@ Oxford Fajar Sdn. Bhd. ( T) Matter. 1.1 Atoms and Molecules 1.2 Mole Concept 1.3 Stoichiometry

Size: px
Start display at page:

Download "@ Oxford Fajar Sdn. Bhd. (008974-T) 2012. Matter. 1.1 Atoms and Molecules 1.2 Mole Concept 1.3 Stoichiometry"

Transcription

1 1 Matter 1.1 Atoms and Molecules 1.2 Mole Concept 1.3 Stoichiometry

2 2 Chemistry for Matriculation Semester Atoms and Molecules LEARNING OUTCOMES Describe proton, electron and neutron in terms of the relative mass and relative charge Define proton number, Z, nucleon number, A and isotope Write isotope notation Define relative atomic mass, A r and relative molecular mass, M r based on the C-12 scale Calculate the average atomic mass of an element given the relative abundances of isotopes or a mass spectrum Subatomic Particles of an Atom 1 An atom consists of a positively charged nucleus surrounded by a negatively charged electron cloud. 2 The particles in the nucleus of an atom are called nucleons. Nucleons consist of positively charged protons and neutrons which are neutral. 3 Protons, neutrons and electrons are called fundamental or subatomic particles. The properties of subatomic particles are given in Table 1.1. Table 1.1 Properties (mass and charge) of subatomic particles Particle Symbol Charge Relative mass (a.m.u.) Approximate relative mass (a.m.u.) Proton p Neutron n Electron e or 1/ [1 a.m.u. (atomic mass unit) = kg] 4 The radius of an atomic nucleus is approximately m. However, a large volume of the atom is made up of empty space which is occupied by the electron cloud. Almost all (99.98%) the mass of the atom is concentrated in the nucleus. An atom is the smallest particle in an element that can participate in a chemical reaction. Proton Number, Nucleon Number and Isotopes Proton number 1 The proton number is the number of protons in the nucleus of an atom. 2 The symbol for proton number is Z. 3 Each element has a different proton number.

3 4 Atoms are neutral particles because the number of protons equals the number of electrons. 5 In the modern periodic table (Appendix 1), the elements are arranged in ascending order of proton number. Matter 3 Nucleon number 1 The nucleon number (A) is the total number of protons and neutrons in the nucleus. Number of neutrons = Nucleon number Proton number = A Z 2 The structure of an atom can be written in a number of ways. For example, the carbon atom, which contains six protons and six neutrons can be written in the following ways. (a) carbon-12: the number 12 denotes the nucleon number (b) 12 C or 12 C: the nucleon number 12 is indicated as a superscript 6 and the proton number 6 indicated as a subscript on the left of the carbon atom symbol (C) 3 In general, the structure of an atom, X, can be written in symbol form as a b X. nucleon number proton number a X b symbol of the element 4 In the case of an anion or a cation, the charge of the ion is shown as a superscript on the right of the symbol for the ion. For example, the symbol Cl denotes a chloride ion which consists of the atom chlorine-35 with a negative charge of 1. Similarly, 16 O22 denotes a 8 peroxide ion which contains two bonded oxygen atoms with a negative charge of 2. Proton number is also known as atomic number. Nucleon number is also known as mass number. t EXAMPLE 1.1 Plutonium is a radioactive substance. The plutonium atom has 94 protons and 150 neutrons. Write the symbol for the plutonium atom in three different ways. Proton number = 94 Nucleon number = = 244 The plutonium atom can be written as plutonium-244, 244 Pu and 244Pu. 94 Isotopes 1 Isotopes are atoms of the same element having the same number of protons but different number of neutrons. For example, the isotopes of hydrogen are called hydrogen, deuterium and tritium. 1 1H hydrogen deuterium 2 H 3 H 1 1 tritium Deuterium can also be written as 2 D 1.

4 4 Chemistry for Matriculation Semester 1 Isotope Fluorine-19 Aluminium-27 Chromium-50 Chromium-52 Chromium-53 Chromium-54 Table 1.2 Atomic structures and isotopic abundances of some elements Relative abundance Atomic structure (%) Number of protons Number of neutrons Number of electrons Isotopes have the same chemical properties because they have the same electronic configuration. 3 Isotopes have different physical properties such as melting point, boiling point, density and rate of diffusion. Isotopic abundance 1 A few elements, such as fluorine and aluminium, have been found to consist of only one isotope. 2 However, most elements exist as mixtures of two or more naturally occurring isotopes. For example, tin (Sn) has 10 isotopes. 3 The abundance of each isotope in the mixture is called its isotopic abundance. 4 Isotopic abundances can be expressed in terms of relative or percentage abundances (Table 1.2). Isotopic abundance (%) Number of atoms for a given isotope = Total number of atoms for all isotopes of the element The isotopic abundance can also be expressed as fractional abundance or isotopic ratio. For example: (a) The fractional abundances of the isotopes of chromium (Table 1.2) are 0.04, 0.84, 0.1 and (b) Chlorine is a mixture of 75.5% chlorine-35 and 24.5% chlorine-37. The isotopic ratio of 35 Cl : 37 Cl is 75.5 : 24.5, usually expressed as 3 : 1. Cations and anions 1 Atoms and molecules do not carry any charge whereas ions are charged particles. 2 An ion is an atom or a group of atoms that has lost one or more electrons, making it positively charged, or gained one or more electrons, making it negatively charged. 3 Positive ions are called cations. Negative ions are called anions. 4 Tables 1.3 and 1.4 show the number of protons, neutrons and electrons in some atoms and their ions.

5 Matter 5 Table 1.3 Numbers of protons, electrons and neutrons in atoms and their positive ions Atom or positive ion protons Number of electrons neutrons Na Na Mg Mg Al Al Remarks Loss of 1e Loss of 2e Loss of 3e Table 1.4 Numbers of protons, electrons and neutrons in atoms and their negative ions Atom or Number of Remarks negative ion protons electrons neutrons Cl Gain of 1e Cl O Gain of 2e O Polyatomic ions are ions which contain two or more covalently bonded atoms. 6 Examples of polyatomic ions are the hydroxide ion (OH ), the nitrate ion (NO 3 ), the carbonate ion (CO 3 2 ) and the ammonium ion (NH 4 + ). EXAMPLE 1.2 State the numbers of protons, neutrons and electrons present in the following sulphur species. 32 S 33 S S2 Species Number of protons Number of neutrons Number of electrons 32S S S QUICK CHECK A beam of particles containing protons, electrons and neutrons is passed between charged plates. The diagram shows the effect of the charged plates on these particles. (a) Which beam (X, Y or Z) contains (i) protons, (ii) electrons, and (iii) neutrons? Explain your answers. (b) Explain why beam X is deflected more than beam Z. beam of p, e, n positive plate + negative plate X Z Y

6 6 Chemistry for Matriculation Semester 1 2. With reference to the periodic table (Appendix 1) at the end of this book, state the numbers of subatomic particles in the following atoms. silicon-28; chlorine-37; bromine Determine the numbers of protons, neutrons and electrons in the following species O2 ; Al3+ ; 7 3 Li+ 4. With the help of the periodic table, identify the species with the compositions shown on the right. Species A B C D Number of protons neutrons electrons Relative Atomic Mass and Relative Molecular Mass Relative atomic mass 1 In 1961, the International Union of Pure and Applied Chemistry (IUPAC) adopted a scale based on the isotope carbon-12 ( 12 C). On 6 this scale (the carbon-12 scale), one carbon-12 atom is assigned a mass of exactly atomic mass units (a.m.u.). 2 Thus, one atomic mass unit is defined as 1 the mass of one atom 12 of the carbon-12 isotope. The mass of one carbon-12 atom is g. Therefore, 1 a.m.u. = g = g = kg 3 The relative atomic masses of all elements are found by comparing the mass of one atom of the element with the mass of a carbon-12 atom. 4 The relative atomic mass (A r ) of an element is defined as the ratio of the mass of one atom of the element to 1 12 of the mass of a carbon-12 atom. Mass of one atom of the element Relative atomic mass = 1 of the mass of one atom of carbon = Mass of one atom of the element 12 Mass of one atom of carbon-12 5 If the mass of one atom of an element X is one third of the mass of one carbon-12 atom, then the relative atomic mass of the element is 1 12 = 4 a.m.u. Similarly, if the mass of one atom of another element 3 is 2 times the mass of a carbon-12 atom, then its relative atomic mass is 2 12 = 24 a.m.u. 6 The mass of a proton ( a.m.u.) is almost the same as the mass of a neutron ( a.m.u.) while the mass of an electron is very small.

7 Hence, the relative atomic mass of an element can be considered to be the same as its nucleon number. For example, the relative atomic mass of fluorine-19 = The relative isotopic mass is the ratio of the mass of one atom of an isotope to 1 12 of the mass of one atom of carbon-12. Matter 7 Mass of one atom of the isotope Relative isotopic mass = 1 of the mass of one carbon-12 atom 12 Mass of one atom of the isotope 12 = Mass of one carbon-12 atom Determining relative atomic mass from isotopic abundance 1 For elements that do not have isotopes (for example, fluorine-19), the relative atomic mass is the same as the relative isotopic mass. 2 However, for elements that have isotopes, the relative atomic mass is calculated by multiplying the relative isotopic mass of each isotope by its relative abundance and adding all these values together. For example, for an element with two isotopes: mx + ny Relative atomic mass = 100 where m, n = relative isotopic mass of each isotope x, y = relative abundance of isotopes m and n respectively EXAMPLE 1.3 Sulphur is a non-metallic element found in many minerals. Calculate the relative atomic mass of naturally occurring sulphur from the following data: Isotope Relative abundance (%) Sulphur Sulphur Sulphur Relative atomic ( ) + ( ) + ( ) = mass of sulphur 100 = 32.1 EXAMPLE 1.4 An element Y has two isotopes, P and Q. The ratio of the abundances of the isotopes relative to each other is: P Q = 0.32

8 8 Chemistry for Matriculation Semester 1 What is the relative atomic mass of Y? (Based on 12 C, the relative isotopic mass of P is and the relative isotopic mass of Q is ) P = 0.32 = 0.32 Q % of P = 100 = % of Q = = 75.8 Relative atomic mass of Y = = = Many compounds do not exist as molecules. When considering ionic compounds such as sodium chloride, Na + Cl, the term relative formula mass is used in place of relative molecular mass. Relative molecular mass 1 The relative molecular mass of an element or a compound is the ratio of the mass of one molecule of the substance to 1 of the mass 12 of an atom of carbon-12. Relative molecular mass = Mass of one molecule of a substance 1 of the mass of one atom 12 of carbon-12 2 Relative molecular mass, M r, has no units and is calculated by adding up the relative atomic masses of all the atoms present in one molecule of the substance. For example, the relative molecular mass (M r ) of ethanoic acid, CH 3 COOH, is ( ) = 60. QUICK CHECK (a) By using chlorine as an example, explain the meaning of isotope. (b) Define relative atomic mass. (c) What is the relative atomic mass of an element X if the atomic mass ratio of X to 12 C is 2.25? 2. The relative atomic mass of a sample of bromine which contains two isotopes, Br and Br, is Calculate the relative abundance of 79 Br in the sample of bromine Naturally occurring copper is a mixture of 69.09% Cu isotope and 30.9% Cu isotope. If the masses of the isotopes Cu and Cu are and respectively, what is the relative atomic mass of copper? 4. The relative molecular mass of a hydrated salt, (NH 4 ) 2 X(SO 4 ) 2.6H 2 O is 392. X is a metallic element. What is (a) the relative atomic mass of X, (b) the percentage of water of crystallisation in the hydrated salt? 5. The three stable isotopes of magnesium are magnesium-24, magnesium-25 and magnesium-26. The relative atomic mass of magnesium is Write down the proton number and the number of neutrons for the most abundant magnesium isotope.

9 Mass spectrometer 1 Mass spectrometry is a modern technique that uses a mass spectrometer to determine (a) the relative isotopic mass of an atom, (b) the relative abundance of an isotope in a sample of the element, (c) the relative atomic mass of an element, (d) the relative molecular mass of a compound. 2 A mass spectrometer (Figure 1.1) is an instrument that (a) separates positive ions by their mass-to-charge (m/e) ratios, (b) shows their masses and abundance. 3 There are many types of mass spectrometers, but all mass spectrometers have five basic parts. 2 ionisation chamber 3 acceleration chamber P1 P2 positive ions 4 magnetic field 1 2 The sample is vaporised Positive ions are produced 3 The positive ions are accelerated Matter 9 Photo 1.1 The mass spectrometer is a very expensive instrument. It is found only in some modern chemistry laboratories Figure 1.1 The schematic representation of a mass spectrometer 1 vaporisation chamber electron gun 5 ion detector recorder 4 The positive ions are deflected 5 The positive ions are detected 1 1 Vaporisation chamber The sample to be analysed is first vaporised by heating (unless the sample is already a gas). 2 2 Ionisation chamber The sample in the gaseous state is ionised by electron bombardment. The heated filament releases high-energy electrons which knock out electrons from the molecules or atoms in the sample to form positive ions. X(g) + e X + (g) + 2e sample high-energy electron 3 Acceleration chamber The positive ions are then accelerated by applying a high negative potential to the plates P1 and P2. The slits in P2 produce a fine beam of ions moving at high speeds. 4 Magnetic field The accelerated ions then enter a magnetic field where they are deflected into the arc of a circle according to their mass charge ratio (m/e). Positive ions with lower mass-to-charge ratio will be deflected more than those with higher mass-to-charge ratio. Thus, 79 Br + is deflected more than 81 Br + because it has a smaller mass-to-charge ratio (Figure 1.2).

10 10 Chemistry for Matriculation Semester 1 Figure 1.2 Deflection of positive ions in a mass spectrometer 79 Br + and 81 Br + magnetic field 79 Br + 81 Br + Mass spectrometers can be used to confirm the presence of forbidden drugs in urine. Figure 1.3 The mass spectrum of naturally occurring boron (a) Ion detector By varying the strength of the magnetic field, ions with different masses can be deflected to the ion detector. This produces a flow of current which is amplified and recorded as a peak on a chart called the mass spectrum. The relative heights of the peaks give the relative proportions of the ions present. 4 The mass spectrum of naturally occurring boron is shown in Figure 1.3(a). This mass spectrum can be changed into a bar chart (Figure 1.3(b)). The mass spectrum of boron contains two peaks at m/e 10 and m/e 11. This shows that (a) naturally occurring boron is made up of two isotopes, 10 B and 11 B, (b) boron-11 is four times more abundant than boron-10, that is, the relative abundances of boron-10 and boron-11 are 20% and 80% respectively. (b) 100 relative abundance relative abundance m/e m/e Determining Relative Atomic Mass from Mass Spectra 1 If an element has n isotopes with m/e ratios of m 1, m 2,..., m n, then: Average atomic mass = (m Q ) i i = m Q + m Q m n Q n Q i Q 1 + Q Q n where m i = m/e ratio Q i = relative height of peak or relative abundance Examples: (a) An element A has three isotopes X, Y and Z with m/e ratios of a, b and c, and relative heights of h 1, h 2 and h 3. Average atomic mass of A = (m Q ) i i = ah + bh + ch Q i h 1 + h 2 + h 3 (b) An element A has three isotopes X, Y and Z with m/e ratios of a, b and c, and relative abundances of x%, y% and z% respectively. Average atomic mass of A = (m Q ) i i ax + by + cz ax + by + cz = = Q i x + y + z Take note that the unit for average atomic mass is u (atomic mass unit). In contrast, the relative atomic mass (A r ) has no unit (see Example 1.5).

11 Matter 11 EXAMPLE 1.5 Calculate the relative atomic mass of silicon from the following data. Isotope Relative abundance (%) Silicon Silicon Silicon Average atomic mass of silicon = (m Q ) i i Q i ( ) + ( ) + ( ) = = 28.1 u Average atomic mass of Si Relative atomic mass (A r ) of Si = 1/12 mass of one C-12 atom = 28.1 EXAMPLE 1.6 The mass spectrum of an element X is given in the figure below. What information can be deduced with regard to the element X? relative abundance m/e There are four peaks in the mass spectrum at m/e values of 64, 66, 67 and 68. Therefore, the naturally occurring element, X, has four isotopes with relative isotopic masses of 64, 66, 67 and 68. The most abundant isotope is X-64. Applying formula 1.1, (64 100) + (66 56) + (67 8) + (68 38) Average atomic mass of X = ( ) = Average atomic mass of X A r of X = 1/12 mass of one C-12 atom = With reference to the periodic table (Appendix 1), the element X is zinc.

12 12 Chemistry for Matriculation Semester 1 EXAMPLE 1.7 Figure (a) shows the passage of 16 O + and 17 O + through a magnetic field and Figure (b) shows the passage of 18 O + and 18 O 2+ through a magnetic field. 16 O + and magnetic field 18 O + and magnetic field 17 O + 18 O 2+ In the mass spectrometer, the heavier the particle, the smaller the deflection. The higher the charge of the particle, the bigger the deflection. A (a) Identify the particles A, B, C and D. STRATEGY B In Figure (a), 16 O + and 17 O + have the same charge but different mass. 16 O + is the lighter particle. It will be deflected more than 17 O +. Hence, line A is caused by 16 O +. In Figure (b), 18 O + and 18 O 2+ have the same mass but different charges. 18 O 2+ has the higher charge, that is, lower mass-to-charge ratio. Hence, 18 O 2+ is deflected more than 18 O +. (b) C D Particle A is 16 O + and particle B is 17 O +. Particle C is 18 O 2+ and particle D is 18 O +. QUICK CHECK (a) Name the components in a mass spectrometer where (i) positive ions are produced, (ii) positive ions are deflected. (b) Naturally occurring bromine consists of two isotopes, 79 Br and 81 Br. The following positive ions are produced in the ionisation chamber: 79 Br +, 81 Br +, ( 79 Br + 79 Br) +, ( 79 Br + 81 Br) + and ( 81 Br + 81 Br) + Which ion will be deflected the most and which ion the least? Explain your answer. 2. A sample of oxygen which contains isotopes with nucleon numbers 16 and 18 is analysed in a mass spectrometer. How many peaks are recorded in the mass spectrum obtained? Explain your answer. 3. (a) A sample of chlorine is analysed in a mass spectrometer. The mass spectrum contains five peaks at m/e 35, 37, 70, 72 and 74. Identify the ions that are responsible for these peaks. (b) The mass spectrum of neon contains three lines which correspond to the mass 100 ratios of 20, 21 charge and 22 with relative intensities of 0.91 : : Explain the meaning of these data and hence, calculate the relative atomic mass of neon. 4. The mass spectrum of an element is shown on the right. With the help of the periodic table, identify the element. 5. Boron consists of two isotopes, 10B and 11 B. The 5 5 relative atomic mass of boron is Calculate the relative abundances of 10B and 11B. 5 5 percentage abundance (%) m/e

13 Matter Mole Concept LEARNING OUTCOMES Define mole in terms of mass of carbon-12 Define mole in terms of Avogadro constant, N A Interconvert between moles, mass, number of particles, molar volume of gas at s.t.p. and room temperature Define empirical formula and molecular formula Determine empirical and molecular formulae from mass composition or combustion data Define and perform calculations for concentration measurements 1 In the field of science, the mass of a substance is usually measured in units of grams (g) or kilograms (kg). 2 Chemists use another SI unit to state the amount of a substance. This unit is called mole (mol). Mole Concept and the Avogadro Constant 1 One mole (1 mol) is defined as the quantity of a substance that contains the same number of particles (atoms, electrons, ions or molecules) as there are atoms in exactly 12 g of carbon The mass of a single carbon-12 atom has been found to be g using a mass spectrometer. The number of atoms in exactly one mole of 12 C is This can be shown by the following calculation. Atomic substances 1 mole of 12 C contains carbon atoms 1 mole of sodium contains sodium atoms (Na) Molecules 1 mole of chlorine molecules contains chlorine molecules (Cl 2 ) or chlorine atoms (Cl) Number of particles Ions 1 mole of calcium bromide (CaBr 2 ) contains calcium ions (Ca 2+ ) and bromide ions (Br ) Electrons 1 mole of electrons contains electrons Figure 1.4 Number of particles in one mole of a substance

14 14 Chemistry for Matriculation Semester 1 Mass per mole of 12 C N A = Mass of one atom of 12 C 12 g mol 1 = g = mol 1 3 Thus one mole of any substance contains particles (Figure 1.4). This number is called the Avogadro constant (N A ), and has the unit mol 1. 4 The relative atomic mass for all elements, stated in grams, contains the same number of atoms. 12 g of the element carbon, 1 g of the element hydrogen, and 32 g of the element sulphur contains atoms, even though the element carbon exists as atoms, and hydrogen (H 2 ) and sulphur (S 8 ) exist as molecules. Avogadro constant number of moles, n number of particles Avogadro constant Calculating the number of atoms and molecules 1 The mole concept enables chemists to count the number of atoms by weighing. For example, 12 g of carbon contains atoms. Therefore 1.0 g of carbon contains atoms and g of carbon contains atoms The relationship between the number of moles of a substance and the number of atoms or molecules in the substance is given by the formula: Number of moles of substance = Number of atoms or molecules Avogadro constant EXAMPLE 1.8 (a) How many atoms are found in 0.6 mole of copper? (b) How many moles of chlorine molecules are found in molecules of chlorine gas? (a) Number of copper atoms = Number of moles Avogadro constant = 0.6 mol ( mol 1 ) = atoms Number of molecules (b) Number of moles of chlorine molecules = Avogadro constant = mol 1 = mol

15 Mole Concept and Mass 1 The mass (in grams) of one mole of a substance is called molar mass (M). The unit for molar mass is g mol 1. For example: (a) The relative atomic mass of magnesium is So the molar mass of magnesium is 24.3 g mol 1. (b) The relative molecular mass of chlorine (Cl 2 ) is = 71.0 (A r of Cl = 35.5). Thus, the molar mass of chlorine molecules is 71.0 g mol 1. (c) The relative molecular mass of hydrogen chloride (HCl) is = The molar mass of hydrogen chloride is 36.5 g mol 1. 2 It is important to note that the type of particle (atom, molecule or ion) needs to be carefully specified. For example, a statement such as 1.0 mole of oxygen is ambiguous, because it can mean 1.0 mole of oxygen atoms (16.0 g) or 1.0 mole of oxygen molecules (32.0 g). 3 The relationship between the mass (m) and the number of moles (n) of a substance is given by the formula: Mass (m) = Number of moles (n) M where M = A r (relative atomic mass) or M r (relative molecular mass) Matter 15 Relative atomic mass and relative molecular mass have no units. In contrast, molar mass has the unit g mol 1. EXAMPLE 1.9 Calculate (a) the number of atoms in 192 g of ozone gas, (b) the mass of one aluminium atom, (c) the mass of sulphur atoms. (Relative atomic mass: O, 16.0; Al, 27.0; S, 32.1) 192 (a) Number of moles of ozone gas (O 3 ) = = 4.0 mol One molecule of ozone gas contains three oxygen atoms. Number of oxygen atoms = 3 ( ) = (b) Mass of aluminium atoms = 27.0 g 27.0 Mass of one aluminium atom = = g (c) Number of moles of sulphur atoms = = 0.5 Mass = = 16.1 g EXAMPLE 1.10 Calculate (a) the mass of oxygen contained in g of calcium hydroxide, (b) the number of moles of oxygen atoms in 25.5 g of hydrogen peroxide, H 2 O 2. molar mass (g mol 1 ) number of moles, n mass, m (g) molar mass (g mol 1 )

16 16 Chemistry for Matriculation Semester 1 (a) M r of calcium hydroxide, Ca(OH) 2 = (16 + 1) = 74.1 Number of moles of Ca(OH) 2 = = 2.0 Number of moles of oxygen atoms = = 4.0 Mass of oxygen atoms = = 64.0 g (b) Relative molecular mass of H 2 O 2, M r = (2 1) + (2 16) = 34 Number of moles of H 2 O 2 = Mass = 25.5 M r 34 = 0.75 Number of moles of oxygen atoms = = dm 3 mol 1 at s.t.p.* volume of gas (dm 3 ) number of moles, n * Use 24 dm 3 at room temperature dm 3 mol 1 at s.t.p.* Mole Concept and Molar Volume of Gases 1 For reactions that involve gases, the reacting volumes of gases (rather than their reacting masses) are often used. 2 The volume occupied by one mole of any gas is called the molar volume. (a) At s.t.p. (standard temperature and pressure), the molar gas volume is 22.4 dm 3. The conditions for s.t.p. are 0 C and 1 atm pressure. (b) At room temperature and pressure (20 C and 1 atm pressure), the molar gas volume is 24 dm 3. 3 The relationship between the number of moles of a gas and the volume of a gas is given by the formula: Number of moles, n = Volume of gas (dm 3 ) 22.4 (dm 3 mol 1 ) at s.t.p. = Volume of gas (dm 3 ) 24 (dm 3 mol 1 ) at r.t.p. The interconversion between moles, mass, number of particles and molar volume of gas is shown below. Number of particles (atom, molecule or ion) N A N A Number of moles 1 mole of any substance contains particles A r or M r A r or M r Mass (g) 22.4 dm 3 mol 1 at s.t.p. or 24 dm 3 mol 1 at room temperature 22.4 dm 3 mol 1 at s.t.p. or 24 dm 3 mol 1 at room temperature Volume of gas (dm 3 )

17 Matter 17 EXAMPLE 1.11 When potassium chlorate(v) solid is heated strongly, oxygen gas is liberated. 2KClO 3 (s) 2KCl(s) + 3O 2 (g) (a) A sample of KClO 3 released 48 dm 3 of oxygen gas at s.t.p. How many moles of oxygen gas are there? (b) How many molecules of oxygen are there in 48 dm 3 of oxygen gas? (c) Calculate the volume of oxygen gas evolved at s.t.p. when 0.5 g of potassium chlorate(v) is heated. (a) Number of moles of O 2 = 48.0 dm 3 = 2.14 mol 22.4 dm 3 1 mol (b) Number of molecules = 2.14 mol mol 1 = (c) 2 moles of KClO 3 produce 3 moles of oxygen gas (O 2 ). 2 moles of KClO 3 produce dm 3 of oxygen gas. M r for KClO 3 = (3 16) = Number of moles of KClO 3 used = 0.5 g 1 = mol g mol Volume of oxygen gas produced = mol dm 3 mol 1 = dm 3 Empirical and Molecular Formulae 1 The empirical formula of a compound is the formula which shows the simplest ratio of the atoms of the elements present in a compound. For example, an ethane (C 2 H 6 ) molecule contains 2 carbon atoms and 6 hydrogen atoms. The ratio of carbon : hydrogen = 2 : 6 = 1 : 3. Thus, its empirical formula is CH 3. EXAMPLE 1.12 When 2.67 g of copper reacts with excess sulphur, the mass of the compound obtained is 4.01 g. What is the empirical formula of the compound? (Relative atomic mass: Cu, 63.5; S, 32) Number of moles of copper = 2.67 = mol 63.5 Mass of sulphur in the compound = = 1.34 g Number of moles of sulphur = 1.34 = mol 32 Mole ratio of Cu : S = : = 1 : 1 The empirical formula of the copper compound is CuS. 2 The empirical formula of a compound is usually determined from the percentage composition (by mass) of the elements present in the molecule.

18 18 Chemistry for Matriculation Semester 1 EXAMPLE 1.13 A compound contains the elements potassium, chromium and oxygen. The composition by mass of the compound is 40.2% potassium, 32.9% oxygen and 26.9% chromium. Find the empirical formula of the compound. (Relative atomic mass: O, 16; K, 39; Cr, 52) Element Potassium Oxygen Chromium Percentage by mass Relative atomic mass Number of moles = = = 0.52 Atomic ratio = = = 1 Therefore, the empirical formula is K 2 CrO 4. 3 The molecular formula is the chemical formula which shows the exact number of atoms for each element in a molecule. 4 For many compounds, such as carbon dioxide and ammonia, the empirical formula and the molecular formula are the same. However, there are also many compounds (especially organic compounds) whose molecular formulae differ from their empirical formulae. Table 1.5 The molecular and empirical formulae of some compounds Compound Molecular formula Empirical formula Carbon dioxide CO 2 CO 2 Ammonia NH 3 NH 3 Nitrogen dioxide N 2 O 4 NO 2 Ethyne C 2 H 2 CH Benzene C 6 H 6 CH Glucose C 6 H 12 O 6 CH 2 O When the molecular formula of a compound is different from its empirical formula, the molecular formula is always a multiple of the empirical formula. For example, the empirical formula of glucose is CH 2 O. Its molecular formula is 6(CH 2 O) = C 6 H 12 O 6. 5 It is possible for different compounds to have the same empirical formula. For example, ethyne (C 2 H 2 ) and benzene (C 6 H 6 ) are two different compounds with the same empirical formula, CH. 6 To find the molecular formula of a substance, we need to know two things: (a) Its empirical formula (b) Its relative molecular mass 7 Empirical and molecular formulae are related as follows: Relative molecular mass Mass of empirical formula = n Molecular formula = n Empirical formula (where n = 1, 2, 3...)

19 Matter 19 EXAMPLE 1.14 Compound X contains the following composition by mass: 40.0% carbon, 6.6% hydrogen and 53.3% oxygen. Its relative molecular mass is 180. What is the molecular formula of X? (Relative atomic mass: H, 1; C, 12; O, 16) Step 1 Find the empirical formula of compound X. Element Carbon Hydrogen Oxygen % composition by mass Relative atomic mass Number of moles = = = 3.33 Atomic ratio The empirical formula is CH 2 O = = = 1 Step 2 Find the molecular formula of X. Relative molecular mass Mass of empirical formula = n Mass of empirical formula = 12 + (2 1) + 16 = = n = 6 The molecular formula of X = 6 Empirical formula = 6 CH 2 O = C 6 H 12 O 6. To determine molecular formula from combustion data 1 Organic compounds are flammable. The empirical and molecular formulae of organic compounds can be obtained from combustion data. EXAMPLE g of an organic compound containing carbon, hydrogen and oxygen gives g of carbon dioxide and g of water on combustion. Find the empirical formula of the compound. (Relative atomic mass: H, 1; C, 12; O, 16) Step 1 Find the mass of carbon and hydrogen in 0.50 g of the organic compound from the combustion data. 1 mole (44 g) of carbon dioxide contains 1 mole (12 g) of carbon. Mass of carbon in g of CO 2 = = g

20 20 Chemistry for Matriculation Semester 1 1 mole (18 g) of H 2 O contains 2 g of hydrogen atoms. Mass of hydrogen (H) in g of H 2 O = = g Step 2 Find the composition by mass of carbon, hydrogen and oxygen. % of carbon (C) in the compound = = 37.5% % of hydrogen (H) in the compound = = 12.5% 2 % of oxygen (O) in the compound = = 50% Step 3 Calculate the empirical formula. Element C H O Percentage Number of moles = = = Atomic ratio = = = 1 The empirical formula of the compound is CH 4 O. 2 The molecular formula of a gaseous hydrocarbon can be determined by (a) measuring the volume of carbon dioxide produced, (b) measuring the volume of oxygen that reacts with the hydrocarbon, (c) using the general equation for the combustion of a gaseous hydrocarbon (shown below) to find the molecular formula of the hydrocarbon. C x H y (g) + x + y 4 O 2 (g) xco 2 (g) + y 2 H 2 O(l) EXAMPLE 1.16 When 8.0 cm 3 of a hydrocarbon, P, were burnt in 60 cm 3 of oxygen, the volume of the gaseous products occupied 44 cm 3 after being cooled to room temperature. After absorption by aqueous potassium hydroxide (KOH), the residual gases occupied 12.0 cm 3. What is the molecular formula of the hydrocarbon? (Relative atomic mass: H, 1; C, 12)

21 Matter 21 Step 1 Calculate the volume of CO 2 produced. Volume of gaseous products = Volume of unreacted O 2 + Volume of CO 2 produced = 44 cm 3... (1) KOH(aq) was used to absorb CO 2 so that only oxygen gas remained. Residual gas after absorption of CO 2 by KOH(aq) = Volume of unreacted oxygen = 12 cm 3 From equation (1), volume of CO 2 produced = (44 12) cm 3 = 32 cm 3 Step 2 Calculate the volume of oxygen that reacted. Volume of O 2 reacted = Initial volume before reaction Volume remaining after reaction = = 48 cm 3 Step 3 Use the general equation for the combustion of a gaseous hydrocarbon to find the molecular formula of the hydrocarbon. C x H y + x + 4 y O xco + y H 2O... (2) Volume of hydrocarbon used = 8.0 cm 3 From equation (2), volume of CO 2 produced = 8.0x = (3) volume of oxygen reacted = 8.0 x + 4 y = (4) From equation (3), x = 4 From equation (4), y 4 = 48 y = 8 The molecular formula of the hydrocarbon is C 4 H 8. Concentrations of Solutions The concentration of a solution can be expressed in several different quantitative ways: (a) Molarity (d) Percentage by mass, % w/w (b) Molality, m (e) Percentage by volume, % v/v (c) Mole fraction, X Molarity, M 1 The concentration of a solution can be measured as mass (g) of solute per volume (dm 3 ) of solution (g dm 3 ). Chemists usually measure the concentrations of solutions as moles of solute per cubic decimetre of solution (mol dm 3 ). 1 dm 3 = 1000 cm 3 = 1000 ml = 1 L

22 22 Chemistry for Matriculation Semester 1 2 The concentration of a solution stated in mol dm 3 is called the molarity of the solution, M. 3 The formulae below are used in calculations involving solutions. Concentration (mol dm 3 ) = Amount of solute (mol) Volume of solution (dm 3 ) Concentration (g dm 3 ) = Concentration (mol dm 3 ) Relative molecular (formula) mass Amount of solute (mol) = Concentration (mol dm 3 ) Volume (cm 3 ) 1000 EXAMPLE 1.17 (a) What is the molarity of a solution containing 14.8 g of KOH in 750 cm 3 aqueous solution? (b) 3.15 g of H 2 C 2 O 4.2H 2 O are dissolved in water and made up to a 1.0 dm 3 solution. Calculate the molarity of (i) hydrogen ions, (ii) C 2 O 4 2 ions, (iii) H 2 C 2 O 4 molecules. (a) M r of KOH = 56 Number of moles of KOH = = mol Volume of solution = 750 cm 3 = 0.75 dm 3 Molarity = = mol dm 3 (b) (i) M r of H 2 C 2 O 4.2H 2 O = 126 Number of moles of H 2 C 2 O 4.2H 2 O = = mol Volume of solution = 1.0 dm 3 Molarity = = mol dm Molarity of H + = = 0.05 mol dm 3 (ii) Molarity of C 2 O 2 4 = mol dm 3 (iii) Molarity of H 2 C 2 O 4 = mol dm 3 Relating density to concentration measurement EXAMPLE 1.18 A solution of hydrochloric acid, with 37.8% by mass of HCl, has a density of 1.19 g cm 3. Calculate the molarity of concentrated hydrochloric acid.

23 Matter 23 Step 1 Calculate the number of moles of HCl in 100 g of solution. Mass of HCl in 100 g solution = 37.8 g M r of HCl = 36.5 Number of moles of HCl in 100 g solution = 37.8 = mol 36.5 Step 2 Calculate the volume (in dm 3 ) of a 100 g solution of hydrochloric acid. Density = Mass Volume Mass Volume = Density Volume of hydrochloric acid = 100 g 1.19 g cm 3 = cm 3 = dm 3 Step 3 Calculate the molarity of hydrochloric acid. Molarity = Number of moles Volume (in dm 3 ) = = 12.3 mol dm Labels on concentrated acid bottles contain two important pieces of information: the percentage by mass and the density. Chemists make use of this information to calculate the molarity of the concentrated acid. Molality, m 1 Suppose we prepare a 1.0 mol dm 3 solution at 20 C. If the experiment is carried out at 30 C, the molarity of the solution will decrease slightly. This is because the amount of solute remains constant, but the volume of solution increases slightly due to thermal expansion. As a result, the number of moles of solute per dm 3 solution (molarity) decreases slightly. 2 Molarity, M is a useful concentration unit for calculation in most experiments, but it is temperature dependent. For experiments demanding a high precision, the concentration unit, molality is often used, because molality is independent of temperature. 3 The molality, m of a solution is defined as the number of moles of solute per kilogram of solvent (mol kg 1 ). Molality, m = Moles of solute (mol) Mass of solvent (kg) Since the masses of the solute and the solvent do not change when the solution is heated or cooled, molality is temperature independent. 4 To prepare a 1.0 molal (1.0 m) sodium hydroxide solution, we need to dissolve 1.0 mol (40 g) of NaOH in 1.0 kg (1000 g) of water. EXAMPLE 1.19 What is the molality of a glucose solution containing 9.5 g of glucose (C 6 H 12 O 6 ) in 185 g of water?

24 24 Chemistry for Matriculation Semester 1 M r of glucose (C 6 H 12 O 6 ) = 180 Number of moles of C 6 H 12 O 6 = = Mass of solvent = 185 g = kg Molality = = mol kg EXAMPLE 1.20 The density of 15.8 mol dm 3 nitric acid is 1.42 g cm 3. What is the molality of the nitric acid? Step 1 Calculate the mass of HNO 3 in 1.0 dm 3 solution Number of moles of HNO 3 in 1.0 dm 3 solution = 15.8 mol M r of HNO 3 = (16) = 63 Mass of HNO 3 in 1.0 dm 3 solution = Number of moles M r = = g Step 2 Calculate the mass of water in 1.0 dm 3 solution Density of nitric acid solution (H 2 O + HNO 3 ) = 1.42 g in 1 cm 3 solution Mass of H 2 O + HNO 3 in 1000 cm 3 (1 dm 3 ) = 1420 g Mass of H 2 O (solvent) = = g = kg Step 3 Calculate the molality of nitric acid Moles of solute (mol) Molality = Mass of solvent (kg) = 15.8 = 37.2 mol kg Mole fraction, X 1 Consider a solution containing n A moles of A and n B moles of B. The mole fraction of A in the solution is the number of moles of A divided by the total number of moles of A and B. Mole fraction of A, X A = n A + n B 2 Mole fractions are independent of temperature and have no units. The sum of the mole fractions of all the components in a solution is 1. For example, for a solution containing components A, B and C, X A + X B + X C = 1 where X A, X B and X C are the mole fractions of A, B and C respectively. EXAMPLE 1.21 A solution is prepared by dissolving 32.0 g of methanol (CH 3 OH) in 72.0 g of water. Calculate the mole fraction of methanol in the solution. Relative molecular mass of methanol (CH 3 OH) = 32.0 Number of moles of methanol = 32.0 = 1.0 mol 32.0 Relative molecular mass of water = 18.0 n A

25 Matter 25 Number of moles of water = 72.0 = 4.0 mol Mole fraction of methanol in the solution = 1 +4 = 0.2 Percentage by mass, % w/w 1 Percentage by mass is also called weight percent. The percentage by mass of any component in a solution is the mass of that component divided by the total mass of the solution multiplied by 100%. Percentage by Mass of component = mass (% w/w) Total mass of solution 100% 2 A 0.9% by mass sodium chloride solution is a solution in which the ratio of the solute (NaCl) to the solution (NaCl (aq)) is 0.9 g to 100 g. EXAMPLE 1.22 A 0.80 mol dm 3 solution of sulphuric acid has a density of 1.10 g cm 3 at room temperature. What is the concentration of this solution in weight percent? (Relative molecular mass of H 2 SO 4 = 98) Consider 1.0 dm 3 of H 2 SO 4 solution. Mass of H 2 SO 4 = = 78.4 g Density of H 2 SO 4 solution = 1.10 g cm 3 Mass of 1 dm 3 solution = = 1100 g Weight % of H 2 SO 4 = % = 7.13% 1100 Percentage by volume, % v/v 1 The percentage by volume of any component in a solution is the volume of that component divided by the total volume of the solution multiplied by 100%. Percentage by Volume of component = volume (% v/v) Total volume of solution 100% EXAMPLE 1.23 Calculate the volume of antifreeze required to make 10 dm 3 of a solution of antifreeze which is 40% by volume. Let volume of antifreeze = V dm 3 40 = V % V = 4 dm 3

26 26 Chemistry for Matriculation Semester 1 1. (a) Calculate the mass of hydrogen chloride in a sample containing molecules of HCl. (b) Calculate the relative atomic mass of argon if the mass of one atom of argon is kg. 2. (a) Calculate the number of ethane (C 2 H 6 ) molecules in 3.75 g of ethane. (b) Calculate the number of ions in kg of sodium oxide (Na 2 O). (c) What is the volume (in L) of 28.8 g of sulphur dioxide at s.t.p.? (Relative atomic mass: H, 1; C, 12; O, 16; Na, 23; S, 32) 3. Nitrogen monoxide reacts spontaneously with oxygen according to the equation 2NO(g) + O 2 (g) 2NO 2 (g) QUICK CHECK 1.4 In an experiment, 50 cm 3 of nitrogen monoxide was mixed with 100 cm 3 of oxygen. Calculate the total volume of the gaseous mixture produced after the reaction. Assume that the volumes of gases were measured at s.t.p. 4. (a) What is meant by empirical formula? (b) The composition by mass of an organic acid is shown below. H, 2.20%; C, 26.70%; O, 71.10% The molar mass of the acid is 90.0 g mol 1.. (i) What is the empirical formula of the organic acid? (ii) What is its molecular formula? 5. (a) What is relative molecular mass? (b) An organic compound P, with relative molecular mass of 46, contains only carbon, hydrogen and oxygen. When 1.38 g of P is burnt in excess oxygen, 2.64 g of carbon dioxide and 1.62 g of water are produced. (i) Calculate the mass of carbon, hydrogen and oxygen in 1.38 g of P. (ii) Hence, find the molecular formula of P cm 3 of a hydrocarbon (C x H y ) require 88 cm 3 of oxygen for complete combustion. The volume of carbon dioxide produced is 64 cm 3. Calculate the molecular formula of the hydrocarbon. 7. (a) Ammonia gas can be prepared by heating calcium hydroxide with ammonium chloride. Ca(OH) 2 + 2NH 4 Cl CaCl 2 + 2NH 3 + 2H 2 O A sample of ammonia gas is prepared by heating 5.56 g of calcium hydroxide with excess ammonium chloride. The ammonia gas produced is dissolved in 300 cm 3 of water. What is the molarity of the ammonia solution? (b) A solution of mol dm 3 sulphuric acid has a density of g cm 3. What is the molality of this solution? 8. Calculate (a) the mole fractions of C 2 H 5 OH and H 2 O in a solution prepared by dissolving 1.70 g of C 2 H 5 OH in 16.0 g of water, (b) the concentration (% w/w) of a solution formed by dissolving 15.0 g of ZnCl 2 in 45.0 g of water, (c) the percentage by volume (% v/v) of ethanol in a solution containing 18.6 cm 3 of ethanol in 120 cm 3 solution cm 3 of ethanol (C 2 H 5 OH) are added to distilled water in a volumetric flask and the resulting solution is made up to 100 cm 3. The density of ethanol is g cm 3. The density of the solution is g cm 3. What is the (a) molarity of the solution, (c) percentage by mass of ethanol in the solution, (b) molality of the solution, (d) mole fraction of (i) ethanol, (ii) water in the solution? 10. The density of an aqueous ammonia solution of concentration 15.2 mol dm 3 is 0.91 g cm 3. What is the mole fraction of (a) ammonia, (b) water in this solution? 11. A solution of potassium sulphate is labelled as 5.8% by mass. Calculate the mass of solution that contains 1.58 g of potassium sulphate.

27 Matter Stoichiometry LEARNING OUTCOMES Determine the oxidation number of an element in a chemical formula Write and balance (a) chemical equation by inspection method (b) redox equation by ion electron method Define limiting reactant and percentage yield Perform stoichiometric calculations using mole concept including limiting reactant and percentage yield Oxidation Numbers 1 The oxidation number of an atom is an arbitrary charge assigned to the atom according to a set of rules. 2 Oxidation numbers are also called oxidation states. Redox reactions (oxidation reduction reactions) are often considered in terms of changes in oxidation number or oxidation state for each reactant. 3 The rules for assigning oxidation numbers are given in Table 1.6. Table 1.6 Rules for assigning oxidation numbers Rule 1. The oxidation number of an element in its uncombined state (not combined with other elements) is zero. Example The oxidation number of each of the elements, chlorine (Cl 2 ), oxygen (O 2 ), sodium (Na) and sulphur (S 8 ) is zero. 2. (a) The more electronegative element in a binary compound (compound with only 2 elements) is given a negative oxidation number. (b) The less electronegative element is given a positive oxidation number. (c) The oxidation number of fluorine in its compounds is always 1 because fluorine is the most electronegative element. Fluorine acts as the reference when considering the oxidation numbers of other elements. 3. In a binary ionic compound, the oxidation number of the element is the same as the charge on the ion. In HCl, hydrogen is given the oxidation number +1 and chlorine 1 because chlorine is more electronegative than hydrogen. When hydrogen is bonded to a less electronegative element, for example, in metal hydrides (NaH, CaH 2 ), hydrogen has the oxidation number 1. The oxidation number of fluorine is 1 in the following compounds HF ClF ClF 3 CaF 2 The oxidation numbers of iron and chlorine in iron(ii) chloride, Fe 2+ (Cl ) 2, are Fe = +2 and Cl = The sum of the oxidation numbers of all the elements in a compound is zero. 5. The sum of the oxidation numbers of all the atoms in a polyatomic ion equals the charge on the ion. In FeCl 3, the sum of the oxidation numbers of Fe and Cl = ( 1) = 0. In SO 2 4, the sum of the oxidation numbers = ( 2) = 2 (the charge on the sulphate ion). 4 The oxidation numbers of some elements such as Group 1 and Group 2 elements, and aluminium are always the same in their compounds (Table 1.7). Interhalogen compounds are compounds formed between two halogens, for example, CIF 3 or ICI.

28 28 Chemistry for Matriculation Semester 1 Table 1.7 Oxidation numbers of some elements Element H Oxidation number +1 (in all covalent compounds except in metal hydrides) 1 (in metal hydrides) Group 1 elements in the periodic table +1 Group 2 elements in the periodic table +2 Al +3 Cl O 1 (except when combined with oxygen or in some interhalogen compounds) 2 (except in fluorides and peroxides) EXAMPLE 1.24 What are the oxidation numbers of (a) chromium in Cr 2 (SO 4 ) 3, (b) chlorine in Cl 2 O 7, (c) oxygen and fluorine in OF 2, (d) iodine in ICl? (a) Oxidation number of sulphate ion = 2 (rule 5) Let oxidation number of chromium = x 2x + 3( 2) = 0 (rule 4) x = +3 (b) The oxidation number of oxygen = 2 (rule 2) Let oxidation number of chlorine = x 2x + 7( 2) = 0 (rule 4) x = +7 (c) Oxidation number of fluorine = 1 (rule 2) Let oxidation number of oxygen = x x + 2( 1) = 0 (rule 4) Oxidation number of oxygen = +2 (d) Chlorine is more electronegative Oxidation number of chlorine = 1 (rule 2) Oxidation number of iodine = +1 (rule 4) EXAMPLE 1.25 What are the values of m and n (charges) in the following ions (a) AlO 2 m and (b) Pb(OH) 4 n? (a) Oxidation numbers: Al = +3, O = 2 Charge on the ion (m) = ( 2) = 1 that is, m = 1 and the formula of the ion is AlO 2 (rule 5) (b) Oxidation number of lead = +2, charge of hydroxide ion = 1 Charge on the ion (n) = ( 1) = 2 that is, n = 2 and the formula of the ion is Pb(OH) 4 2 (rule 5)

29 Chemical Equations Matter 29 1 The study of the relative proportions in which substances react is called stoichiometry. The chemical equations in which the number of moles of reactants (molecules or atoms) are in simple whole number ratios are called stoichiometric equations. 2 To represent a chemical equation correctly, the equation must be balanced. All balanced chemical equations have the following features. (a) The reactants must appear on the left, and the products appear on the right. The arrow joining them indicates the direction of reaction. (b) The number of each type of atom is the same on both sides of the equation. Writing chemical equations by inspection method 1 The equation given below is not balanced. The number of oxygen atoms in the reactants does not match the number of oxygen atoms in the product. H 2 (g) + O 2 (g) H 2 O(g)... (1) 2 oxygen atoms one oxygen atom 2 In order to balance equation (1), we need to put a 2 in front of H 2 as well as in front of H 2 O. 2H 2 (g) + O 2 (g) 2H 2 O(g) 4H atoms 2O atoms 4H atoms 2O atoms Oxidation and reduction 1 Oxidation is defined as the loss of electrons from a substance and reduction is the gain of electrons by a substance. 2 An oxidising agent is a substance which accepts electrons from another substance (brings about oxidation) and a reducing agent is a substance which donates electrons to another substance (brings about reduction). 3 Consider the following reaction: Sn 2+ (aq) + 2Fe 3+ (aq) Sn 4+ (aq) + 2Fe 2+ (aq)... (2) Reaction (2) can be considered as derived from two processes: Oxidation: Sn 2+ (aq) Sn 4+ (aq) + 2e... (3) Reduction: 2Fe 3+ (aq) + 2e 2Fe 2+ (aq)... (4) Equations (3) and (4) which show only oxidation or reduction in terms of loss and gain of electrons are called half-equations.

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Chapter 1: Moles and equations. Learning outcomes. you should be able to: Chapter 1: Moles and equations 1 Learning outcomes you should be able to: define and use the terms: relative atomic mass, isotopic mass and formula mass based on the 12 C scale perform calculations, including

More information

21 st Century Chemistry Multiple Choice Question in Topic 3 Metals Unit 11

21 st Century Chemistry Multiple Choice Question in Topic 3 Metals Unit 11 21 st Century Chemistry Multiple Choice Question in Topic 3 Metals Unit 11 1. Consider the equation: 2Ca(s) + O 2 (g) 2CaO(s) Which of the following statements are correct? (1) Calcium and oxygen are reactants.

More information

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia.

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. Chemistry C2 Foundation and Higher Questions Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. (a) Complete the word equation for the reaction that takes place

More information

Formulae, stoichiometry and the mole concept

Formulae, stoichiometry and the mole concept 3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be

More information

W1 WORKSHOP ON STOICHIOMETRY

W1 WORKSHOP ON STOICHIOMETRY INTRODUCTION W1 WORKSHOP ON STOICHIOMETRY These notes and exercises are designed to introduce you to the basic concepts required to understand a chemical formula or equation. Relative atomic masses of

More information

Chapter 3. Stoichiometry: Ratios of Combination. Insert picture from First page of chapter. Copyright McGraw-Hill 2009 1

Chapter 3. Stoichiometry: Ratios of Combination. Insert picture from First page of chapter. Copyright McGraw-Hill 2009 1 Chapter 3 Insert picture from First page of chapter Stoichiometry: Ratios of Combination Copyright McGraw-Hill 2009 1 3.1 Molecular and Formula Masses Molecular mass - (molecular weight) The mass in amu

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

USEFUL DEFINITIONS. A substance which cannot be split into anything simpler by chemical means.

USEFUL DEFINITIONS. A substance which cannot be split into anything simpler by chemical means. Formulae and equations 1 USEFUL DEFINITIONS Element Atom A substance which cannot be split into anything simpler by chemical means. The smallest part of an element that can take part in a chemical reaction.

More information

USEFUL DEFINITIONS. A substance which cannot be split into anything simpler by chemical means.

USEFUL DEFINITIONS. A substance which cannot be split into anything simpler by chemical means. 1 USEFUL DEFINITIONS Element Atom Molecule A substance which cannot be split into anything simpler by chemical means. The smallest part of an element that can take part in a chemical reaction. The smallest

More information

4. Magnesium has three natural isotopes with the following masses and natural abundances:

4. Magnesium has three natural isotopes with the following masses and natural abundances: Exercise #1 Atomic Masses 1. The average mass of pennies minted after 1982 is 2.50 g and the average mass of pennies minted before 1982 is 3.00 g. In a sample that contains 90.0% new and 10.0% old pennies,

More information

0.786 mol carbon dioxide to grams g lithium carbonate to mol

0.786 mol carbon dioxide to grams g lithium carbonate to mol 1 2 Convert: 2.54 x 10 22 atoms of Cr to mol 4.32 mol NaCl to grams 0.786 mol carbon dioxide to grams 2.67 g lithium carbonate to mol 1.000 atom of C 12 to grams 3 Convert: 2.54 x 10 22 atoms of Cr to

More information

12.1 How do sub-atomic particles help us to understand the structure of substances?

12.1 How do sub-atomic particles help us to understand the structure of substances? 12.1 How do sub-atomic particles help us to understand the structure of substances? Simple particle theory is developed in this unit to include atomic structure and bonding. The arrangement of electrons

More information

CHEMISTRY. (i) It failed to explain how atoms of different elements differ from each other.

CHEMISTRY. (i) It failed to explain how atoms of different elements differ from each other. CHEMISTRY MOLE CONCEPT DALTON S ATOMIC THEORY By observing the laws of chemical combination, John Dalton proposed an atomic theory of matter. The main points of Dalton s atomic theory are as follows: (i)

More information

Stoichiometry Chapter 9 Assignment & Problem Set

Stoichiometry Chapter 9 Assignment & Problem Set Stoichiometry Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Stoichiometry 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

1.24 Calculations and Chemical Reactions

1.24 Calculations and Chemical Reactions 1.24 Calculations and Chemical Reactions Converting quantities between different substances using a balanced equation A balanced chemical equation tells us the number of particles of a substance which

More information

Getting the most from this book...4 About this book...5

Getting the most from this book...4 About this book...5 Contents Getting the most from this book...4 About this book....5 Content Guidance Topic 1 Atomic structure and the periodic table...8 Topic 2 Bonding and structure...14 Topic 2A Bonding....14 Topic 2B

More information

ATOMS. Multiple Choice Questions

ATOMS. Multiple Choice Questions Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)

More information

CHAPTER : 1 SOME BASIC CONCEPTS OF CHEMISTRY. 1 mark questions

CHAPTER : 1 SOME BASIC CONCEPTS OF CHEMISTRY. 1 mark questions CHAPTER : 1 SOME BASIC CONCEPTS OF CHEMISTRY 1 mark questions 1. What is Chemistry? Ans: It is a Branch of science deals with the study of composition, properties and interaction of matter. 2. What are

More information

CHEM J-2 June /01(a) What is the molarity of the solution formed when 0.50 g of aluminium fluoride is dissolved in ml of water?

CHEM J-2 June /01(a) What is the molarity of the solution formed when 0.50 g of aluminium fluoride is dissolved in ml of water? CHEM1001 2014-J-2 June 2014 22/01(a) What is the molarity of the solution formed when 0.50 g of aluminium fluoride is dissolved in 800.0 ml of water? 2 The molar mass of AlF 3 is: molar mass = (26.98 (Al)

More information

CHAPTER 3 STOICHIOMETRY OF FORMULAS AND EQUATIONS

CHAPTER 3 STOICHIOMETRY OF FORMULAS AND EQUATIONS CHAPTER 3 STOICHIOMETRY OF FORMULAS AND EQUATIONS FOLLOW UP PROBLEMS 3.1A Plan: The mass of carbon must be changed from mg to g. The molar mass of carbon can then be used to determine the number of moles.

More information

Chemical vs. Physical Changes: 1. How can we define a chemical change? Give example reaction equations.

Chemical vs. Physical Changes: 1. How can we define a chemical change? Give example reaction equations. Name: Teacher: Date: Period: Directions: Try to answer EVERY question on here. Some questions have multiple parts. If you are confused or want to check your answers you should attend SGI with this sheet!

More information

Atomic mass and the mole

Atomic mass and the mole Atomic mass and the mole An equation for a chemical reaction can provide us with a lot of useful information. It tells us what the reactants and the products are in the reaction, and it also tells us the

More information

Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.

Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2. Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven

More information

Chemistry Assessment Unit AS 1

Chemistry Assessment Unit AS 1 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2011 Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic Chemistry [AC111]

More information

Chapter 3 Mass Relations in Chemistry; Stoichiometry

Chapter 3 Mass Relations in Chemistry; Stoichiometry Chapter 3 Mass Relations in Chemistry; Stoichiometry MULTIPLE CHOICE 1. An atomic mass unit (amu) is defined as a. 1.60 10-19 C. b. the mass of 1 mole of hydrogen-s. c. the mass of 1 hydrogen-. d. the

More information

Ionic/covalent/metallic bonds

Ionic/covalent/metallic bonds .1..1 Ionic/covalent/metallic bonds 07 minutes 99 marks Page 1 of 7 Q1. (a) The diagram below represents a part of the structure of sodium chloride. The ionic charge is shown on the centre of only one

More information

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm Page 1 of 14 Amount of Substance Key terms in this chapter are: Element Compound Mixture Atom Molecule Ion Relative Atomic Mass Avogadro constant Mole Isotope Relative Isotopic Mass Relative Molecular

More information

Chapter 3 Stoichiometry Mole - Mass Relationships in Chemical Systems

Chapter 3 Stoichiometry Mole - Mass Relationships in Chemical Systems Chapter 3 Stoichiometry Mole - Mass Relationships in Chemical Systems 3.1 Atomic Masses 3.2 The Mole 3.3 Molar Mass 3.4 Percent Composition of Compounds 3.5 Determining the Formula of a Compound 3.6 Chemical

More information

APPENDIX B: EXERCISES

APPENDIX B: EXERCISES BUILDING CHEMISTRY LABORATORY SESSIONS APPENDIX B: EXERCISES Molecular mass, the mole, and mass percent Relative atomic and molecular mass Relative atomic mass (A r ) is a constant that expresses the ratio

More information

Chapter 3 Mass Relationships in Chemical Reactions

Chapter 3 Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions Student: 1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative

More information

Stoichiometry. Stoichiometry Which of the following forms a compound having the formula KXO 4? (A) F (B) S (C) Mg (D) Ar (E) Mn

Stoichiometry. Stoichiometry Which of the following forms a compound having the formula KXO 4? (A) F (B) S (C) Mg (D) Ar (E) Mn The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II - Free Response Questions Selected Questions from 1970 to 2010 Stoichiometry Part I 1984 2. Which of the following

More information

2. In a double displacement reaction, 3. In the chemical equation, H 2 O 2 H 2 + O 2, the H 2 O 2 is a

2. In a double displacement reaction, 3. In the chemical equation, H 2 O 2 H 2 + O 2, the H 2 O 2 is a What are the missing coefficients for the skeleton equation below? Al 2 (SO 4 ) 3 + KOH Al(OH) 3 + K 2 SO 4 2. In a double displacement reaction, A. 1,6,2,3 B. 2,12,4,6 C. 1,3,2,3 D. 4,6,2,3 E. 2,3,1,1

More information

Study Guide For Chapter 7

Study Guide For Chapter 7 Name: Class: Date: ID: A Study Guide For Chapter 7 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The number of atoms in a mole of any pure substance

More information

AT Chapter 3 Notes 15.notebook. September 29, Measuring Atomic Masses

AT Chapter 3 Notes 15.notebook. September 29, Measuring Atomic Masses Measuring Atomic Masses Mass Spectrometer used to isolate isotopes of an element and determine their mass. 1 An element sample is heated to vaporize it and the gaseous atoms are zapped with an electron

More information

Period 3 elements

Period 3 elements 3.1.4.2 Period 3 elements 173 minutes 169 marks Page 1 of 17 Q1. (a) Explain why certain elements in the Periodic Table are classified as p-block elements. Illustrate your answer with an example of a p-block

More information

Advanced Subsidiary Unit 1: The Core Principles of Chemistry

Advanced Subsidiary Unit 1: The Core Principles of Chemistry Write your name here Surname Other names Edexcel GCE Centre Number Chemistry Advanced Subsidiary Unit 1: The Core Principles of Chemistry Candidate Number Tuesday 15 May 2012 Afternoon Time: 1 hour 30

More information

Georgia Institute of Technology CHEM 1310 Fall Semester 2009 Recitation Assignment! Fundamental Principles and Terminology

Georgia Institute of Technology CHEM 1310 Fall Semester 2009 Recitation Assignment! Fundamental Principles and Terminology The Fundamentals and Stoichiometry Recitation Worksheet Week of 25 August 2008. Fundamental Principles and Terminology Avogadro s Number: Used to represent the amount of a given atom as a basis for comparison

More information

Chemical Reactions and Equations. Chapter 8

Chemical Reactions and Equations. Chapter 8 Chemical Reactions and Equations Chapter 8 Describing Chemical Reactions A chemical reaction is the process by which one or more substances are changed into different substances Reactants Products When

More information

2. ATOMIC, MOLECULAR AND EQUIVALENT MASSES

2. ATOMIC, MOLECULAR AND EQUIVALENT MASSES 2. ATOMIC, MOLECULAR AND EQUIVALENT MASSES INTRODUCTION: EQUIVALENT WEIGHT Since hydrogen is the lightest of all elements, it was chosen as a standard for determination of equivalent weights. On this basis,

More information

Atomic Structure. Name Mass Charge Location Protons 1 +1 Nucleus Neutrons 1 0 Nucleus Electrons 1/1837-1 Orbit nucleus in outer shells

Atomic Structure. Name Mass Charge Location Protons 1 +1 Nucleus Neutrons 1 0 Nucleus Electrons 1/1837-1 Orbit nucleus in outer shells Atomic Structure called nucleons Name Mass Charge Location Protons 1 +1 Nucleus Neutrons 1 0 Nucleus Electrons 1/1837-1 Orbit nucleus in outer shells The number of protons equals the atomic number This

More information

Chemistry Summer School Pre-Test 2015

Chemistry Summer School Pre-Test 2015 NAME: 1. A material consists of pure sodium. How many types of atomic structures are present in this substance? (C.1.1) A. No atomic structures are present as this is a pure substance. B. One type of atomic

More information

CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES

CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES The meaning of stoichiometric coefficients: 2 H 2 (g) + O 2 (g) 2 H 2 O(l) number of reacting particles 2 molecules of hydrogen react with 1 molecule

More information

Chemistry Final Exam Review

Chemistry Final Exam Review Name: Date: Block: Chemistry Final Exam Review 2012-2013 Unit 1: Measurement, Numbers, Scientific Notation, Conversions, Dimensional Analysis 1. Write 0.000008732 in scientific notation 8.732x10-6 2. Write

More information

Quantitative aspects of chemical change: Moles and molar mass

Quantitative aspects of chemical change: Moles and molar mass OpenStax-CNX module: m38717 1 Quantitative aspects of chemical change: Moles and molar mass Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

Chemical Calculations

Chemical Calculations Chemical Calculations 31 Introduction Rules for calculations (a) Always work from first principles - formulas (unless stated) often confuse. (b) Always show all the steps in your working, this reduces

More information

Calculation of Molar Masses. Molar Mass. Solutions. Solutions

Calculation of Molar Masses. Molar Mass. Solutions. Solutions Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements

More information

4. Aluminum chloride is 20.2% aluminum by mass. Calculate the mass of aluminum in a 35.0 gram sample of aluminum chloride.

4. Aluminum chloride is 20.2% aluminum by mass. Calculate the mass of aluminum in a 35.0 gram sample of aluminum chloride. 1. Calculate the molecular mass of table sugar sucrose (C 12 H 22 O 11 ). A. 342.30 amu C. 320.05 amu B. 160.03 amu D. 171.15 amu 2. How many oxygen atoms are in 34.5 g of NaNO 3? A. 2.34 10 23 atoms C.

More information

London Examinations IGCSE

London Examinations IGCSE Centre No. Candidate No. Surname Signature Initial(s) Paper Reference(s) 4335/2H London Examinations IGCSE Chemistry Paper 2H Higher Tier Monday 9 May 2005 Morning Time: 2 hours Examiner s use only Team

More information

Chemical Reactions. Chemical Equations. Mole as Conversion Factor: To convert between number of particles and an equivalent number of moles:

Chemical Reactions. Chemical Equations. Mole as Conversion Factor: To convert between number of particles and an equivalent number of moles: Quantities of Reactants and Products CHAPTER 3 Chemical Reactions Stoichiometry Application of The Law of Conservation of Matter Chemical book-keeping Chemical Equations Chemical equations: Describe proportions

More information

Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass

Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass Atomic Masses Chapter 3 Stoichiometry 1 atomic mass unit (amu) = 1/12 of the mass of a 12 C atom so one 12 C atom has a mass of 12 amu (exact number). From mass spectrometry: 13 C/ 12 C = 1.0836129 amu

More information

GCSE to AS Chemistry

GCSE to AS Chemistry GCSE to AS Chemistry Chemistry is a rewarding yet difficult subject that is highly valued by both employers and higher education establishments. The most challenging part of AS Chemistry is bridging the

More information

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass

More information

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, Chemistry 11, McGraw-Hill Ryerson, 2001 SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001 1. A small pin contains 0.0178 mol of iron. How many atoms of iron are in the pin? 2. A sample

More information

Atoms, Molecules and Ions. In This Chapter

Atoms, Molecules and Ions. In This Chapter Atoms, Molecules and Ions Chapter 2 In This Chapter History of atoms. Subatomic particles. Atomic numbers, mass numbers. Isotopes and Atomic weights. Compounds, Molecules and Ions. Nomenclature. 2 1 Elements

More information

SCH3UI-02 Final Examination Review (Fall 2014)

SCH3UI-02 Final Examination Review (Fall 2014) SCH3UI-02 Final Examination Review (Fall 2014) 1. Chlorine has an atomic number of 17. Create a Bohr Rutherford diagram of a Cl-35 atom. To achieve a stable arrangement, is this atom most likely to gain

More information

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present

More information

Chemistry Assessment Unit AS 1

Chemistry Assessment Unit AS 1 New Specification Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2010 Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic

More information

Question Bank in Science Class-IX (Term-II) CONCEPTS

Question Bank in Science Class-IX (Term-II) CONCEPTS Question Bank in Science Class-IX (Term-II) 3 ATOMS AND MOLECULES CONCEPTS 1 Law of conservation of mass : Mass can neither be created nor can it be destroyed in a chemical reaction 2 Law of constant proportions

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296)

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) Name Date Class 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches

More information

PS-4.2 Explain how the process of covalent bonding provides chemical stability through the sharing of electrons.

PS-4.2 Explain how the process of covalent bonding provides chemical stability through the sharing of electrons. PS-4.1 Explain the role of bonding in achieving chemical stability. All of the noble gases are chemically stable A noble gas electron configuration (an outside energy level with 2 or 8 electrons) is chemically

More information

Chemistry Assessment Unit AS 1

Chemistry Assessment Unit AS 1 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2014 Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic Chemistry AC112

More information

Summer Assignment Coversheet

Summer Assignment Coversheet Summer Assignment Coversheet Course: A.P. Chemistry Teachers Names: Mary Engels Assignment Title: Summer Assignment A Review Assignment Summary/Purpose: To review the Rules for Solubility, Oxidation Numbers,

More information

4. Magnesium has three natural isotopes with the following masses and natural abundances:

4. Magnesium has three natural isotopes with the following masses and natural abundances: Exercise #1 Atomic Masses 1. The average mass of pennies minted after 1982 is 2.50 g and the average mass of pennies minted before 1982 is 3.00 g. In a sample that contains 90.0% new and 10.0% old pennies,

More information

stoichiometry = the numerical relationships between chemical amounts in a reaction.

stoichiometry = the numerical relationships between chemical amounts in a reaction. 1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

More information

The component present in larger proportion is known as solvent.

The component present in larger proportion is known as solvent. 40 Engineering Chemistry and Environmental Studies 2 SOLUTIONS 2. DEFINITION OF SOLUTION, SOLVENT AND SOLUTE When a small amount of sugar (solute) is mixed with water, sugar uniformally dissolves in water

More information

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions. Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION. 37 74 20 40 60 80 m/e

INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION. 37 74 20 40 60 80 m/e CHM111(M)/Page 1 of 5 INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION SECTION A Answer ALL EIGHT questions. (52 marks) 1. The following is the mass spectrum

More information

Metals Topic Test. Part 1: Multiple Choice Choose the best alternative and indicate your response on the answer sheet

Metals Topic Test. Part 1: Multiple Choice Choose the best alternative and indicate your response on the answer sheet Metals Topic Test Part 1: Multiple Choice Choose the best alternative and indicate your response on the answer sheet 1. The chemical equation for the reaction between aluminium and oxygen is: 4Al (s) +

More information

Mole Concept. One Mole Avogadro s Number ( N A ) = It

Mole Concept. One Mole Avogadro s Number ( N A ) = It Mole Concept One Mole Avogadro s Number ( N A ) 6.03 0 3. It is the number of atoms present in exactly g of C isotope. Atomic Weight (A) Atomic weight is the relative weight of one atom of an element with

More information

Atom nucleus (protons and neutrons) electron cloud (electrons)

Atom nucleus (protons and neutrons) electron cloud (electrons) Atom nucleus (protons and neutrons) electron cloud (electrons) Atomic Number equal to the number of protons Mass Number protons + neutrons Charge when # of electrons # of protons Negatively Charged Ion

More information

MOLE CONVERSION PROBLEMS. 2. How many moles are present in 34 grams of Cu(OH) 2? [0.35 moles]

MOLE CONVERSION PROBLEMS. 2. How many moles are present in 34 grams of Cu(OH) 2? [0.35 moles] MOLE CONVERSION PROBLEMS 1. What is the molar mass of MgO? [40.31 g/mol] 2. How many moles are present in 34 grams of Cu(OH) 2? [0.35 moles] 3. How many moles are present in 2.5 x 10 23 molecules of CH

More information

Unit 6 The Mole Concept

Unit 6 The Mole Concept Chemistry Form 3 Page 62 Ms. R. Buttigieg Unit 6 The Mole Concept See Chemistry for You Chapter 28 pg. 352-363 See GCSE Chemistry Chapter 5 pg. 70-79 6.1 Relative atomic mass. The relative atomic mass

More information

Chapter 8 Review and Study Guide

Chapter 8 Review and Study Guide Name: Class: Date: Chapter 8 Review and Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Knowledge about what products are produced in a chemical

More information

1. Which of the following hazard warning labels should be displayed on the reagent bottle storing sodium carbonate?

1. Which of the following hazard warning labels should be displayed on the reagent bottle storing sodium carbonate? Sing Yin Secondary School Final Examination, 2014-2015 Chemistry Form Four Time allowed: 2 hours Instructions: Answer ALL questions A Periodic Table is printed on page 9 of this question paper. Atomic

More information

Molecular Formula: Example

Molecular Formula: Example Molecular Formula: Example A compound is found to contain 85.63% C and 14.37% H by mass. In another experiment its molar mass is found to be 56.1 g/mol. What is its molecular formula? 1 CHAPTER 3 Chemical

More information

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked. GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all

More information

The Mole Concept. A. Atomic Masses and Avogadro s Hypothesis

The Mole Concept. A. Atomic Masses and Avogadro s Hypothesis The Mole Concept A. Atomic Masses and Avogadro s Hypothesis 1. We have learned that compounds are made up of two or more different elements and that elements are composed of atoms. Therefore, compounds

More information

Chemical calculations

Chemical calculations Chemical calculations Stoichiometry refers to the quantities of material which react according to a balanced chemical equation. Compounds are formed when atoms combine in fixed proportions. E.g. 2Mg +

More information

Unit 2: Quantities in Chemistry

Unit 2: Quantities in Chemistry Mass, Moles, & Molar Mass Relative quantities of isotopes in a natural occurring element (%) E.g. Carbon has 2 isotopes C-12 and C-13. Of Carbon s two isotopes, there is 98.9% C-12 and 11.1% C-13. Find

More information

B. Elements: We cannot determine how many electrons are lost for the elements b/c their in their valence electrons can change.

B. Elements: We cannot determine how many electrons are lost for the elements b/c their in their valence electrons can change. Unit 6 Notepack: Chapters 9 &10 Chemical Quantities 9.1 Naming Ions NAME Period: A. ions: Ions made of single. B. Elements: There is a pattern in predicting how many electrons are lost and gained for the

More information

Chemistry CHEM1. Unit 1 Foundation Chemistry. Surname. Other Names. Centre Number. Candidate Number. Candidate Signature

Chemistry CHEM1. Unit 1 Foundation Chemistry. Surname. Other Names. Centre Number. Candidate Number. Candidate Signature Surname Other Names Centre Number Candidate Number Candidate Signature General Certificate of Education Advanced Subsidiary Examination January 2013 Chemistry Unit 1 Foundation Chemistry CEM1 Thursday

More information

Formulas, Equations and Moles

Formulas, Equations and Moles Chapter 3 Formulas, Equations and Moles Interpreting Chemical Equations You can interpret a balanced chemical equation in many ways. On a microscopic level, two molecules of H 2 react with one molecule

More information

Subscripts and Coefficients Give Different Information

Subscripts and Coefficients Give Different Information Chapter 3: Stoichiometry Goal is to understand and become proficient at working with: 1. Chemical equations (Balancing REVIEW) 2. Some simple patterns of reactivity 3. Formula weights (REVIEW) 4. Avogadro's

More information

Unit 2. Molar Mass Worksheet

Unit 2. Molar Mass Worksheet Unit 2 Molar Mass Worksheet Calculate the molar masses of the following chemicals: 1) Cl 2 8) UF 6 2) KOH 9) SO 2 3) BeCl 2 10) H 3 PO 4 4) FeCl 3 11) (NH 4 ) 2 SO 4 5) BF 3 12) CH 3 COOH 6) CCl 2 F 2

More information

1. A mixture that contains more than one type of matter and is the same throughout is a mixture.

1. A mixture that contains more than one type of matter and is the same throughout is a mixture. 2nd Semester Benchmark Review Completion Complete each statement. 1. A mixture that contains more than one type of matter and is the same throughout is a mixture. 2. A mixture in which different samples

More information

TOPIC 7. CHEMICAL CALCULATIONS I - atomic and formula weights.

TOPIC 7. CHEMICAL CALCULATIONS I - atomic and formula weights. TOPIC 7. CHEMICAL CALCULATIONS I - atomic and formula weights. Atomic structure revisited. In Topic 2, atoms were described as ranging from the simplest atom, H, containing a single proton and usually

More information

Chapter 3 Chemical Reactions and Reaction Stoichiometry. 許富銀 ( Hsu Fu-Yin)

Chapter 3 Chemical Reactions and Reaction Stoichiometry. 許富銀 ( Hsu Fu-Yin) Chapter 3 Chemical Reactions and Reaction Stoichiometry 許富銀 ( Hsu Fu-Yin) 1 Stoichiometry The study of the numerical relationship between chemical quantities in a chemical reaction is called stoichiometry.

More information

AP Chem Unit 1 Assignment 3 Chemical Equations

AP Chem Unit 1 Assignment 3 Chemical Equations Symbols used in chemical equations: Symbol Meaning + used to separate one reactant or product from another used to separate the reactants from the products - it is pronounced "yields" or "produces" when

More information

midterm1, 2009 Name: Class: Date:

midterm1, 2009 Name: Class: Date: Class: Date: midterm1, 2009 Record your name on the top of this exam and on the scantron form. Record the test ID letter in the top right box of the scantron form. Record all of your answers on the scantron

More information

Solution : 22.4 dm 3 of a gas at STP 1 mol of gas molar mass of the gas Now, 4.48 dm 3 of NH 3 at STP 3.49 g dm 3 of NH 3 at STP.

Solution : 22.4 dm 3 of a gas at STP 1 mol of gas molar mass of the gas Now, 4.48 dm 3 of NH 3 at STP 3.49 g dm 3 of NH 3 at STP. Formulae 1. One mole of atoms Mass of elements Atomic mass Atomic mass 2. Mass of one atom 3 6.022 10 2 3. Number of moles (n) Mass of substance Molar mass of substance 4. Number of molecules n Avogadro

More information

Programme in mole calculation

Programme in mole calculation Programme in mole calculation Step 1 Start at the very beginning Atoms are very small indeed! If we draw a line 1 metre long, 6,000,000,000 (6 billion) atoms could be lined end to end. So a scientist cannot

More information

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions:

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions: SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY ANSWER SCHEME UPS 2004/2005 SK027 1 (a) Use the data in the table below to answer the following questions: Enthalpy change ΔH (kj/mol) Atomization energy

More information

Calculating Atoms, Ions, or Molecules Using Moles

Calculating Atoms, Ions, or Molecules Using Moles TEKS REVIEW 8B Calculating Atoms, Ions, or Molecules Using Moles TEKS 8B READINESS Use the mole concept to calculate the number of atoms, ions, or molecules in a sample TEKS_TXT of material. Vocabulary

More information

Ch. 9 Chemical Reactions

Ch. 9 Chemical Reactions Ch. 9 Chemical Reactions I. Intro to Reactions (p. 282 285) I II III IV V Chemical Reaction Chemical change Atoms of one or more substances (reactants) are rearranged into new substances (products) Signs

More information