SCAFFOLDING REVISITED: FROM TOOL FOR RESULT TO TOOLANDRESULT


 Gillian Gilbert
 1 years ago
 Views:
Transcription
1 SCAFFOLDING REVISITED: FROM TOOL FOR RESULT TO TOOLANDRESULT Mike Askew King's College London & City College, New York The metaphor of scaffolding is popular in mathematics education, particularly in accounts purporting to examine the mediated nature of learning. Drawing on Holtzman and Newman s interpretation of Vygotsky I argue that scaffolding rests on a dualistic view that separates the knower from the known. In line with their work, I being to explore what an alternative metaphor development through performance (in the theatrical sense) might mean for mathematics education. INTRODUCTION Years ago, my colleagues, Joan Bliss and Sheila Macrae, and I conducted a study into the notion of scaffolding (Bruner 1985) in primary (elementary) school mathematics and science. At the time we had difficulty finding any evidence of scaffolding in practice! What we observed in lessons could just as easily be categorized as explaining or showing. Scaffolding, in the sense of providing a support for the learner, a support that could be removed to leave the structure of learning to stand on its own, was elusive (Bliss, Askew & Macrae, 1996). At the time this elusiveness seemed to be a result of two things. Firstly the nature of what was to be learnt. Many of the examples in relevant literature (for example, Rogoff (1990), Lave and Wenger (1991)) attend to learning that has clear, concrete outcomes. Becoming tailors or weavers means that the objects of the practice a jacket or a basket are apparent to the learner: the apprentice knows in advance of being able to do it, what it is that is being produced. In contrast, most (if not all) of mathematics is not known until the learning is done. Young children have no understanding of, say, multiplication, in advance of coming to learn about multiplication: the object of the practice only become apparent after the learning has taken place. (This is not to suggest that learners do not have informal knowledge that might form the basis of an understanding of multiplication, only that such informal knowledge is different and distinct from formal knowledge of multiplication.) Secondly, examples of scaffolding that did seem convincing focused on schooling situations that are close to apprenticeship models (Lave and Wenger, ibid.) in that the teacherlearner interaction is mainly oneto one. For example, Clay (1990) provides a strong Vygotskian account of Reading Recovery : a programme based on individual instruction. This led me to turn away from the Vygotskian perspectives all very nice in theory, but did they have much to offer the harried teacher of 30 or more students? Recently I ve returned to consider aspects of the work of Vygotsky, particularly as interpreted In Woo, J. H., Lew, H. C., Park, K. S. & Seo, D. Y. (Eds.). Proceedings of the 31 st Conference of the International Group for the Psychology of Mathematics Education, Vol. 2, pp Seoul: PME. 233
2 by the work of Lois Holzman and Fred Newman. They argue, amongst other things, to attend more to Vygotsky s ideas of toolandresult, and the argument that this leads to a performatory (in the theatrical sense) approach to development. TOOL FOR RESULT OR TOOLANDRESULT? Central to the argument is Vygotsky s observation of the paradox at the heart of the psychology, in that psychology creates the very objects that it investigates. The search for method becomes one of the most important paradoxes of the entire enterprise of understanding the uniquely human forms of psychological activity. In this case, the method is simultaneously prerequisite and product, the tool and the result of the study (Vygotsky, 1978, p. 65) Vygotsky thus challenges the view that the method of inquiry in psychology is separate from the results of that inquiry, the traditional tool and result position (Newman and Holzman, 1993). Instead As simultaneously toolandresult, method is practiced, not applied. Knowledge is not separate from the activity of practicing method; it is not out there waiting to be discovered through the use of an already made tool. Practicing method creates the object of knowledge simultaneously with creating the tool by which that knowledge might be known. Toolandresult come into existence together; their relationship is one of dialectical unity, rather than instrumental duality. (Holtzman, 1997, p. 52, original emphasis) While Holtzman and Newman, following on from Vygotsky, challenge the view of psychology as a science akin to physical science, the same challenge can be applied to mathematics education. Models of teaching and learning based on mediating means (Cole 1996) or scaffolding are largely predicated on a tool for result perspective rather than a toolandresult one. Let me illustrate this with an example. In workshops I often present teachers with Figure 1 and ask them what fraction it represents. Most say 2/5, a few 3/5 and fewer still suggest that it can be either. I then ask them to discuss in small groups how 1 2/3, 1 ½, 2/3, or 2 ½ can all be acceptable answers to the question what fraction. Figure 1 Initially there are puzzled looks and silence. Talk starts and gradually there are murmurs (or even cries!) of oh, I get it, or now I see it. Back as a whole group, various seeings are offered, metaphors provided ( Suppose the shaded is the amount of chocolate I have, and the unshaded the amount that you have, how many times bigger is your piece ), diagrams jotted down, and collectively we arrive at the point where most participants agree that they can see the different fractions PME
3 Looked at through the analytical lens of mediated (scaffolded) learning, and the mediation triangle (Figure 2, after Cole, ibid.) the subject is the individual teacher and the object the various readings of the diagram. The mediated means are the talk, the metaphors, the jottings that the teachers make in representing the image for themselves. Implicit in such an account is a separation of the means and end, of the tool and result. The talk, metaphors, diagrams are separate from the object, the it of the end result being the different readings, just as the scaffold that supports a building as it is put up can be removed to leave the building freestanding. mediating means subject Figure 2 object I want to question this separation of tool and result, by examining the nature of the outcome of this lesson what is the basket that these teachers have woven? Where, exactly, do the readings that emerge exist? The 2/5s, 2/3s and so forth, cannot be there in the diagram itself (otherwise they would be immediately apparent). They cannot be solely in the subjects heads waiting to be brought out. They cannot be in the talk, metaphors and diagrams these help to bring the readings into existence, but they are not the readings per se. So there is not an object a reading of the diagram that exists outthere waiting to be brought into being through mediating means. The readings emerge and develop through the unity of the subjectmediating meansobject. They are an example of toolandresult. Tooland result means that no part of the practice can be removed and looked at separately. Like the classic vase and faces optical illusion neither the faces nor the vase can be removed and leave the other. There are no scaffolds or other mediating means in terms of metaphors or diagrams that can be removed to leave the objects of instruction (fractional readings). The practice of method is entire and (t)he practice of method is, among other things, the radical acceptance of there being nothing social (culturalhistorical) independent of our creating it (Newman and Holtzman, 1997, p. 107). The most important corollary of the practice of method is, for Newman and Holtzman the priority of creating and performing over cognition: We are convinced that it is the creating of unnatural objects performances which is required for ongoing human development (developing). (Newman and Holtzman, ibid, p. 109). PME
4 Taking as my starting point that school mathematics involves the creating of unnatural objects mathematical objects I now present an example of what mathematics as performance might look like. EXAMPLE OF A PERFORMATORY APPROACH TO MATHEMATICS. This example comes from work in a school that had a history of underperformance in National Test scores (The development through performance perspective raises questions about what it means to underperform ). When I starting working in the school, the culture was such that the teachers spoke of the children not being able to do mathematics (Again a performance perspective raises questions. Clearly there was a lot that these children could do. Observing them in the playground they were as capable as any other children of being able to do play and, for some, with both parents out at work, they were able to play a variety of roles at home, including caretakers of siblings. What makes doing mathematics any more difficult than being able to do play in the schoolyard or do the preparation of a meal?) In particular, the teachers spoke of the children not being able to talk about mathematics, and so the classroom environments were ones where the children were not encouraged to talk about mathematics. The performatory approach adapted was one of creating environments where children were encouraged and expected to talk. Two factors were central to this: the use of engaging contexts that the children could mathematise (Freudenthal, 1973) and getting children to cooperate in pairs to develop (improvise) solutions and then pairs coming to the front of the class to perform their solutions. This example comes from working with a class of six and sevenyearolds. It took place in February after we had been working with the class in this way since the previous September. The problem is adapted from the work of Fosnot and Dolk (2001). These situations were set up orally, not simply to reduce reading demands but to encourage children to enter into the world of the story. Most of the time the children willingly did this. Occasionally someone would ask is this true (answered playfully with what do you think? ) or a child would say, in a loud stage whisper it s not true you know, he s making it up, but even such challenges to the veracity of the stories were offered and met with good humour and a clear willingness to continue to suspend disbelief. The context set up was that I had gone to visit a cousin in the country, who ran a sweet shop. One of her popular lines was flavoured jellybeans. These were delivered in separate flavours and then mixed together for various orders. During my visit my cousin had some bags of six different flavours of jellybeans: did she have enough jellybeans to make up total order for 300 beans? Knowing that I was a teacher, she wondered whether the children I worked with would help her figure out if she had enough. Of course they would. I invited the children to offer flavours, hoping that they would come up with some HarryPotteresque suggestions (earwax or frog?) for 236 PME
5 flavours. They were conservative in their choices of fruit flavours, so I added in the last two. On the board was a list of flavours and the numbers of each: Strawberry 72; Orange 23; Cherry 33; Apple 16; Broccoli; 20; Fish The class had been introduced to using the empty number line as a tool (prop in the theatrical sense) for supporting addition and subtraction, but they had not been presented with a string of five twodigit numbers before this was well in advance of what children of this age are expected to be able Figure to do independently. All the Figure 3 3 children were provided with paper and pencil but we also had other props ready to hand in the form of baseten blocks for anyone who wanted or needed to use these. Some did use the blocks but the majority of the class were content to work only with paper and pencil. Here are two improvised solutions from two pairs of children a girl and boy in each case. Figure 4 Figure 4 The children s whose work is shown in Figure 3 wrote down the six numbers in the order that they had been put up on the board, but added them in the order of largest number to smallest. They could figure out that was 152 without writing everything down, ticked off these two numbers and then used an empty number line to add on each of the remaining four numbers in descending order of magnitude. The children s whose work is shown in Figure 4 adopted a different approach. They partitioned each number into its constituent tens and ones, added the tens, two at a time, until the total number of tens was reached. Then they added the ones, finishing off by adding the tens and ones together. As the children were figuring out their solutions, the teacher and I were able to decide who would perform their solutions to the rest of the class. These two pairs were PME
6 included in this selection, and, like the others chosen, were given due warning of this so that they had time to prepare what they were going to say DISCUSSION Did the children learn about addition through this lesson? I cannot say. What was of concern was that they learnt that mathematics is learnable and that they were capable of performing it. Developmental learning involves learning act as a mathematician and the realisation that the choice to continue to act as mathematicians is available. Developmental learning is thus generative rather than aquisitional. As Holtman (1997) problematises it: Can we create ways for people to learn the kinds of things that are necessary for functional adaptation without stifling their capacity to continuously create for growth? This is a key question for mathematics education. In England, and elsewhere, policy makers are specifying the content and expected learning outcomes of mathematics education in finer and finer detail. For example, the introduction of the National Numeracy Strategy in England brought with it a document setting out teaching and learning objectives the Framework for Teaching Mathematics from Reception to Year 6 (DfEE, 1999) a yearbyyear breakdown of teaching objectives. The objectives within the framework are at a level of detail far exceeding that of the mandatory National Curriculum (NC). The NC requirements for what 7 to 11yearolds should know and understand in calculations is expressed in just over one page and, typically, include statements like: work out what they need to add to any twodigit number to make 100, then add or subtract any pair of twodigit whole numbers, handle particular cases of threedigit and fourdigit additions and subtractions by using compensation or other methods (for example, , ) (Department for Education and Employment (DfEE), 1999a, p.25). In contrast, the Framework devotes over 50 pages to elaborating teaching objectives for calculation, at this the level of detail: Find a small difference between a pair of numbers lying either side of a multiple of 1000 For example, work out mentally that: = 15 by counting up 2 from 6988 to 6990, then 10 to 7000, then 3 to 7003 Work mentally to complete written questions like = 6004 = = 19 (Department for Education and Employment (DfEE), 1999b, Y456 examples, p 46) While teachers have welcomed this level of detail, there is a danger that covering the curriculum (in the sense of addressing each objective) becomes the overarching goal of teaching, that acquisition of knowledge by learners becomes paramount and the curriculum content reified and fossilised. In particular the emphasis is on knowing rather than developing. Does coverage of pages of learning outcomes help students view themselves as being able to act as mathematicians? 238 PME
7 CONCLUSION Askew What might it mean to have a mathematics education that is not predicated on knowing after all, is not the prime goal that students should come to know some mathematics. I think the issue here is not whether or not we should (or even could) erase knowing from the mathematics curriculum, but that we need to examine carefully what it means to come to know, and in particular, the myth that, as teachers, we can specify in advance exactly what it is that students will come to know. The scaffolding metaphor carries certain connotations plans and blueprints. In architecture, the final product, the building, can be clearly envisaged in advance of starting it. Thus scaffolding appeals to our sense of being in control as teachers, it taps into a technicalrationalist view of teaching and learning. Get your plans carefully and clearly laid out (and checked by an authority, or failing that download them from an authoritative source), put up the right scaffold in the lesson and all will be well (if only!). Rather than learning in classrooms being built up in this predetermined way, I want to suggest that maybe it is more like ants constructing anthills: Ants don t (at least we assume) start out with a blueprint of the anthill that will be constructed. The anthill emerges through their joint activity. What emerges is recognizably an anthill (and not an eagle s nest) although the precise structure is not determined until completion (if such a state ever exists). Ants are not applying a method in order to construct anthills, they are simply practicing their method. In the same way, children playing at being mummiesanddaddies are not applying a method of play they are simply involved in the practice of play. Such play is performatory (they don t sit around planning what to play, they simply get on and play) and improvisational (the events and shape of the play emerge through the practice of the play). The children s play does not set out to be about anything in particular, expect in the broadest terms of being about mummiesanddaddies as opposed to, say, princessesandprinces. It is this playful, performatory, improvisational practice of method, that Holtzman and Newman argue can help classrooms become developmental In playing the roles of helping the shopkeeper solve her problem, through cooperations the children were able to perform beyond themselves, performing a head taller than they are (Vygotsky, 1978 p. 102) In such circumstances, the mathematics emerges in classrooms, but the precise nature of it cannot be determined in advance I have to trust to the process, rather than try to control it. The solution methods to the jellybean problem could not have been closely predetermined, but trust in the capability of the children to perform as mathematicians allowed rich solutions to emerge. That is not to say that teaching does not rest on careful preparation good improvisation does too but that the unfolding, the emergence of a lesson cannot be PME
8 that tightly controlled (or if it is that the learning that emerges is limited and resistricted to being trained rather than playing a part). REFERENCES Bliss, J., Askew, M., & Macrae, S. (1996) Effective teaching and learning: scaffolding revisited. Oxford Review of Education. 22(1) pp Bruner, J. (1985) Vygotsky: a historical and conceptual perspective., in J. V. Wertsch (ed) Culture, Communication and Cognition: Vygotskian Perspectives. Cambridge: Cambridge University Press (pp ) Clay, M. M. & Cazden, C. B. (1990) A Vygotskian interpretation of Reading Recovery., in Moll, L. C. (ed) Vygotsky and Education: Instructional Implications and Applications of Sociohistorical Psychology. Cambridge: Cambridge University Press (pp ) Cole, M. (1996) Cultural Psychology: A Once and Future Discipline. Cambridge MA: Harvard University Press Department for Education and Employment (DfEE) (1999a) Mathematics in the National Curriculum. London: DfEE Department for Education and Employment (DfEE) (1999) The National Numeracy Strategy: Framework for teaching mathematics from Reception to Year 6. London: DfEE Fosnot, C. T. & Dolk, M. (2001) Young mathematicians at work: constructing number sense, addition and subtraction. Portsmouth, NH; Hiennemann Freudenthal, H. (1973) Mathematics as an educational task. Dordrecht: Reidel. Holtzman, L. (1997) Schools for growth: radical alternatives to current educational models. Mahwah, NJ & London: Lawrence Earlbaum Associates. Lave, J. & Wenger, E. (1991) Situated learning: Legitimate Peripheral Participation. Cambridge: Cambridge University Press (pp 2134) Newman, F., & Holtzman, L. (1993) Lev Vygotsky; Revolutionary scientist. London: Routledge. Newman, F., & Holtzman, L. (1997) The end of knowing: A new development way of learning. London: Routledge. Rogoff, B. (1990) Apprenticeship in thinking: cognitive development in social context. New York: Oxford University Press Vygotsky (1978) Mind in society. Cambridge MA: Harvard University Press 240 PME
Intellectual Need and ProblemFree Activity in the Mathematics Classroom
Intellectual Need 1 Intellectual Need and ProblemFree Activity in the Mathematics Classroom Evan Fuller, Jeffrey M. Rabin, Guershon Harel University of California, San Diego Correspondence concerning
More informationLooking at Classroom Practice
Support Materials Contents This resource guide has been developed to support the work of school leaders, teachers and educators who work in and with schools across Australia. guide is designed to enable
More informationOn Some Necessary Conditions of Learning
THE JOURNAL OF THE LEARNING SCIENCES, 15(2), 193 220 Copyright 2006, Lawrence Erlbaum Associates, Inc. On Some Necessary Conditions of Learning Ference Marton Department of Education Göteborg University,
More informationMonitoring and Evaluation
OVERVIEW Brief description This toolkit deals with the nuts and bolts (the basics) of setting up and using a monitoring and evaluation system for a project or an organisation. It clarifies what monitoring
More informationIs that paper really due today? : differences in firstgeneration and traditional college students understandings of faculty expectations
DOI 10.1007/s1073400790655 Is that paper really due today? : differences in firstgeneration and traditional college students understandings of faculty expectations Peter J. Collier Æ David L. Morgan
More informationFlexible Scheduling: Implementing an Innovation
Volume 9, 2006 Approved April 2006 ISSN: 15234320 www.ala.org/aasl/slr Flexible Scheduling: Implementing an Innovation Joy McGregor, Senior Lecturer and Course Coordinator of Master of Education (Teacher
More informationMY VOICE HAS TO BE HEARD. Research on outcomes for young people leaving care in North Dublin. empowering people in care
1 MY VOICE HAS TO BE HEARD Research on outcomes for young people leaving care in North Dublin empowering people in care MY VOICE HAS TO BE HEARD Research on outcomes for young people leaving care in North
More informationA SelfDirected Guide to Designing Courses for Significant Learning
A SelfDirected Guide to Designing Courses for Significant Learning L. Dee Fink, PhD Director, Instructional Development Program University of Oklahoma Author of: Creating Significant Learning Experiences:
More informationHow to develop thinking and assessment for learning in the classroom
How to develop thinking and assessment for learning in the classroom Guidance Guidance document No: 044/2010 Date of revision: November 2010 How to develop thinking and assessment for learning in the classroom
More informationIt was taught good and I learned a lot : Intellectual practices and ESL learners in the middle years
It was taught good and I learned a lot : Intellectual practices and ESL learners in the middle years n Pauline Gibbons University of Technology, Sydney This paper reports on some of the findings from research
More informationJust want the standards alone? You can find the standards alone at http://corestandards.org/thestandards
4 th Grade Mathematics Unpacked Content For the new Common Core State Standards that will be effective in all North Carolina schools in the 201213 school year. This document is designed to help North
More informationTEACHING ADULTS TO MAKE SENSE OF NUMBER TO SOLVE PROBLEMS USING THE LEARNING PROGRESSIONS
TEACHING ADULTS TO MAKE SENSE OF NUMBER TO SOLVE PROBLEMS USING THE LEARNING PROGRESSIONS Mā te mōhio ka ora: mā te ora ka mōhio Through learning there is life: through life there is learning! The Tertiary
More informationWhat s Sophisticated about Elementary Mathematics?
What s Sophisticated about Elementary Mathematics? Plenty That s Why Elementary Schools Need Math Teachers illustrated by roland sarkany By HungHsi Wu Some 13 years ago, when the idea of creating a cadre
More informationAbout learning. Report of the Learning Working Group
About learning Report of the Learning Working Group Open access. Some rights reserved. As the publisher of this work, Demos has an open access policy which enables anyone to access our content electronically
More informationDevelopmentally Appropriate Practice in Early Childhood Programs Serving Children from Birth through Age 8
Position Statement Developmentally Appropriate Practice in Early Childhood Programs Serving Children from Birth through Age 8 Adopted 2009 A position statement of the National Asssociation for the Education
More informationWhen Accountability Knocks, Will Anyone Answer?
When Accountability Knocks, Will Anyone Answer? Charles Abelmann Richard Elmore with Johanna Even Susan Kenyon Joanne Marshall CPRE Research Report Series RR42 Consortium for Policy Research in Education
More informationCommittee on Developments in the Science of Learning. John D. Bransford, Ann L. Brown, and Rodney R. Cocking, editors
Expanded Edition How People Learn Brain, Mind, Experience, and School Committee on Developments in the Science of Learning John D. Bransford, Ann L. Brown, and Rodney R. Cocking, editors with additional
More informationStudents Perceptions of Their Community College Experiences
Students Perceptions of Their Community College Experiences Students Perceptions of Their Community College Experiences by Thad Nodine, Laura Jaeger, Andrea Venezia, and Kathy Reeves Bracco, with research
More informationLearning: creative approaches that raise standards
Learning: creative approaches that raise standards This survey evaluates and illustrates how 44 schools used creative approaches to learning. These schools had aspirations for their pupils to ask questions
More informationRethinking Classroom Assessment with Purpose in Mind
Rethinking Classroom Assessment with Purpose in Mind Assessment for Learning Assessment as Learning Assessment of Learning Rethinking Classroom Assessment with Purpose in Mind Assessment for Learning
More informationHelping Students Develop Their IEPs
TA2, 2nd Edition, January 2002 TECHNICAL ASSISTANCE GUIDE A publication of the National Information Center for Children and Youth with Disabilities Helping Students Develop Their IEPs N IC H CY This guide
More informationGetting to Grips with the Year of Care: A Practical Guide
Getting to Grips with the Year of Care: A Practical Guide October 2008 Contents Page No. Foreword 3 Introduction 5 What can the Year of Care offer me? 6 What is the Year of Care? 7 What the Year of Care
More informationSchools for All. Schools for All. Including disabled children in education. Including disabled children in education. guidelines.
practice guidelines Schools for All Including disabled children in education Experience from Save the Children and partners globally demonstrates that improvements in education quality go handinhand
More informationDETERMINING STUDENT WORKLOAD A PRACTICAL GUIDE FOR TEACHERS AND CURRICULUM DESIGNERS ME TIME TO THINK
A PRACTICAL GUIDE FOR TEACHERS AND CURRICULUM DESIGNERS GIVE ME TIME TO THINK DETERMINING STUDENT WORKLOAD IN HIGHER EDUCATION UNIVERSITY OF OULU TEACHING DEVELOPMENT UNIT ASKO KARJALAINEN KATARIINA ALHA
More informationWhat makes great teaching?
What makes great teaching? Review of the underpinning research Robert Coe, Cesare Aloisi, Steve Higgins and Lee Elliot Major October 2014 Executive Summary A framework for professional learning This review
More informationAs Good As They Give. Providing volunteers with the management they deserve. Workbook Two Attracting and Selecting Volunteers
As Good As They Give Providing volunteers with the management they deserve Workbook Two Attracting and Selecting Volunteers Volunteering takes many forms  traditional service giving, mutual aid and selfhelp,
More informationWould they actually have believed me?
Would they actually have believed me? A focus group exploration of the underreporting of crimes by Jimmy Savile September 2013 Contents 1. Introduction... 3 2. Methodology... 4 3. Responses to Focus Group
More information2 0 1 01 1. The FullDay Early Learning Kindergarten Program
2 0 1 01 1 The FullDay Early Learning Kindergarten Program Draft Version CONTENTS INTRODUCTION 1 The FullDay Early Learning Kindergarten Program: Vision, Purpose, Goals 1 The Importance of Early Learning
More informationPerfect For RTI. Getting the Most out of. STAR Math. Using data to inform instruction and intervention
Perfect For RTI Getting the Most out of STAR Math Using data to inform instruction and intervention The Accelerated products design, STAR Math, STAR Reading, STAR Early Literacy, Accelerated Math, Accelerated
More informationExplaining how electric circuits work. Science teaching unit
Explaining how electric circuits work Science teaching unit Disclaimer The Department for Children, Schools and Families wishes to make it clear that the Department and its agents accept no responsibility
More information