION-MAKING TO OPTIMISE THE FINANCIAL PERFORMANCE OF SMALL ENTERPRISES JULIA IGOREVNA LARIONOVA 1 ANNA NIKOLAEVNA TIKHOMIROVA 2 1, 2 The National Nuclear Research

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### Support Vector Machine (SVM)

Support Vector Machine (SVM) CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

### Visualization by Linear Projections as Information Retrieval

Visualization by Linear Projections as Information Retrieval Jaakko Peltonen Helsinki University of Technology, Department of Information and Computer Science, P. O. Box 5400, FI-0015 TKK, Finland jaakko.peltonen@tkk.fi

### 4.1 Learning algorithms for neural networks

4 Perceptron Learning 4.1 Learning algorithms for neural networks In the two preceding chapters we discussed two closely related models, McCulloch Pitts units and perceptrons, but the question of how to

### Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Retrieval Models and Implementation Ulf Leser Content of this Lecture Information Retrieval Models Boolean Model Vector Space Model Inverted Files Ulf Leser: Maschinelle

### Text Analytics. Models for Information Retrieval 1. Ulf Leser

Text Analytics Models for Information Retrieval 1 Ulf Leser Content of this Lecture IR Models Boolean Model Vector Space Model Relevance Feedback in the VSM Probabilistic Model Latent Semantic Indexing

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

### Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

### Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.

Multimedia Databases Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 14 Previous Lecture 13 Indexes for Multimedia Data 13.1

### Chapter ML:XI (continued)

Chapter ML:XI (continued) XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained

### Interactive Math Glossary Terms and Definitions

Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas

### LCs for Binary Classification

Linear Classifiers A linear classifier is a classifier such that classification is performed by a dot product beteen the to vectors representing the document and the category, respectively. Therefore it

### Relations and Functions

Section 5. Relations and Functions 5.1. Cartesian Product 5.1.1. Definition: Ordered Pair Let A and B be sets and let a A and b B. An ordered pair ( a, b) is a pair of elements with the property that:

### ! E6893 Big Data Analytics Lecture 5:! Big Data Analytics Algorithms -- II

! E6893 Big Data Analytics Lecture 5:! Big Data Analytics Algorithms -- II Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Mgr., Dept. of Network Science and

### Nonlinear Iterative Partial Least Squares Method

Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

### LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 119 STATISTICS AND ELEMENTARY ALGEBRA 5 Lecture Hours, 2 Lab Hours, 3 Credits Pre-

### Able Enrichment Centre - Prep Level Curriculum

Able Enrichment Centre - Prep Level Curriculum Unit 1: Number Systems Number Line Converting expanded form into standard form or vice versa. Define: Prime Number, Natural Number, Integer, Rational Number,

### Ranking on Data Manifolds

Ranking on Data Manifolds Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, and Bernhard Schölkopf Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany {firstname.secondname

### Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

### Curves and Surfaces. Goals. How do we draw surfaces? How do we specify a surface? How do we approximate a surface?

Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] Goals How do we draw surfaces? Approximate with polygons Draw polygons

### Two vectors are equal if they have the same length and direction. They do not

Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

### Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

### Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

### A Simple Introduction to Support Vector Machines

A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Large-margin linear

### Social Business Intelligence Text Search System

Social Business Intelligence Text Search System Sagar Ligade ME Computer Engineering. Pune Institute of Computer Technology Pune, India ABSTRACT Today the search engine plays the important role in the

### By W.E. Diewert. July, Linear programming problems are important for a number of reasons:

APPLIED ECONOMICS By W.E. Diewert. July, 3. Chapter : Linear Programming. Introduction The theory of linear programming provides a good introduction to the study of constrained maximization (and minimization)

### Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

### Cluster analysis. Biological data analysis and chemometrics. Jens C. Frisvad BioCentrum-DTU

Cluster analysis Based on H.C. Romesburg: Cluster analysis for researchers, Lifetime Learning Publications, Belmont, CA, 1984 P.H.A. Sneath and R.R. Sokal: Numericxal Taxonomy, Freeman, San Fransisco,

### Interaction effects between continuous variables (Optional)

Interaction effects between continuous variables (Optional) Richard Williams, University of Notre Dame, http://www.nd.edu/~rwilliam/ Last revised February 0, 05 This is a very brief overview of this somewhat

### MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

### Clustering Lecture 1: Basics

Clustering Lecture 1: Basics Jing Gao SUNY Buffalo 1 Topics Clustering, Classification Network mining Anomaly detection Expectation Class Structure Sign-in Take quiz in class Two more projects on clustering