A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property

Save this PDF as:

Size: px
Start display at page:

Download "A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property"

Transcription

1 A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property Venkat Chandar March 1, 2008 Abstract In this note, we prove that matrices whose entries are all 0 or 1 cannot achieve good performance with respect to the Restricted Isometry Property (RIP). Most currently known deterministic constructions of matrices satisfying the RIP fall into this category, and hence these constructions suffer inherent limitations. In particular, we show that DeVore s construction of matrices satisfying the RIP is close to optimal once we add the constraint that all entries of the matrix are 0 or 1. 1 Introduction Compressive sensing [CRT04,CRT06,Don06] has been put forward as a new paradigm for data acquisition. Compressive sensing is based on the observation that if a vector x R n is sparse, in the sense that only k n entries of x are nonzero, then we can recover x exactly using far fewer than n linear measurements. Formally, we represent the measurements by an m n measurement matrix A. If x is the input signal, we measure Ax R m, and our goal is to recover the original vector x from Ax. Of course, if A is invertible then this is simple - the goal is to make m substantially smaller than n. The price we pay is that we will not be able to recover all x R n. Instead, we will only be able to recover k-sparse vectors, i.e., vectors with at most k nonzero entries. One of the remarkable results of compressive sensing is that there exist matrices A with only m = O(k log (n/k)) rows such that for all k-sparse x, we can recover x exactly from Ax. In [CT05], the restricted isometry property (RIP) was introduced as a useful tool for proving this result. In this paper, we will use the following definition of the RIP. Definition 1. Let A be an m n matrix. Then, A satisfies (k, D) RIP if there exists c > 0 such that for all k-sparse x R n, c Ax 2 x 2 cd Ax 2. Here 2 denotes the L2 norm. c is a scaling constant that we include for convenience in what follows. 1

2 The RIP is useful because it can be shown that if a matrix A satisfies the RIP, then linear programming can be used recover a k-sparse signal x from Ax. We note that there are other properties besides the RIP that can be used to prove that a matrix can be used for compressive sensing (cf. [KT07]). However, one nice aspect of the RIP is that if a matrix satisfies the RIP, it can be shown that recovery is possible even if there is some noise in the measurements. Given that matrices satisfying the RIP are good for compressive sensing, it is natural to ask how to construct such matrices, and what type of performance we can achieve, e.g., how few rows can A have. It is well-known that there exist matrices satisfying the RIP with O(k log (n/k)) rows, and this is within a constant factor of a lower bound which states that Ω(k log (n/k)) rows are necessary. However, the proof that such matrices exist uses the probabilistic method, and hence an explicit construction of such a matrix remains elusive. The currently known explicit constructions ( [M06], [CM06], [DeV07]) use many more rows than random matrices. Specifically, these constructions requires Ω(k 2 ) rows. One would hope that these constructions could be improved to get explicit matrices with close to O(k log (n/k)) rows. For example, the results of [GIKS07,BI08] show that if we modify the definition of the RIP by using an Lp norm with p close to 1 instead of the L2 norm, then explicit matrices can be constructed that satisfy the modified RIP. Specifically, there exist (non-explicit) matrices with only O(k log (n/k)) rows which satisfy the modified RIP. In addition, there are explicit matrices with O(k2 (log log n)o(1) ) rows that satisfy the modified RIP. In this note, we show that for L2, a fundamentally different approach is needed. In particular, the previously mentioned explicit constructions all use matrices whose entries are 0 or 1. We show that 0, 1-matrices require substantially more than O(k log (n/k)) rows to satisfy the RIP. 2 0, 1-Matrices Are Bad With Respect to the RIP In this section we prove our main result, which shows that 0, 1-matrices cannot achieve good performance with respect to the RIP. First, we make a couple of definitions that will be used in what follows. Given a 0, 1-matrix A, let f be the minimum fraction of 1 s in any column of A, i.e., fm is the minimum number of ones in a column of A. Also, let r be the maximum number of 1 s in any row of A. By permuting the rows and columns of A, we may assume that A 1,i = 1 for 1 i r, i.e., that the first row of A has a 1 in the first r entries. In the following proofs, we assume that this reordering has already been done. The following theorem shows that 0, 1-matrices require substantially more rows that optimal RIP matrices. Theorem{ 1. Let A be an m n 0, 1-matrix that satisfies (k, D) RIP. k m min 2, }. n D 4 D 2 Then, Before we prove Theorem 1, we need the following lemma. 2

3 Lemma 1. Let A be an m n 0, 1-matrix that satisfies (k, D) RIP. Then, f D2 k. Proof. To start, we square the inequalities defining (k, D) RIP to obtain c 2 Ax 2 2 x 2 2 c 2 D 2 Ax 2 2. We can bound c by considering the 1-sparse vector x = e i, where e i is a standard basis vector with a 1 in a coordinate corresponding to a column of A with fm 1 s. Then, the inequalities above give c 2 fm 1 c 2 D 2 fm. We will only need the second inequality, which we rewrite as 1 c 2 D2 fm. (1) Now, consider the vector x with 1 s in the first k positions and 0 s elsewhere, i.e., x = k i=1 e i. Let w(i) denote the number of 1 s in row i and in the first k columns of A. From the definition of f, the first k columns of A contain at least fmk 1 s, so w(i) fmk. Applying the Cauchy-Schwarz inequality, we obtain Ax 2 2 = m i=1 w(i) 2 ( m i=1 w(i))2 m (fk) 2 m. But Ax 2 2 x 2 2 c 2 D 2 fmk, so putting the two inequalities together gives (fk) 2 m D 2 fmk. Cancelling out fmk from both sides gives f D2 k. Now, we prove Theorem 1. Proof. Lemma 1 gives us a bound on f that will be useful when r > k. We can obtain a second bound on f from the obvious inequality fmn number of 1 s in A rm. Thus, f r. As we will see, this bound is useful when r k. n For notational convenience, let s = min{r, k}. Consider the vector x with 1 s in the first s positions and 0 s elsewhere, i.e., x = s i=1 e i. For this choice of x, we see that Ax 2 2 s 2 because the first entry of Ax is s. Note that because s k, the inequalities defining (k, D) RIP apply to x. Thus, we can apply equation 1 to get s 2 Ax 2 2 x 2 2 c 2 D 2 fms. We now plug in our two bounds on f. If r > k, then s = k, and we use the bound from Lemma 1. This gives k 2 D 2 D2 k mk, 3

4 so m k2 D 4. Similarly, if r k, then s = r, so using our second bound on f gives r 2 D 2 r n mr. Thus, in this case m n D 2. Putting the two bounds together, m min{ k2 D 4, n D 2 }, completing the proof. 3 Conclusion We have shown that 0, 1-matrices cannot be optimal with respect to the RIP. Note that our lower bounds on m are essentially tight for a large range of parameters. Specifically, assume that D = O(1) and that k = Ω(n α ) for some constant 0 < α <.5. Then, the matrices constructed in [DeV07] achieve m = O(( k α )2 ), so these matrices are within a constant factor of our lower bound. References [BI08] R. Berinde and P. Indyk. Sparse recovery using sparse random matrices. MIT CSAIL Technical Report, available at [CRT04] E. Candès, J. Romberg, and T. Tao. Exact signal reconstruction from highly incomplete frequency information. Submitted for publication, June [CRT06] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(1):489509, February [CT05] E. Candès and T. Tao. Decoding by linear programming. IEEE Trans. on Information Theory, 51(12), pp , December [CM06] G. Cormode and S. Muthukrishnan. Combinatorial algorithms for compressed sensing. In Paola Flocchini and Leszek Gasieniec, editors, Structural Information and Communication Complexity, 13th International Colloquium, SIROCCO 2006, Chester, UK, July 2-5, 2006, Proceedings, volume 4056 of Lecture Notes in Computer Science, pages Springer, [DeV07] R. DeVore. Deterministic Constructions Of Compressed Sensing Matrices. Preprint, [Don06] D. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4): , [GIKS07] A. Gilbert, P. Indyk, H. Karloff, and M. Strauss. Combining geometry and combinatorics: a unified approach to sparse signal recovery. Manuscript, [KT07] B.Kashin and V. Temlyakov. A remark on compressed sensing. Preprint,

5 [M06] S. Muthukrishnan. Some algorithmic problems and results in compressed sensing. In Allerton Conference,

Sublinear Algorithms for Big Data. Part 4: Random Topics

Sublinear Algorithms for Big Data Part 4: Random Topics Qin Zhang 1-1 2-1 Topic 1: Compressive sensing Compressive sensing The model (Candes-Romberg-Tao 04; Donoho 04) Applicaitons Medical imaging reconstruction

When is missing data recoverable?

When is missing data recoverable? Yin Zhang CAAM Technical Report TR06-15 Department of Computational and Applied Mathematics Rice University, Houston, TX 77005 October, 2006 Abstract Suppose a non-random

Stable Signal Recovery from Incomplete and Inaccurate Measurements

Stable Signal Recovery from Incomplete and Inaccurate Measurements Emmanuel Candes, Justin Romberg, and Terence Tao Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Department of Mathematics,

Stable Signal Recovery from Incomplete and Inaccurate Measurements

Stable Signal Recovery from Incomplete and Inaccurate Measurements EMMANUEL J. CANDÈS California Institute of Technology JUSTIN K. ROMBERG California Institute of Technology AND TERENCE TAO University

6. Cholesky factorization

6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity

Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Wei Dai and Olgica Milenkovic Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

DIFFERENCES BETWEEN OBSERVATION AND SAMPLING ERROR IN SPARSE SIGNAL RECONSTRUCTION. Galen Reeves and Michael Gastpar

DIFFERENCES BETWEEN OBSERVATION AND SAMPLING ERROR IN SPARSE SIGNAL RECONSTRUCTION Galen Reeves and Michael Gastpar Department of Electrical Engineering and Computer Sciences, UC Berkeley ABSTRACT The

Definition of a Linear Program

Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

Sparse recovery and compressed sensing in inverse problems

Gerd Teschke (7. Juni 2010) 1/68 Sparse recovery and compressed sensing in inverse problems Gerd Teschke (joint work with Evelyn Herrholz) Institute for Computational Mathematics in Science and Technology

Linear Dependence Tests

Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks

Linear Systems. Singular and Nonsingular Matrices. Find x 1, x 2, x 3 such that the following three equations hold:

Linear Systems Example: Find x, x, x such that the following three equations hold: x + x + x = 4x + x + x = x + x + x = 6 We can write this using matrix-vector notation as 4 {{ A x x x {{ x = 6 {{ b General

Linear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.

Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a sub-vector space of V[n,q]. If the subspace of V[n,q]

Notes 11: List Decoding Folded Reed-Solomon Codes

Introduction to Coding Theory CMU: Spring 2010 Notes 11: List Decoding Folded Reed-Solomon Codes April 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami At the end of the previous notes,

Linear Codes. Chapter 3. 3.1 Basics

Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.

2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Theorem 8: Let A be a square matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

NMR Measurement of T1-T2 Spectra with Partial Measurements using Compressive Sensing

NMR Measurement of T1-T2 Spectra with Partial Measurements using Compressive Sensing Alex Cloninger Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu

Inverses and powers: Rules of Matrix Arithmetic

Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3

Two classes of ternary codes and their weight distributions

Two classes of ternary codes and their weight distributions Cunsheng Ding, Torleiv Kløve, and Francesco Sica Abstract In this paper we describe two classes of ternary codes, determine their minimum weight

B such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix

Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.

Chapter 4 - Systems of Equations and Inequalities

Math 233 - Spring 2009 Chapter 4 - Systems of Equations and Inequalities 4.1 Solving Systems of equations in Two Variables Definition 1. A system of linear equations is two or more linear equations to

arxiv:math/ v2 [math.nt] 10 Nov 2007

Non-trivial solutions to a linear equation in integers arxiv:math/0703767v2 [math.nt] 10 Nov 2007 Boris Bukh Abstract For k 3 let A [1, N] be a set not containing a solution to a 1 x 1 + + a k x k = a

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

Decoding by Linear Programming

Decoding by Linear Programming Emmanuel Candes and Terence Tao Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Department of Mathematics, University of California, Los Angeles, CA 90095

max cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x

Linear Programming Linear programming refers to problems stated as maximization or minimization of a linear function subject to constraints that are linear equalities and inequalities. Although the study

Exact and Approximate Sparse Solutions of Underdetermined Linear Equations

Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany SADEGH JOKAR MARC E. PFETSCH Exact and Approximate Sparse Solutions of Underdetermined Linear Equations Supported

Compressive Sensing. Examples in Image Compression. Lecture 4, July 30, Luiz Velho Eduardo A. B. da Silva Adriana Schulz

Compressive Sensing Examples in Image Compression Lecture 4, July, 09 Luiz Velho Eduardo A. B. da Silva Adriana Schulz Today s Lecture Discuss applications of CS in image compression Evaluate CS efficiency

Lattice-Based Threshold-Changeability for Standard Shamir Secret-Sharing Schemes

Lattice-Based Threshold-Changeability for Standard Shamir Secret-Sharing Schemes Ron Steinfeld (Macquarie University, Australia) (email: rons@ics.mq.edu.au) Joint work with: Huaxiong Wang (Macquarie University)

Math 315: Linear Algebra Solutions to Midterm Exam I

Math 35: Linear Algebra s to Midterm Exam I # Consider the following two systems of linear equations (I) ax + by = k cx + dy = l (II) ax + by = 0 cx + dy = 0 (a) Prove: If x = x, y = y and x = x 2, y =

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

We shall turn our attention to solving linear systems of equations. Ax = b

59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

Lecture 6. Inverse of Matrix

Lecture 6 Inverse of Matrix Recall that any linear system can be written as a matrix equation In one dimension case, ie, A is 1 1, then can be easily solved as A x b Ax b x b A 1 A b A 1 b provided that

2.1: Determinants by Cofactor Expansion. Math 214 Chapter 2 Notes and Homework. Evaluate a Determinant by Expanding by Cofactors

2.1: Determinants by Cofactor Expansion Math 214 Chapter 2 Notes and Homework Determinants The minor M ij of the entry a ij is the determinant of the submatrix obtained from deleting the i th row and the

(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7

(67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition

By W.E. Diewert. July, Linear programming problems are important for a number of reasons:

APPLIED ECONOMICS By W.E. Diewert. July, 3. Chapter : Linear Programming. Introduction The theory of linear programming provides a good introduction to the study of constrained maximization (and minimization)

Math 407A: Linear Optimization

Math 407A: Linear Optimization Lecture 4: LP Standard Form 1 1 Author: James Burke, University of Washington LPs in Standard Form Minimization maximization Linear equations to linear inequalities Lower

Absolute Value Programming

Computational Optimization and Aplications,, 1 11 (2006) c 2006 Springer Verlag, Boston. Manufactured in The Netherlands. Absolute Value Programming O. L. MANGASARIAN olvi@cs.wisc.edu Computer Sciences

Lecture 11. Shuanglin Shao. October 2nd and 7th, 2013

Lecture 11 Shuanglin Shao October 2nd and 7th, 2013 Matrix determinants: addition. Determinants: multiplication. Adjoint of a matrix. Cramer s rule to solve a linear system. Recall that from the previous

Sparsity-promoting recovery from simultaneous data: a compressive sensing approach

SEG 2011 San Antonio Sparsity-promoting recovery from simultaneous data: a compressive sensing approach Haneet Wason*, Tim T. Y. Lin, and Felix J. Herrmann September 19, 2011 SLIM University of British

1 Orthogonal projections and the approximation

Math 1512 Fall 2010 Notes on least squares approximation Given n data points (x 1, y 1 ),..., (x n, y n ), we would like to find the line L, with an equation of the form y = mx + b, which is the best fit

Matrices: 2.3 The Inverse of Matrices

September 4 Goals Define inverse of a matrix. Point out that not every matrix A has an inverse. Discuss uniqueness of inverse of a matrix A. Discuss methods of computing inverses, particularly by row operations.

4.6 Null Space, Column Space, Row Space

NULL SPACE, COLUMN SPACE, ROW SPACE Null Space, Column Space, Row Space In applications of linear algebra, subspaces of R n typically arise in one of two situations: ) as the set of solutions of a linear

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

1 Polyhedra and Linear Programming

CS 598CSC: Combinatorial Optimization Lecture date: January 21, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im 1 Polyhedra and Linear Programming In this lecture, we will cover some basic material

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

Solving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less)

Solving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less) Raymond N. Greenwell 1 and Stanley Kertzner 2 1 Department of Mathematics, Hofstra University, Hempstead, NY 11549

Cofactor Expansion: Cramer s Rule

Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, In which we introduce the theory of duality in linear programming.

Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, 2011 Lecture 6 In which we introduce the theory of duality in linear programming 1 The Dual of Linear Program Suppose that we

Similarity and Diagonalization. Similar Matrices

MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

Math 2331 Linear Algebra

2.2 The Inverse of a Matrix Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University

Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

2.1 Complexity Classes

15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look

The Inverse of a Square Matrix

These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

SECRET sharing schemes were introduced by Blakley [5]

206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006 Secret Sharing Schemes From Three Classes of Linear Codes Jin Yuan Cunsheng Ding, Senior Member, IEEE Abstract Secret sharing has

Practical Numerical Training UKNum

Practical Numerical Training UKNum 7: Systems of linear equations C. Mordasini Max Planck Institute for Astronomy, Heidelberg Program: 1) Introduction 2) Gauss Elimination 3) Gauss with Pivoting 4) Determinants

The Simplex Method. yyye

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #05 1 The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

Chapter 6. Orthogonality

6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

Algorithmic Techniques for Big Data Analysis. Barna Saha AT&T Lab-Research

Algorithmic Techniques for Big Data Analysis Barna Saha AT&T Lab-Research Challenges of Big Data VOLUME Large amount of data VELOCITY Needs to be analyzed quickly VARIETY Different types of structured

Approximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques. My T. Thai

Approximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques My T. Thai 1 Overview An overview of LP relaxation and rounding method is as follows: 1. Formulate an optimization

Lecture Notes: Matrix Inverse. 1 Inverse Definition

Lecture Notes: Matrix Inverse Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Inverse Definition We use I to represent identity matrices,

An Improved Reconstruction methods of Compressive Sensing Data Recovery in Wireless Sensor Networks

Vol.8, No.1 (14), pp.1-8 http://dx.doi.org/1.1457/ijsia.14.8.1.1 An Improved Reconstruction methods of Compressive Sensing Data Recovery in Wireless Sensor Networks Sai Ji 1,, Liping Huang, Jin Wang, Jian

Iterative Techniques in Matrix Algebra. Jacobi & Gauss-Seidel Iterative Techniques II

Iterative Techniques in Matrix Algebra Jacobi & Gauss-Seidel Iterative Techniques II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin

1 Formulating The Low Degree Testing Problem

6.895 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Linearity Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz In the last lecture, we proved a weak PCP Theorem,

Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery

: Distribution-Oblivious Support Recovery Yudong Chen Department of Electrical and Computer Engineering The University of Texas at Austin Austin, TX 7872 Constantine Caramanis Department of Electrical

Factorization Theorems

Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

Basic solutions in standard form polyhedra

Recap, and outline of Lecture Previously min s.t. c x Ax = b x Converting any LP into standard form () Interpretation and visualization () Full row rank assumption on A () Basic solutions and bases in

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

Determinants LECTURE Calculating the Area of a Parallelogram. Definition Let A be a 2 2 matrix. A = The determinant of A is the number

LECTURE 13 Determinants 1. Calculating the Area of a Parallelogram Definition 13.1. Let A be a matrix. [ a c b d ] The determinant of A is the number det A) = ad bc Now consider the parallelogram formed

4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns

L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

Nonnegative Matrix Factorization: Algorithms, Complexity and Applications

Nonnegative Matrix Factorization: Algorithms, Complexity and Applications Ankur Moitra Massachusetts Institute of Technology July 6th, 2015 Ankur Moitra (MIT) NMF July 6th, 2015 m M n W m M = A inner dimension

EXPLICIT ABS SOLUTION OF A CLASS OF LINEAR INEQUALITY SYSTEMS AND LP PROBLEMS. Communicated by Mohammad Asadzadeh. 1. Introduction

Bulletin of the Iranian Mathematical Society Vol. 30 No. 2 (2004), pp 21-38. EXPLICIT ABS SOLUTION OF A CLASS OF LINEAR INEQUALITY SYSTEMS AND LP PROBLEMS H. ESMAEILI, N. MAHDAVI-AMIRI AND E. SPEDICATO

Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

1.5 Elementary Matrices and a Method for Finding the Inverse

.5 Elementary Matrices and a Method for Finding the Inverse Definition A n n matrix is called an elementary matrix if it can be obtained from I n by performing a single elementary row operation Reminder:

Block designs/1. 1 Background

Block designs 1 Background In a typical experiment, we have a set Ω of experimental units or plots, and (after some preparation) we make a measurement on each plot (for example, the yield of the plot).

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns: a 11

Functional-Repair-by-Transfer Regenerating Codes

Functional-Repair-by-Transfer Regenerating Codes Kenneth W Shum and Yuchong Hu Abstract In a distributed storage system a data file is distributed to several storage nodes such that the original file can

α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

Solving Linear Systems, Continued and The Inverse of a Matrix

, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

DETERMINANTS. b 2. x 2

DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

Optimal File Sharing in Distributed Networks

Optimal File Sharing in Distributed Networks Moni Naor Ron M. Roth Abstract The following file distribution problem is considered: Given a network of processors represented by an undirected graph G = (V,

Survey of the Mathematics of Big Data

Survey of the Mathematics of Big Data Philippe B. Laval KSU September 12, 2014 Philippe B. Laval (KSU) Math & Big Data September 12, 2014 1 / 23 Introduction We survey some mathematical techniques used

Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

1 Review of Least Squares Solutions to Overdetermined Systems

cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

Math 313 Lecture #10 2.2: The Inverse of a Matrix

Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is

The determinant of a skew-symmetric matrix is a square. This can be seen in small cases by direct calculation: 0 a. 12 a. a 13 a 24 a 14 a 23 a 14

4 Symplectic groups In this and the next two sections, we begin the study of the groups preserving reflexive sesquilinear forms or quadratic forms. We begin with the symplectic groups, associated with

ME128 Computer-Aided Mechanical Design Course Notes Introduction to Design Optimization

ME128 Computer-ided Mechanical Design Course Notes Introduction to Design Optimization 2. OPTIMIZTION Design optimization is rooted as a basic problem for design engineers. It is, of course, a rare situation

Lecture 4: AC 0 lower bounds and pseudorandomness

Lecture 4: AC 0 lower bounds and pseudorandomness Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: Jason Perry and Brian Garnett In this lecture,