Valuation of Equity-Linked Insurance Products and Practical Issues in Equity Modeling. March 12, 2013

Size: px
Start display at page:

Download "Valuation of Equity-Linked Insurance Products and Practical Issues in Equity Modeling. March 12, 2013"

Transcription

1 Valuation of Equity-Linked Insurance Products and Practical Issues in Equity Modeling March 12, 2013 The University of Hong Kong (A SOA Center of Actuarial Excellence) Session 2 Valuation of Equity-Linked Insurance Products Professor, ASA

2 Department of Statistics and Actuarial Science The University of Hong Kong Hong Kong Based on a paper with Hans Gerber and Elias Shiu

3 Introduction Equity-linked products are very popular in the market nowadays. Example: Guaranteed Minimum Death Benefits Payoff: max(s(t x ), K) = S(T x ) + [K S(T x )] + = K + [S(T x ) K] +, where T x is the time-until-death random variable for a life age x, S(t) is the price of equity-index at time t, and K is the guaranteed amount.

4 What is a contingent option? Option s payoff, e.g. European call: (S(T ) K) + Contingent option s payoff: (S(T x ) K) +, where T x is a random variable, independent of S(t).

5 Notation S(t), t 0, value of one unit of a fund at time t T x time of death of a life age x Equity-linked death benefit defined by b(s): Payment b(s(t x )) at time T x Problem: Calculate E[e δtx b(s(t x ))] δ > 0 valuation force of interest

6 Distribution of T x Any continuous distribution on (0, ) can be approximated by a linear combination of exponential distributions f Tx (t) = n A i λ i e λ i t = i=1 n A i f i (t), t > 0, i=1

7 Distribution of T x = = = = E[e δtx b(s(t x ))] 0 0 e δt E[b(S(t))]f Tx (t)dt [ n e δt E[b(S(t))] i=1 ] A i f i (t) dt n A i e δt E[b(S(t))]f i (t)dt i=1 0 n A i E[e δτ i b(s(τ i ))]. i=1

8 The distribution of T x can be approximated by a linear combination of exponential distributions. Thus we limit ourself to the following problem: Calculate E[e δτ b(s(τ))] with τ an exponential random variable notation: E[τ] = 1/λ.

9 Model for S(t): S(t) = S(0)e X (t), t 0 with (1) X (t) = µt + σw (t) W (t) is a standard Brownian motion E[X (t)] = µt, Var[X (t)] = σ 2 t or (2) jump diffusion upward jumps: exponential mean 1/v, frequency ν downward jumps: exponential mean 1/w, frequency ω

10 In this talk, we focus on (1). Thus {X (t)} Brownian motion parameters µ, σ 2, D = 1 2 σ2 E[e zx (t) ] = e tψ(z) with Ψ(z) = Dz 2 + µz We need the distribution of X (τ) (well known, exponential stopping of a Wiener process )

11 E[e zx (τ) ] = E[E[e zx (τ) τ]] = E[e τψ(z) λ ] = λ Ψ(z) = λ Dz 2 µz + λ. Now we rewrite this with partial fractions. We need α < 0, β > 0 solutions of Dz 2 + µz λ = 0

12 Then E[e zx (τ) ] = with κ = αβ β α κ z α κ z β Thus the pdf of X (τ) is { κe f X (τ) (x) = αx, if x 0, κe βx, if x > 0,

13 Discounted density functions: f δ X (τ) (x) = E[e δτ f (x, τ)] = λ = λ λ + δ 0 e (λ+δ)t f (x, t)dt (λ + δ) e (λ+δ)t f (x, t)dt 0 } {{ } = f X (τ) (x) with λ replaced by λ + δ

14 Thus we find the following Recipe: Discounted density of X (τ) = λ λ+δ pdf of X (τ) with λ replaced by λ + δ

15 f δ X (τ) (x) = { κe αx, if x 0, κe βx, if x 0, where α < 0 and β > 0 are the solutions of Dξ 2 + µξ (λ + δ) = 0 and κ = λ αβ λ+δ β α.

16 Value of a death benefit defined by b(s): E[e δτ b(s(τ))] = λ = = κ 0 0 e (λ+δ)t b(s(0)e x )f (x, t)dxdt b(s(0)e x )f δ X (τ) (x)dx b(s(0)e x )e αx dx + κ 0 b(s(0)e x )e βx dx

17 Factorization formula If τ is exponential with mean 1/λ, then the following factorization formula holds, E[e δτ g τ (X )] = E[e δτ ] E[g τ (X )], where τ is an exponential random variable with mean 1/(λ + δ) and independent of X. Remarks (i) E[e δτ ] = λ λ+δ. (ii) The condition δ > 0 can be replaced by the condition δ > λ.

18 Examples (1) b(s) = (K s) +, K < S(0) out-of-the-money put option E[e δτ (K S(τ)) + ] = (K S(0) e x ) + fx δ (τ)(x) dx = κk [ K ] α α(1 α) S(0) (2) b(s) = (s K) +, K > S(0) out-of-the-money call option E[e δτ (S(τ) K) + ] = κk [ S(0) β(β 1) K ] β

19 The Greek letters (1) of the out-of-the-money put option κ [ ] K (α 1) 1 α S(0) (2) of the out-of-the-money call option [ κ S(0) β 1 K ] β 1

20 The Greek letters (1) Γ of the out-of-the-money put option [ ] κ K (α 2) K S(0) (2) Γ of the out-of-the-money call option κ K [ S(0) K ] β 2

21 in-the-money options (3) b(s) = (K s) +, K > S(0) put (4) b(s) = (s K) +, K < S(0) call Use the put-call parity and (1) and (2) [K S(τ)] + [S(τ) K] + = K S(τ) yields E[e δτ [K S(τ)] + ] E[e δτ [S(τ) K] + ] = λ λ + δ K E[e δτ S(τ)]

22 In-the-money formulas Call E[e δτ [S(τ) K] + ] if S(0) > K [ ] κk K α = λ α(1 α) S(0) λ + δ K + E[e δτ S(τ)] Put E[e δτ [K S(τ)] + ] if S(0) < K [ ] κk S(0) β = + λ β(β 1) K λ + δ K E[e δτ S(τ)]

23 The Greek letters (under risk neutral probability) (1) of the in-the-money call option 1 κ [ ] K (α 1) 1 α S(0) (2) of the in-the-money put option [ ] κ S(0) β 1 1 β 1 K

24 The Greek letters (under risk neutral probability) (1) Γ of the in-the-money call option [ ] κ K (α 2) K S(0) (2) Γ of the in-the-money put option κ K [ S(0) K ] β 2

25 Illustration We consider 90-strike life-contingent call and put options on a stock with initial price S(0) = 100. We assume δ = 8% and µ = δ D. We assume that the distribution of T x is exponential with mean 125/6. Table 1: Contingent call and put values call put σ = σ = σ = σ =

26 rollup GMDB options Payoff: [Ke pτ S(τ)] + at time of death p: rollup rate Discounted payoff e δτ [Ke pτ S(τ)] + = e (δ p)τ [K e pτ S(τ)] + Valuation of a put option, with the substitutions δ δ p, µ µ p

27 T -year contingent options Finite expiry date T > 0 Payoff [K S(τ)] + I (τ T ) Can be written as [K S(τ)] + [K S(τ)] + I (τ>t ) The time-0 cost of the T -year deferred contingent put option is E[e δτ [K S(τ)] + I (τ>t ) ] = Pr(τ > T )E[e δτ [K S(τ)] + τ > T ] = e (λ+δ)t E[e δ(τ T ) [K S(T )e X (τ) X (T ) ] + τ > T ].

28 The conditional expectation given S(T ) is [ ] κk K α I α(1 α) S(T ) (S(T )>K) { [ ] κk S(T ) β + + λ } β(β 1) K λ + δ K E[e δτ+x (τ) ]S(T ) I (S(T )<K). Its expectation can be evaluated by the factorization formula in the method of Esscher transforms.

29 Result: [ ] κk K α Φ( z α ) + κk [ ] S(0) β Φ(z β ) α(1 α) S(0) β(β 1) K +e (λ+δ)t λ λ + δ KΦ(z 0) e (λ+δ ϑ)t E[e δτ S(τ)]Φ(z 1 ). where z h = k (µ + hσ2 )T σ T,

30 Value of the T -year K-strike contingent put option S(0) > K S(0) < K [ ] κk K α Φ(z α ) κk [ ] S(0) β Φ(z β ) α(1 α) S(0) β(β 1) K e (λ+δ)t λ λ + δ KΦ(z 0) + e (λ+δ ϑ)t E[e δτ S(τ)]Φ(z 1 ) [ ] κk K α Φ( z α ) + κk [ ] S(0) β Φ( z β ) α(1 α) S(0) β(β 1) K + λ λ + δ K[1 e (λ+δ)t Φ(z 0 )] E[e δτ S(τ)][1 e (λ+δ ϑ)t Φ(z 1 )]

31 Illustration We consider T -year 90-strike life-contingent put options on a stock with initial price S(0) = 100. We assume δ = 8% and µ = δ D. We assume that the distribution of T x is exponential with mean 125/6. Table 2: Contingent T =year put values T σ = σ = σ = σ =

32 M(t) = max 0 s t X (s) running maximum m(t) = min 0 s t X (s) running minimum For certain options we need f M(τ) (x) pdf of M(τ) f m(τ) (x) pdf of m(τ) It is well known that f M(τ) (x) = βe βx, x > 0, f m(τ) (x) = αe αx, x < 0.

33 Proof: Stop the martingale {e βx (t) I (τ>t) } at the time min(τ, first passage time at x) and use the optional sampling theorem: 1 = 0 + e βx Pr(M(τ) > x) Thus Pr(M(τ) > x) = e βx and f M(τ) (x) = βe βx, x > 0.

34 Discounted density functions: fm(τ) δ (x) = λ e (λ+δ)t f M(t) (x)dt f δ M(τ) (x) = = 0 λ λ + δ λ λ+δ βe βx, x > 0, (λ + δ) e (λ+δ)t f M(t) (x)dt 0 } {{ } = f M(τ) (x) with λ replaced by λ + δ where β > 0 solution of Dz 2 + µz (λ + δ) = 0.

35 Similarly, f δ m(τ) (x) = λ λ+δ ( α)e αx, x < 0, where α < 0 solution of Dz 2 + µz (λ + δ) = 0.

36 Bivariate distributions: We know that for a Lévy process M(τ) and M(τ) X (τ) are independent M(τ) X (τ) has the same distribution as m(τ) = m(τ) f M(τ),M(τ) X (τ) (y, z) = f M(τ) (y)f M(τ) X (τ) (z) = f M(τ) (y)f m(τ) ( z) = αβe βy e αz for y 0, z 0.

37 Because of X (τ) = M(τ) [M(τ) X (τ)], we find that f X (τ),m(τ) (x, y) = f M(τ),M(τ) X (τ) (y, y x) = f M(τ) (y)f M(τ) X (τ) (y x) = αβe αx (β α)y for y max(x, 0)

38 Then the discounted density is f δ X (τ),m(τ) (x, y) = αβ λ λ + δ e αx (β α)y for y max(x, 0) where α < 0 and β > 0 are the solutions of Dz 2 + µz (λ + δ) = 0

39 Lookback options Many equity-indexed annuities credit interest using a high water mark method or a low water mark method

40 Out-of-the-money fixed strike lookback call option Payoff: Time-0 value k [S(0)e M(τ) K] + [S(0)e y K]fM(τ) δ (y)dy = λ [S(0)βe (β 1)k λ + δ β 1 [ ] S(0) β =. λ λ + δ Another expression for the option value [ ] λ K S(0) β. D αβ(β 1) K K β 1 K Ke βk ]

41 In-the-money fixed strike lookback call option Payoff Rewriting as max(h, S(0)e M(τ) ) K. H K + [S(0)e M(τ) H] + Time-0 value { λ H K + H λ + δ β 1 [ S(0) H ] β }.

42 Floating strike lookback put option Payoff where H S(0). Time-0 value { λ H + H λ + δ β 1 max(h, max S(t)) S(τ), (1) 0 t τ [ S(0) H ] β } E[e δτ S(τ)].

43 Floating strike lookback put option Special case: H = S(0), the time-0 value λ β λ + δ β 1 S(0) E[e δτ S(τ)] = 1 α α E[e δτ S(τ)] E[e δτ S(τ)] = 1 α E[e δτ S(τ)]. (2) This result can be reformulated as E[e δτ max S(t)] = 0 t τ ( 1 α + 1 ) E[e δτ S(τ)].

44 Floating strike lookback put option Milevsky and Posner (2001) have evaluated (1) with a risk-neutral stock price process and H = S(0). They also assume that the stock pays dividends continuously at a rate proportional to its price. With l denoting the dividend yield rate, δ = r, and µ = r D l, the RHS of (2) is 2D (r D l) + (r D l) 2 + 4D(λ + r) S(0) λ λ + l. Although it seems rather different from formula (38) on page 117 of Milevsky and Posner (2001), they are the same.

45 Fractional floating strike lookback put option Payoff Notice [γ max 0 t τ S(t) S(τ)] + = S(0)[γe M(τ) e X (τ) ] +. [γe M(τ) e X (τ) ] + = e M(τ) [γ e X (τ) M(τ) ] +

46 Fractional floating strike lookback put option Hence E[e δτ e M(τ) [γ e X (τ) M(τ) ] + ] = e y [γ e z ] + fm(τ),m(τ) X δ (τ)(y, z)dydz 0 0 = λ [ ][ ] e y e βy dy [γ e z ] + e αz dz D 0 = λ 1 D β 1 α(1 α) = γ 1 α λ β λ + δ (1 α)(β 1) = γ 1 α 1 α E[e δτ e X (τ) ]. γ 1 α 0

47 Fractional floating strike lookback put option This can be rewritten as E[e δτ [γe M(τ) e X (τ) ] + ] = γ 1 α E[e δτ (e M(τ) e X (τ) )]. Time-0 value E[e δτ [γ max 0 t τ S(t) S(τ)] +] = γ1 α α E[e δτ S(τ)],

48 Out-of-the-money fixed strike lookback put option Payoff [K S(0)e m(τ) ] +, Time-0 value k [K S(0)e y ]fm(τ) δ (y)dy = λ [ ] K K α. λ + δ 1 α S(0)

49 In-the-money fixed strike lookback put option Payoff K min(h, S(0)e m(τ) ) = K H + [H S(0)e m(τ) ] +, Time-0 value { λ K H + H [ ] H α }. λ + δ 1 α S(0)

50 Floating strike lookback call option Payoff where 0 < H S(0). Time-0 value E[e δτ S(τ)] + S(τ) min(h, min 0 t τ S(t)), λ { H + λ + δ H [ ] H α }. 1 α S(0) In the special case where H = S(0), the time-0 value E[e δτ S(τ)] λ λ + δ α 1 α S(0) = E[e δτ S(τ)] β 1 β E[e δτ S(τ)] = 1 β E[e δτ S(τ)]. This result can be reformulated as ( )

51 Fractional floating strike lookback call option Payoff [S(τ) γ min 0 t τ S(t)] + = S(0)[e X (τ) γe m(τ) ] +. = S(0)e m(τ) [e X (τ) m(τ) γ] +

52 Fractional floating strike lookback call option Its expected discounted value is S(0) times the following expectation E[e δτ e m(τ) [e X (τ) m(τ) γ] + ] = λ [ 0 ][ ] e y e αy dy [e z γ] + e βz dz D 0 = λ 1 γ 1 β D 1 α β(β 1) 1 λ α = γ β 1 λ + δ (1 α)(β 1) 1 1 = γ β 1 β E[e δτ e X (τ) ].

53 Fractional floating strike lookback call option This can be rewritten as E[e δτ [e X (τ) γe m(τ) ] + ] = γ (β 1) E[e δτ (e X (τ) e m(τ) )]. We have E[e δτ [S(τ) γ min 0 t τ S(t)] +] = 1 βγ β 1 E[e δτ S(τ)].

54 High-low option Payoff max(h, max S(t)) min(h, min S(t)), 0 t τ 0 t τ where 0 < H S(0) H. Time-0 value { λ H + H [ ] S(0) β H + H [ ] H α }. λ + δ β 1 H 1 α S(0) In the special case where H = S(0) = H, time-0 value λ β α S(0) λ + δ (β 1)(1 α) = β α αβ E[e δτ S(τ)]. This can be rewritten as ( 1 α + 1 ) E[e δτ S(τ)], β

55 Illustration We consider 90-strike life-contingent lookback call and put options on a stock with initial price S(0) = 100. We assume H = 100, δ = 8% and µ = δ D. We assume that the distribution of T x is exponential with mean 125/6. Table 1: Contingent call and put values call put σ = σ = σ = σ =

56 Barrier options A barrier option is an option whose payoff depends on whether or not the price of the underlying asset has reached a predetermined level or barrier. Knock-out options are those which go out of existence if the asset price reaches the barrier, and knock-in options are those which come into existence if the barrier is reached.

57 Parity relation Knock-out option + Knock-in option = Ordinary option. Notation: L denotes the barrier and l = ln[l/s(0)]

58 Up-and-out and up-and-in options (L > S(0) (l > 0)) Payoffs I ([max0 t τ S(t)]<L)b(S(τ)) = I (M(τ)<l) b(s(0)e X (τ) ) I ([max0 t τ S(t)] L)b(S(τ)) = I (M(τ) l) b(s(0)e X (τ) )

59 The expected discounted values Up-and-out Up-and-in λ D 0 = λ D l [ y I (y<l) b(s(0)e x )fx δ (τ),m(τ) ]dy (x, y)dx [ y l 0 b(s(0)e x )e αx dx ] e (β α)y dy [ y ] b(s(0)e x )e αx dx e (β α)y dy;

60 Down-and-out and down-and-in options (0 < L < S(0) (l < 0)) Payoffs I ([min0 t τ S(t)]>L)b(S(τ)) = I (m(τ)>l) b(s(0)e X (τ) ) I ([min0 t τ S(t)] L)b(S(τ)) = I (m(τ) l) b(s(0)e X (τ) )

61 The expected discounted values λ D 0 l [ y ] b(s(0)e x )e βx dx e (β α)y dy λ l [ ] b(s(0)e x )e βx dx e (β α)y dy, D y

62 Notation A 1 (n) = λ S(0) n D (n α)(β n), A 2 (n) = λ L n [ ] S(0) β, D (n α)(β n) L A 3 (n) = λ L n [ ] L α, D (n α)(β n) S(0) A 4 = λ K n [ ] K α = κk n [ ] K α, D (n α)(β α) S(0) n α S(0)

63 Notation A 5 = λ K n α L α [ ] S(0) β = κk n α L α [ ] S(0) β, D (n α)(β α) L n α L A 6 = λ K n [ ] S(0) β = κk n [ ] S(0) β, D (β n)(β α) K β n K A 7 = λ K (β n) L β [ ] L α = κk (β n) L β [ ] L α, D (β n)(β α) S(0) β n S(0) A 8 = λ [ ] K K α [ ] κk K α =, D α(1 α)(β α) S(0) α(1 α) S(0)

64 Notation A 9 = λ K 1 α L α [ ] S(0) β D α(1 α)(β α) L = κk 1 α L α [ ] S(0) β, α(1 α) L A 10 = λ [ ] K S(0) β = D β(β 1)(β α) K A 11 = λ K (β 1) L β [ ] L α D β(β 1)(β α) S(0) = κk (β 1) L β [ ] L α. β(β 1) S(0) κk β(β 1) [ ] S(0) β, K

65 Up-and-out all-or-nothing call option The option value is 0, if L < K, λ l D 0 [ y k S(0)n e nx e αx dx]e (β α)y dy, if L K and S(0) > K, λ l D k [ y k S(0)n e nx e αx dx]e (β α)y dy, if L K and S(0) K 0, if L < K, = A 1 (n) A 2 (n) A 4 + A 5, if L K and S(0) > K, A 6 A 2 (n) + A 5, if L K and S(0) K.

66 Up-and-out all-or-nothing put option The option value is = λ l D 0 [ y λ D S(0)n e nx e αx dx]e (β α)y dy, if L < K, l 0 [ k S(0)n e nx e αx dx]e (β α)y dy, if L K&S(0) > K λ D { k 0 [ y S(0)n e nx e αx dx]e (β α)y dy + l k [ k S(0)n e nx e αx dx]e (β α)y dy}, A 1 (n) A 2 (n), if L < K, A 4 A 5, if L K and S(0) > K, A 1 (n) A 5 A 6, if L K and S(0) K. if L K&S(0) K

67 up-and-out option with payoff S(τ) n λ D l 0 [ y ] S(0) n e nx e αx dx e (β α)y dy = A 1 (n) A 2 (n). This is the sum of the value of the up-and-out all-or-nothing put option and the value of the up-and-out all-or-nothing call option.

68 Up-and-out call option The value is 0, if L < K, A 1 (1) A 2 (1) A 1 (0)K +A 2 (0)K + A 8 A 9, if L K and S(0) > K, A 2 (0)K + A 10 A 2 (1) A 9, if L K and S(0) K.

69 Up-and-out put option The value is A 1 (0)K A 2 (0)K A 1 (1) + A 2 (1), if L < K, A 8 A 9, if L K and S(0) > K, A 1 (0)K A 1 (1) + A 10 A 9, if L K and S(0) K.

70 Double barrier option Payoff: π(s(τ))i {a < m(τ), M(τ) < b}

71 Several stocks µ X(t) = (X 1 (t), X 2 (t),, X n (t)) n-dimensional Brownian motion. the mean vector C the covariance matrix of X(1) h g t (X) a real-valued functional of the process up to time t. an n-dimensional vector of real numbers

72 E[e δτ e h X(τ) g τ (X)] = E[e δ(h)τ g τ (X); h], (3) where δ(h) = δ ln[m X(1) (h)] = δ h µ 1 2 h Ch.

73 Proof of (3) Conditioning on τ = t, the LHS (3) is 0 e δt E[e h X(t) g t (X)]f τ (t)dt. By the factorization formula in the method of Esscher transforms, the expectation inside the integrand can be written as the product of two expectations, Hence 0 E[e h X(t) ] E[g t (X); h] = [M X(1) (h)] t E[g t (X); h]. e δt E[e h X(t) g t (X)]f τ (t)dt = 0 e δ(h)t E[g t (X); h]f τ (t)dt.

74 Application of (3) k q t (k X) n-dimensional vector of real numbers real-valued functional of the process up to time t E[e δτ e h X(τ) q τ (k X)] = E[e δ(h)τ q τ (k X); h]. The quadratic equation becomes 1 2 Var[k X(1); h]ξ 2 + E[k X(1); h]ξ [λ + δ(h)] = 1 2 k Ckξ 2 + k (µ + Ch)ξ (λ + δ h µ 1 2 h Ch)

75 Special case: n = 2 S 1 (t) = S 1 (0)e X 1(t) and S 2 (t) = S 2 (0)e X 2(t) µ = (µ 1, µ 2 ) ( ) σ 2 C = 1 ρσ 1 σ 2 ρσ 1 σ 2 σ2 2

76 Margrabe option Payoff: [S 1 (τ) S 2 (τ)] +. (4) If we rewrite (4) as e X 2(τ) [S 1 (0)e X 1(τ) X 2 (τ) S 2 (0)] +,

77 [ ] E[e δτ [S 1 (τ) S 2 (τ)] + S 1 (0) < S 2 (0)] = κ S 2 (0) S1 (0) β β (β. 1) S 2 (0) Here, κ = λ D (β α ), D = 1 2 Var[X 1(1) X 2 (1)] = 1 2 (σ2 1 + σ 2 2 2ρσ 1 σ 2 ), and α < 0 and β > 0 are the zeros of D ξ 2 + (µ 1 µ 2 + ρσ 1 σ 2 σ 2 2)ξ (λ + δ µ σ2 2) = ln[m X(1) ((ξ, 1 ξ) )] (λ + δ).

78 If we write (4) as Here, e X 1(τ) [S 1 (0) S 2 (0)e X 2(τ) X 1 (τ) ] +, E[e δτ [S 1 (τ) S 2 (τ)] + S 1 (0) < S 2 (0)] κ [ ] S 1 (0) S1 (0) α = α (1 α. ) S 2 (0) κ = λ D (β α ), D = 1 2 Var[X 2(1) X 1 (1)] = D, and α < 0 and β > 0 are the zeros of ln[m X(1) ((1 ξ, ξ) )] (λ + δ).

79 Hence α = 1 β and β = 1 α. Thus, κ = κ

80 What is different for jump diffusions? Ψ(z) = Dz 2 z + µz + ν v z ω z w + z E[e zx (τ) λ ] = λ Ψ(z) partial fraction expansion makes inversion possible α 2 < w < α 1 < 0 < β 1 < v < β 2 the solution of Ψ(z) λ = 0 { a1 e f X (τ) (x) = α1x + a 2 e α2x, if x 0, b 1 e β1x + b 2 e β2x, if x > 0.

81 f M(τ) (x) = β 2(v β 1 ) v(β 2 β 1 ) β 1e β 1x + β 1(β 2 v) v(β 2 β 1 ) β 2e β 2x for x 0 f m(τ) (x) = α 2(w + α 1 ) w(α 1 α 2 ) ( α 1)e α 1x + α 1(w + α 2 ) w(α 1 α 2 ) ( α 2)e α 2x for x 0

Pricing Formula for 3-Period Discrete Barrier Options

Pricing Formula for 3-Period Discrete Barrier Options Pricing Formula for 3-Period Discrete Barrier Options Chun-Yuan Chiu Down-and-Out Call Options We first give the pricing formula as an integral and then simplify the integral to obtain a formula similar

More information

IN THE DEFERRED ANNUITIES MARKET, THE PORTION OF FIXED- RATE ANNUITIES in annual

IN THE DEFERRED ANNUITIES MARKET, THE PORTION OF FIXED- RATE ANNUITIES in annual W ORKSHOP B Y H A N G S U C K L E E Pricing Equity-Indexed Annuities Embedded with Exotic Options IN THE DEFERRED ANNUITIES MARKET, THE PORTION OF FIXED- RATE ANNUITIES in annual sales has declined from

More information

More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options

More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path

More information

TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13

TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

Analytic Approximations for Multi-Asset Option Pricing

Analytic Approximations for Multi-Asset Option Pricing Analytic Approximations for Multi-Asset Option Pricing Carol Alexander ICMA Centre, University of Reading Aanand Venkatramanan ICMA Centre, University of Reading First Version: March 2008 This Version:

More information

Option Pricing. Chapter 9 - Barrier Options - Stefan Ankirchner. University of Bonn. last update: 9th December 2013

Option Pricing. Chapter 9 - Barrier Options - Stefan Ankirchner. University of Bonn. last update: 9th December 2013 Option Pricing Chapter 9 - Barrier Options - Stefan Ankirchner University of Bonn last update: 9th December 2013 Stefan Ankirchner Option Pricing 1 Standard barrier option Agenda What is a barrier option?

More information

S 1 S 2. Options and Other Derivatives

S 1 S 2. Options and Other Derivatives Options and Other Derivatives The One-Period Model The previous chapter introduced the following two methods: Replicate the option payoffs with known securities, and calculate the price of the replicating

More information

arxiv:1108.4393v2 [q-fin.pr] 25 Aug 2011

arxiv:1108.4393v2 [q-fin.pr] 25 Aug 2011 arxiv:1108.4393v2 [q-fin.pr] 25 Aug 2011 Pricing Variable Annuity Contracts with High-Water Mark Feature V.M. Belyaev Allianz Investment Management, Allianz Life Minneapolis, MN, USA August 26, 2011 Abstract

More information

Numerical methods for American options

Numerical methods for American options Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

More information

Optimisation Problems in Non-Life Insurance

Optimisation Problems in Non-Life Insurance Frankfurt, 6. Juli 2007 1 The de Finetti Problem The Optimal Strategy De Finetti s Example 2 Minimal Ruin Probabilities The Hamilton-Jacobi-Bellman Equation Two Examples 3 Optimal Dividends Dividends in

More information

Pricing American Options without Expiry Date

Pricing American Options without Expiry Date Pricing American Options without Expiry Date Carisa K. W. Yu Department of Applied Mathematics The Hong Kong Polytechnic University Hung Hom, Hong Kong E-mail: carisa.yu@polyu.edu.hk Abstract This paper

More information

Sensitivity Analysis of Options. c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264

Sensitivity Analysis of Options. c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264 Sensitivity Analysis of Options c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264 Cleopatra s nose, had it been shorter, the whole face of the world would have been changed. Blaise Pascal

More information

The Black-Scholes Formula

The Black-Scholes Formula FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

More information

A SNOWBALL CURRENCY OPTION

A SNOWBALL CURRENCY OPTION J. KSIAM Vol.15, No.1, 31 41, 011 A SNOWBALL CURRENCY OPTION GYOOCHEOL SHIM 1 1 GRADUATE DEPARTMENT OF FINANCIAL ENGINEERING, AJOU UNIVERSITY, SOUTH KOREA E-mail address: gshim@ajou.ac.kr ABSTRACT. I introduce

More information

An Introduction to Exotic Options

An Introduction to Exotic Options An Introduction to Exotic Options Jeff Casey Jeff Casey is entering his final semester of undergraduate studies at Ball State University. He is majoring in Financial Mathematics and has been a math tutor

More information

3. The Economics of Insurance

3. The Economics of Insurance 3. The Economics of Insurance Insurance is designed to protect against serious financial reversals that result from random evens intruding on the plan of individuals. Limitations on Insurance Protection

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information

THE BLACK-SCHOLES MODEL AND EXTENSIONS

THE BLACK-SCHOLES MODEL AND EXTENSIONS THE BLAC-SCHOLES MODEL AND EXTENSIONS EVAN TURNER Abstract. This paper will derive the Black-Scholes pricing model of a European option by calculating the expected value of the option. We will assume that

More information

where N is the standard normal distribution function,

where N is the standard normal distribution function, The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at

More information

Valuation of guaranteed annuity options in affine term structure models. presented by. Yue Kuen KWOK. Department of Mathematics

Valuation of guaranteed annuity options in affine term structure models. presented by. Yue Kuen KWOK. Department of Mathematics Valuation of guaranteed annuity options in affine term structure models presented by Yue Kuen KWOK Department of Mathematics Hong Kong University of Science & Technology This is a joint work with Chi Chiu

More information

Barrier Options. Peter Carr

Barrier Options. Peter Carr Barrier Options Peter Carr Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU March 14th, 2008 What are Barrier Options?

More information

The Black-Scholes-Merton Approach to Pricing Options

The Black-Scholes-Merton Approach to Pricing Options he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining

More information

Pricing Formulae for Foreign Exchange Options 1

Pricing Formulae for Foreign Exchange Options 1 Pricing Formulae for Foreign Exchange Options Andreas Weber and Uwe Wystup MathFinance AG Waldems, Germany www.mathfinance.com 22 December 2009 We would like to thank Peter Pong who pointed out an error

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 4. Life Insurance. c 29. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam MLC. Fall 29 Edition. available at http://www.actexmadriver.com/ c 29. Miguel A. Arcones.

More information

Mathematical Finance

Mathematical Finance Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

More information

Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas

Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas James R. Garven Latest Revision: 27 April, 2015 Abstract This paper provides an alternative derivation of the

More information

ENGINEERING AND HEDGING OF CORRIDOR PRODUCTS - with focus on FX linked instruments -

ENGINEERING AND HEDGING OF CORRIDOR PRODUCTS - with focus on FX linked instruments - AARHUS SCHOOL OF BUSINESS AARHUS UNIVERSITY MASTER THESIS ENGINEERING AND HEDGING OF CORRIDOR PRODUCTS - with focus on FX linked instruments - AUTHORS: DANIELA ZABRE GEORGE RARES RADU SIMIAN SUPERVISOR:

More information

CRUDE OIL HEDGING STRATEGIES An Application of Currency Translated Options

CRUDE OIL HEDGING STRATEGIES An Application of Currency Translated Options CRUDE OIL HEDGING STRATEGIES An Application of Currency Translated Options Paul Obour Supervisor: Dr. Antony Ware University of Calgary PRMIA Luncheon - Bankers Hall, Calgary May 8, 2012 Outline 1 Introductory

More information

The Black-Scholes pricing formulas

The Black-Scholes pricing formulas The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

More information

A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model

A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model Fabio Mercurio Financial Models, Banca IMI Abstract In this document we derive some fundamental relationships

More information

Numerical Methods for Pricing Exotic Options

Numerical Methods for Pricing Exotic Options Imperial College London Department of Computing Numerical Methods for Pricing Exotic Options by Hardik Dave - 00517958 Supervised by Dr. Daniel Kuhn Second Marker: Professor Berç Rustem Submitted in partial

More information

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS L. M. Dieng ( Department of Physics, CUNY/BCC, New York, New York) Abstract: In this work, we expand the idea of Samuelson[3] and Shepp[,5,6] for

More information

Some Practical Issues in FX and Equity Derivatives

Some Practical Issues in FX and Equity Derivatives Some Practical Issues in FX and Equity Derivatives Phenomenology of the Volatility Surface The volatility matrix is the map of the implied volatilities quoted by the market for options of different strikes

More information

Pricing European Barrier Options with Partial Differential Equations

Pricing European Barrier Options with Partial Differential Equations Pricing European Barrier Options with Partial Differential Equations Akinyemi David Supervised by: Dr. Alili Larbi Erasmus Mundus Masters in Complexity Science, Complex Systems Science, University of Warwick

More information

Pricing options with VG model using FFT

Pricing options with VG model using FFT Pricing options with VG model using FFT Andrey Itkin itkin@chem.ucla.edu Moscow State Aviation University Department of applied mathematics and physics A.Itkin Pricing options with VG model using FFT.

More information

Research Paper 355 January 2015. Valuation of Employee Stock Options using the Exercise Multiple Approach and Life Tables

Research Paper 355 January 2015. Valuation of Employee Stock Options using the Exercise Multiple Approach and Life Tables QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F INANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE Research Paper 355 January 2015 Valuation of Employee Stock Options using the Exercise Multiple

More information

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference 0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

More information

Notes on Black-Scholes Option Pricing Formula

Notes on Black-Scholes Option Pricing Formula . Notes on Black-Scholes Option Pricing Formula by De-Xing Guan March 2006 These notes are a brief introduction to the Black-Scholes formula, which prices the European call options. The essential reading

More information

Lecture 6 Black-Scholes PDE

Lecture 6 Black-Scholes PDE Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent

More information

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model

More information

Chapter 14 Review Note Sample Excerpt

Chapter 14 Review Note Sample Excerpt Chapter 14 Review Note Sample Excerpt Exotic Options: I Derivatives Markets (2 nd Edition) Online Excerpt of Section 14.5 with hree Questions and Solutions Introduction his document provides a sample excerpt

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

More information

Accurate Approximation Formulae for Evaluating Barrier Stock Options with Discrete Dividends and the Application in Credit Risk Valuation

Accurate Approximation Formulae for Evaluating Barrier Stock Options with Discrete Dividends and the Application in Credit Risk Valuation Accurate Approximation Formulae for Evaluating Barrier Stock Options with Discrete Dividends and the Application in Credit Risk Valuation Tian-Shyr Dai Chun-Yuan Chiu Abstract To price the stock options

More information

Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013

Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013 Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed

More information

Rolf Poulsen, Centre for Finance, University of Gothenburg, Box 640, SE-40530 Gothenburg, Sweden. E-mail: rolf.poulsen@economics.gu.se.

Rolf Poulsen, Centre for Finance, University of Gothenburg, Box 640, SE-40530 Gothenburg, Sweden. E-mail: rolf.poulsen@economics.gu.se. The Margrabe Formula Rolf Poulsen, Centre for Finance, University of Gothenburg, Box 640, SE-40530 Gothenburg, Sweden. E-mail: rolf.poulsen@economics.gu.se Abstract The Margrabe formula for valuation of

More information

Barrier Options. 0.1 Introduction

Barrier Options. 0.1 Introduction Barrier Options This note is several years old and very preliminary. It has no references to the literature. Do not trust its accuracy! Note that there is a lot of more recent literature, especially on

More information

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in

More information

A spot price model feasible for electricity forward pricing Part II

A spot price model feasible for electricity forward pricing Part II A spot price model feasible for electricity forward pricing Part II Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Wolfgang Pauli Institute, Wien January 17-18

More information

Lecture. S t = S t δ[s t ].

Lecture. S t = S t δ[s t ]. Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important

More information

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

More information

Knock Out Power Options in Foreign Exchange Markets

Knock Out Power Options in Foreign Exchange Markets U.U.D.M. Project Report 04:0 Knock Out Power Options in Foreign Echange Markets omé Eduardo Sicuaio Eamensarbete i matematik, 30 hp Handledare och eaminator: Johan ysk Maj 04 Department of Mathematics

More information

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

More information

Black-Scholes and the Volatility Surface

Black-Scholes and the Volatility Surface IEOR E4707: Financial Engineering: Continuous-Time Models Fall 2009 c 2009 by Martin Haugh Black-Scholes and the Volatility Surface When we studied discrete-time models we used martingale pricing to derive

More information

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions) Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

More information

ECG590I Asset Pricing. Lecture 2: Present Value 1

ECG590I Asset Pricing. Lecture 2: Present Value 1 ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide

More information

ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs)

ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs) Problem ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 0,, 2, 8. October 2, 200 (Thurs) (i) The current exchange rate is 0.0$/. (ii) A four-year dollar-denominated European put option

More information

Options on an Asset that Yields Continuous Dividends

Options on an Asset that Yields Continuous Dividends Finance 400 A. Penati - G. Pennacchi Options on an Asset that Yields Continuous Dividends I. Risk-Neutral Price Appreciation in the Presence of Dividends Options are often written on what can be interpreted

More information

LECTURE 15: AMERICAN OPTIONS

LECTURE 15: AMERICAN OPTIONS LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These

More information

Lecture 21 Options Pricing

Lecture 21 Options Pricing Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call

More information

Vanna-Volga Method for Foreign Exchange Implied Volatility Smile. Copyright Changwei Xiong 2011. January 2011. last update: Nov 27, 2013

Vanna-Volga Method for Foreign Exchange Implied Volatility Smile. Copyright Changwei Xiong 2011. January 2011. last update: Nov 27, 2013 Vanna-Volga Method for Foreign Exchange Implied Volatility Smile Copyright Changwei Xiong 011 January 011 last update: Nov 7, 01 TABLE OF CONTENTS TABLE OF CONTENTS...1 1. Trading Strategies of Vanilla

More information

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling

More information

Advanced Topics in Derivative Pricing Models. Topic 2 - Lookback style derivatives. 2.1 Product nature of lookback options

Advanced Topics in Derivative Pricing Models. Topic 2 - Lookback style derivatives. 2.1 Product nature of lookback options Advanced Topics in Derivative Pricing Models Topic 2 - Lookback style derivatives 2.1 Product nature of lookback options 2.2 Pricing formulas of European lookback options Floating strike lookback options

More information

Option pricing. Vinod Kothari

Option pricing. Vinod Kothari Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate

More information

Exam P - Total 23/23 - 1 -

Exam P - Total 23/23 - 1 - Exam P Learning Objectives Schools will meet 80% of the learning objectives on this examination if they can show they meet 18.4 of 23 learning objectives outlined in this table. Schools may NOT count a

More information

Pricing Discrete Barrier Options

Pricing Discrete Barrier Options Pricing Discrete Barrier Options Barrier options whose barrier is monitored only at discrete times are called discrete barrier options. They are more common than the continuously monitored versions. The

More information

A Linear Time Algorithm for Pricing European Sequential Barrier Options

A Linear Time Algorithm for Pricing European Sequential Barrier Options A Linear Time Algorithm for Pricing European Sequential Barrier Options Peng Gao Ron van der Meyden School of Computer Science and Engineering, UNSW and Formal Methods Program, National ICT Australia {gaop,

More information

Characterizing Option Prices by Linear Programs

Characterizing Option Prices by Linear Programs Contemporary Mathematics Characterizing Option Prices by Linear Programs Richard H. Stockbridge Abstract. The price of various options on a risky asset are characterized via a linear program involving

More information

Package fexoticoptions

Package fexoticoptions Version 2152.78 Revision 5392 Date 2012-11-07 Title Exotic Option Valuation Package fexoticoptions February 19, 2015 Author Diethelm Wuertz and many others, see the SOURCE file Depends R (>= 2.4.0), methods,

More information

Optimal Investment Strategy for Non-Life Insurance Company: Quadratic Loss

Optimal Investment Strategy for Non-Life Insurance Company: Quadratic Loss Optimal Investment Strategy for Non-Life Insurance Company: Quadratic Loss Łukasz Delong Abstract The aim of this paper is to construct an optimal investment strategy for a non-life insurance business.

More information

Chapter 1: Financial Markets and Financial Derivatives

Chapter 1: Financial Markets and Financial Derivatives Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange

More information

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model 1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

More information

Numerical PDE methods for exotic options

Numerical PDE methods for exotic options Lecture 8 Numerical PDE methods for exotic options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Barrier options For barrier option part of the option contract is triggered if the asset

More information

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist

More information

Math 526: Brownian Motion Notes

Math 526: Brownian Motion Notes Math 526: Brownian Motion Notes Definition. Mike Ludkovski, 27, all rights reserved. A stochastic process (X t ) is called Brownian motion if:. The map t X t (ω) is continuous for every ω. 2. (X t X t

More information

American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options

American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus

More information

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12. Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral

More information

Chapter 13 The Black-Scholes-Merton Model

Chapter 13 The Black-Scholes-Merton Model Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)

More information

Black-Scholes Option Pricing Model

Black-Scholes Option Pricing Model Black-Scholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,

More information

Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies

Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative

More information

Option Pricing. Chapter 11 Options on Futures. Stefan Ankirchner. University of Bonn. last update: 13/01/2014 at 14:25

Option Pricing. Chapter 11 Options on Futures. Stefan Ankirchner. University of Bonn. last update: 13/01/2014 at 14:25 Option Pricing Chapter 11 Options on Futures Stefan Ankirchner University of Bonn last update: 13/01/2014 at 14:25 Stefan Ankirchner Option Pricing 1 Agenda Forward contracts Definition Determining forward

More information

Buy Low and Sell High

Buy Low and Sell High Buy Low and Sell High Min Dai Hanqing Jin Yifei Zhong Xun Yu Zhou This version: Sep 009 Abstract In trading stocks investors naturally aspire to buy low and sell high (BLSH). This paper formalizes the

More information

Lecture 13: Martingales

Lecture 13: Martingales Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

More information

Review of Basic Options Concepts and Terminology

Review of Basic Options Concepts and Terminology Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some

More information

Master s Thesis. Pricing Constant Maturity Swap Derivatives

Master s Thesis. Pricing Constant Maturity Swap Derivatives Master s Thesis Pricing Constant Maturity Swap Derivatives Thesis submitted in partial fulfilment of the requirements for the Master of Science degree in Stochastics and Financial Mathematics by Noemi

More information

Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space

Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space Virginie Debelley and Nicolas Privault Département de Mathématiques Université de La Rochelle

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2014 1 2 3 4 5 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Experiment, outcome, sample space, and

More information

A new Feynman-Kac-formula for option pricing in Lévy models

A new Feynman-Kac-formula for option pricing in Lévy models A new Feynman-Kac-formula for option pricing in Lévy models Kathrin Glau Department of Mathematical Stochastics, Universtity of Freiburg (Joint work with E. Eberlein) 6th World Congress of the Bachelier

More information

INTEREST RATES AND FX MODELS

INTEREST RATES AND FX MODELS INTEREST RATES AND FX MODELS 4. Convexity and CMS Andrew Lesniewski Courant Institute of Mathematical Sciences New York University New York February 20, 2013 2 Interest Rates & FX Models Contents 1 Introduction

More information

Convenient Conventions

Convenient Conventions C: call value. P : put value. X: strike price. S: stock price. D: dividend. Convenient Conventions c 2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 168 Payoff, Mathematically Speaking The payoff

More information

The Effect of Management Discretion on Hedging and Fair Valuation of Participating Policies with Maturity Guarantees

The Effect of Management Discretion on Hedging and Fair Valuation of Participating Policies with Maturity Guarantees The Effect of Management Discretion on Hedging and Fair Valuation of Participating Policies with Maturity Guarantees Torsten Kleinow Heriot-Watt University, Edinburgh (joint work with Mark Willder) Market-consistent

More information

Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.

Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options. Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards

More information

Path-dependent options

Path-dependent options Chapter 5 Path-dependent options The contracts we have seen so far are the most basic and important derivative products. In this chapter, we shall discuss some complex contracts, including barrier options,

More information

Exotic Options Trading

Exotic Options Trading Exotic Options Trading Frans de Weert John Wiley & Sons, Ltd Preface Acknowledgements 1 Introduction 2 Conventional Options, Forwards and Greeks 2.1 Call and Put Options and Forwards 2.2 Pricing Calls

More information

Finite Differences Schemes for Pricing of European and American Options

Finite Differences Schemes for Pricing of European and American Options Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes

More information

The Binomial Model for Stock Options

The Binomial Model for Stock Options 2 The Binomial Model for Stock Options 2.1 The Basic Model We now discuss a simple one-step binomial model in which we can determine the rational price today for a call option. In this model we have two

More information

Fair Valuation and Hedging of Participating Life-Insurance Policies under Management Discretion

Fair Valuation and Hedging of Participating Life-Insurance Policies under Management Discretion Fair Valuation and Hedging of Participating Life-Insurance Policies under Management Discretion Torsten Kleinow Department of Actuarial Mathematics and Statistics and the Maxwell Institute for Mathematical

More information

Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Sensitivity analysis of utility based prices and risk-tolerance wealth processes Sensitivity analysis of utility based prices and risk-tolerance wealth processes Dmitry Kramkov, Carnegie Mellon University Based on a paper with Mihai Sirbu from Columbia University Math Finance Seminar,

More information

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have

More information

Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington

Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington Option Pricing with S+FinMetrics PETER FULEKY Department of Economics University of Washington August 27, 2007 Contents 1 Introduction 3 1.1 Terminology.............................. 3 1.2 Option Positions...........................

More information