EETS 8316 Wireless Networks Fall 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "EETS 8316 Wireless Networks Fall 2013"

Transcription

1 EETS 8316 Wireless Networks Fall 2013 Lecture: Cellular Overview: 3G and 4G Dr. Shantanu Kangude

2 Third Generation Systems High-speed wireless communications to support multimedia, data, and video in addition to voice 3G capabilities: voice quality comparable to PSTN 144 kbps available to users over large areas 384 kbps available to pedestrians over small areas support for Mbps for office use symmetrical and asymmetrical data rates packet-switched and circuit-switched services adaptive interface to Internet more efficient use of available spectrum support for variety of mobile equipment allow introduction of new services and technologies 2

3 Driving Forces Trend toward universal personal telecommunications Universal communications access GSM cellular telephony with subscriber identity module, is step towards goals Personal communications services (PCSs) and personal communication networks (PCNs) also form objectives for third-generation wireless Technology is digital using time division multiple access or code-division multiple access PCS handsets low power, small and light 3

4 IMT-2000 Terrestrial Radio Alternative Interfaces 4

5 CDMA Design Considerations Bandwidth and Chip Rate Dominant technology for 3G systems is CDMA 3 CDMA schemes, share some design issues Bandwidth (limit channel to 5 MHz) 5 MHz reasonable upper limit on what can be allocated for 3G 5 MHz is enough for data rates of 144 and 384 khz Chip rate given bandwidth, chip rate depends on desired data rate, need for error control, and bandwidth limitations chip rate of 3 Mbps or more reasonable 5

6 CDMA Design Considerations Multirate Provision of multiple fixed-data-rate channels to user Different data rates provided on different logical channels Logical channel traffic can be switched independently through wireless fixed networks to different destinations Flexibly support multiple simultaneous applications Efficiently use available capacity by only providing the capacity required for each service Two methods Use TDMA within single CDMA channel or use multiple CDMA codes 6

7 CDMA Multirate Time and Code Multiplexing 7

8 UMTS Architecture & Domains UTRAN UMTS Terrestrial Radio Access Network User Equipment (UE) = Mobile Node B = Base Station Radio Network Controller = RNC like BSC Core Network (Reuse GSM CN) Circuit Switched Domain MSC, GMSC Packet Switched Domain SGSN, GGSN

9 GSM and UMTS High level Original Src: gsm.htm

10 UMTS Release 4 UTRAN is same as release 99 Core Network Modified only in the CS domain MSC = 2 entities Media Gateway(MGW) for user plane MSC server for the control plane

11 Release 4 Architecture + IMS Src:

12 UMTS Release 5 Core: New platform IMS( IP Multimedia Subsystem) RAN: HSDPA(High Speed Downlink Packet Access) technology allows 14.4 Mbps peak data rate in DL data rate achievable by software updates in nodeb to support new modulations and coding schemes assign up to 15 codes for one user.

13 UMTS Release 6 RAN HSUPA allows upto 5.5 Mbps in UL Core IMS v2

14 Long Term Evolution (LTE) or 4G wireless cellular networks from 3GPP Evolved UMTS Terrestrial Radio Access Network Release 8+

15 Terms and Definitions UE: User Equipment (Mobile) enb: Evolved Node B (Base station) S-GW: Serving Gateway (Cellular network edge router or MTSO) E-UTRA/N: Evolved UMTS Terrestrial Radio Access/Network (Official name of LTE) EPS: Evolved Packet System (MTSO network) MME: Mobility Management Entity (also at MTSO) 15

16 X2 X2 Network Architecture S1: Logical Interface between edge router and enb May involve multiple hops X2: Control interface between 2 enbs Only exists between enbs that may need to communicate MME (control plane) Tracks the location of mobile in the network S-GW (user plane) Routes packets to appropriate enb Radio Network Core Network 16

17 Radio Network Functions Forwarding of core network control information Paging (from network to UE) Tracking area update (from UE to network) Other IDLE mode mobility/tracking procedures Data forwarding in both directions while connected Satisfy QoS for flows through scheduling Radio resource management Manage Radio connection (participation in the radio network) Manage mobility during connection Measurements, configurations, and other control 17

18 Core Network Functions Control Protocol between UE and MME (MTSO) Track the location of UE in idle mode Track the state (active or idle) of the UE Page UE to request it to be active Data Forwarding in both directions QoS control between S-GW (MTSO) and enb Active mode UE mobility (Control information between MME (MTSO) and enb) Track UE in active mode / Handoff 18

19 Core Network: Tracking Areas and Paging Tracking Area A subset of enbs represented as a single unit Multiple overlapping tracking areas possible Multiple hierarchical tracking areas possible Benefits of tracking areas Lower resolution of tracking of Idle UEs by MME less frequent tracking updates in MME as UE moves in IDLE Paging Request by core network to join the radio network Performed over a tracking area when traffic pending for a UE All cells in a tracking area PAGE a UE Importance of tracking areas and paging Critical for the UE and the core to maintain correct tracking area Paging reliability is important UE joins a radio network after receiving a valid page Data communications only possible after joining the radio network 19

20 RRC Connection and Radio Network Radio Resource Control (RRC): Manages radio network participation of UEs Two states: RRC_IDLE (UE is not part of the radio network) No UE state in the enb UE may perform tracking area updates for core network (mobility) UE may receive PAGE from the core network RRC_CONNECTED (UE becomes part of radio network) UE state exists in the enb Data flows with their characteristics Any measurement or capability reports A UE address called C-RNTI (Cell-Radio Network Temporary ID) UE may be scheduled in the UL and DL enb is responsible for mobility (Handoff) 20

21 Core network states and RRC states Inactivity - Release C-RNTI - Allocate DRX for PCH Perform Registration - Allocate C-RNTI, TA-ID, IP addr - Perform Authentication - Establish security relation Power-Up LTE_IDLE RRC: RRC_IDLE Context in network: - Includes information to enable fast transition to LTE_ACTIVE (e.g. security key information) Allocated UE-Id(s): - IMSI - ID unique in Tracking Area (TA-ID) - 1 or more IP addresses UE position: - Known by network at Tracking Area (TA) level Mobility: - Cell reselection DL activity: - UE is configured with DRX period LTE_ACTIVE RRC: RRC_CONNECTED RRC Context in network: - Includes all information necessary for communication Allocated UE-Id(s): - IMSI - ID unique in Tracking Area (TA-ID) - ID unique in cell (C-RNTI) - 1 or more IP addresses UE position: - Known by network at cell level Mobility: - Handover DL/UL activity: - UE may be configured with DRX/DTX periods LTE_DETACHED RRC: NULL RRC Context in network: - Does not exist Allocated UE-Id(s): - IMSI UE position: - Not known by network Mobility - PLMN/Cell selection DL/UL activity: - None New traffic - Allocate C-RNTI Change of PLMN/deregistration - Deallocate C-RNTI, TA-ID, IP address 21 Timeout of periodic TA-update - Deallocate TA-ID, IP address

22 FDD Frames and Sub-Frames Frame System level quantum of repetition 10 ms Sub-frame Smallest quantum for scheduling in time-domain Comprises of 2 slots (significance for PHY only) 1 ms 10 sub-frames per frame 22

23 FDD DL Frame Composition OFDM frequency carriers One Resource Block (RB) = 12 subcarriers 1 sub-frame = 14 OFDM symbols OFDM symbols are MIN quantum of time in OFDM systems for any data carriage 10 Sub-frames per frame Time Resource Block = Minimum Quantum for Scheduling in DL or UL 23 L1-L2 Control Channel: Maximum 3 out of 14 symbols

24 Overhead in DL frames Broadcast System information interspersed in the DL (e.g. Network name etc.) L1-L2 Control channel: Allocation of transmission grants For DL transmissions (like DL-MAP in WiMax) For UL transmissions (like UL-MAP in WiMax) Unicast control PDUs to UEs Random Access (as Ranging in WiMax) Responses 24

25 FDD UL Frame Composition Control channel on the edges 1 Resource Block (RB) = 12 subcarriers 10 Sub-frames per frame Data in UL- SCH Random Access Channel (RACH) Slot for Ranging 25

26 UL Overhead Control Channel on the edges for HARQ ACK-NACKs, Scheduling Requests etc. RACH channel or Ranging Slots as in WiMax In band unicast control packets in the UL 26

27 Random Access/Ranging Used by a UE in UL when No dedicated resources for TX available No UL synchronization Utilizes Preamble transmission in enb configured RACH slots enb responds with the Timing Advance value A RACH access is the only way the possible existence of UE s transmission is not preknown to the enb; All other transmissions are pre-scheduled by the enb 27

28 Handover (Handoff) Mobility of the UE => The UE-eNB association changes Idle mode mobility (cell-reselection) Camping (ready to connect) on best cells desired Tracking area updates to core network if any change No urgency as no calls/flows on going Connected mode mobility (Handover) Current enb manages the transition based on measurement reports from UE Preparations as in RRC connection establishment required at target enb before UE can transition Low break latency desired as calls/flows ongoing 28

29 Handover Procedure 29

30 LTE: Operators and Vendors Interest Operators backing LTE All former GSM and UMTS operators AT&T, Docomo, Vodafone, T-Mobile, Orange, Telecom Italia etc. Some former CDMA-2000 supporters Verizon and Sprint (?) Convergence to LTE Vodafone CEO seeks Wimax as a standard under LTE umbrella Some analysts forecast 80% LTE and 20% Wimax for next generation market share 30

31 Summary 3G Cellular Systems Overview LTE: 4G Wireless Systems Overview 31

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany 3G/4G Mobile Communications Systems Dr. Stefan Brück Qualcomm Corporate R&D Center Germany Chapter III: System and Radio Access Network Architecture 2 Slide 2 System and Radio Access Network Architecture

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

Long-Term Evolution. Mobile Telecommunications Networks WMNet Lab

Long-Term Evolution. Mobile Telecommunications Networks WMNet Lab Long-Term Evolution Mobile Telecommunications Networks WMNet Lab Background Long-Term Evolution Define a new packet-only wideband radio with flat architecture as part of 3GPP radio technology family 2004:

More information

Course Overview. Business considerations QoS. UMTS - what comes next? Security and charging IMS Example signaling flows

Course Overview. Business considerations QoS. UMTS - what comes next? Security and charging IMS Example signaling flows Course Overview Motivation Standardization issues UMTS architecture basics UE, UTRA, UTRAN, PS Domain Basic functionalities Mobility Business considerations QoS UMTS - what comes next? Security and charging

More information

HSPA+/LTE from Standard to Market Simon Hsieh / Frank Wu

HSPA+/LTE from Standard to Market Simon Hsieh / Frank Wu HSPA+/LTE from Standard to Market Simon Hsieh / Frank Wu Agenda Evolution of 3GPP Technologies HSPA Evolution (HSPA+) Success of 3GPP Technologies LTE (Long Term Evolution) LTE deployment status LTE-Advanced

More information

2G/3G Mobile Communication Systems

2G/3G Mobile Communication Systems 2G/3G Mobile Communication Systems Winter 2012/13 Integrated Communication Systems Group Ilmenau University of Technology Outline 2G Review: GSM Services Architecture Protocols Call setup Mobility management

More information

Mobile Wireless Overview

Mobile Wireless Overview Mobile Wireless Overview A fast-paced technological transition is occurring today in the world of internetworking. This transition is marked by the convergence of the telecommunications infrastructure

More information

LTE Performance and Analysis using Atoll Simulation

LTE Performance and Analysis using Atoll Simulation IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 6 Ver. III (Nov Dec. 2014), PP 68-72 LTE Performance and Analysis using Atoll Simulation

More information

Session 5 T ch c nica c l a Aspect c s t of o f L T L E

Session 5 T ch c nica c l a Aspect c s t of o f L T L E Session 5 Technical Aspects of LTE Part III: Uplink and Downlink Channels ITU ASP COE Training on Technology, Standardization and Deployment of Long Term Evolution (IMT) Sami TABBANE 9-11 December 2013

More information

Intro to 3G Cellular Systems and UMTS overview. Second Generation Cellular Systems

Intro to 3G Cellular Systems and UMTS overview. Second Generation Cellular Systems Intro to 3G Cellular Systems and UMTS overview David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh 2720 Slides 11 Second Generation Cellular Systems

More information

Mobile Network Evolution Part 1. GSM and UMTS

Mobile Network Evolution Part 1. GSM and UMTS Mobile Network Evolution Part 1 GSM and UMTS GSM Cell layout Architecture Call setup Mobility management Security GPRS Architecture Protocols QoS EDGE UMTS Architecture Integrated Communication Systems

More information

The future of mobile networking. David Kessens

The future of mobile networking. David Kessens <david.kessens@nsn.com> The future of mobile networking David Kessens Introduction Current technologies Some real world measurements LTE New wireless technologies Conclusion 2 The future of mobile networking

More information

1G to 4G. Overview. Presentation By Rajeev Bansal Director(Mobile-1) Telecommunication Engineering Centre

1G to 4G. Overview. Presentation By Rajeev Bansal Director(Mobile-1) Telecommunication Engineering Centre 1G to 4G Overview Presentation By Rajeev Bansal Director(Mobile-1) Telecommunication Engineering Centre Mobile Networks differentiated from each other by the word Generation 1G, 2G, 2.5G, 2.75G, 3G milestones

More information

Mobile Access Evolution to LTE/4G. Luís Muchacho Customer Solutions Radio

Mobile Access Evolution to LTE/4G. Luís Muchacho Customer Solutions Radio Mobile Access Evolution to LTE/4G Luís Muchacho Customer Solutions Radio Impressive broadband growth Mobile broadband overtakes fixed Subscriptions (Millions) 2100 1800 1500 1200 900 600 300 0 Broadband

More information

LTE Overview October 6, 2011

LTE Overview October 6, 2011 LTE Overview October 6, 2011 Robert Barringer Enterprise Architect AT&T Proprietary (Internal Use Only) Not for use or disclosure outside the AT&T companies except under written agreement LTE Long Term

More information

Next-Generation Mobile Network

Next-Generation Mobile Network Next-Generation Mobile Network Tsuguo Kato The number of people using mobile phones in the world has exceeded 4.5 billion and this figure is continuing to grow. For the past several years, mobile data

More information

Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur

Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur ABSTRACT W-CDMA (Wideband Code-Division Multiple Access), an ITU standard derived

More information

Evolution of GSM in to 2.5G and 3G

Evolution of GSM in to 2.5G and 3G CMPE 477 Wireless and Mobile Networks Evolution of GSM in to 2.5G and 3G New Data Services for GSM CMPE 477 HSCSD GPRS 3G UMTS IMT2000 UMTS Architecture UTRAN Architecture Data services in GSM I Data transmission

More information

Episode 5: Cellular Networks (GSM and UMTS)

Episode 5: Cellular Networks (GSM and UMTS) Episode 5: Cellular Networks (GSM and UMTS) Hannes Frey and Peter Sturm University of Trier Motivation Mobile telephone networks are nearly ubiquitous Still basic client/server architecture Only last mile

More information

ATT Best Practices: LTE Performance & Optimization. LTE Call Flows. Rethink Possible.

ATT Best Practices: LTE Performance & Optimization. LTE Call Flows. Rethink Possible. ATT Best Practices: LTE Performance & Optimization LTE Call Flows Rethink Possible Fraz.Tajammul@ericsson.com Abstract: Main purpose of this document is to discuss LTE basic call flows. It also introduces

More information

NTT DOCOMO Technical Journal. Core Network Infrastructure and Congestion Control Technology for M2M Communications

NTT DOCOMO Technical Journal. Core Network Infrastructure and Congestion Control Technology for M2M Communications M2M 3GPP Standardization Further Development of LTE/LTE-Advanced LTE Release 10/11 Standardization Trends Core Network Infrastructure and Congestion Control Technology for M2M Communications The number

More information

3GPP Wireless Standard

3GPP Wireless Standard 3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation

More information

Throughput for TDD and FDD 4 G LTE Systems

Throughput for TDD and FDD 4 G LTE Systems Throughput for TDD and FDD 4 G LTE Systems Sonia Rathi, Nisha Malik, Nidhi Chahal, Sukhvinder Malik Abstract Long Term Evolution (LTE) has been designed to support only packet-switched services. It aims

More information

The GSM and GPRS network T-110.300/301

The GSM and GPRS network T-110.300/301 The GSM and GPRS network T-110.300/301 History The successful analog 1:st generation mobile telephone systems proved that there is a market for mobile telephones ARP (AutoRadioPuhelin) in Finland NMT (Nordic

More information

End to End Delay Performance Evaluation for VoIP in the LTE Network

End to End Delay Performance Evaluation for VoIP in the LTE Network ENSC 427 COMMUNICATION NETWORKS SPRING 2013 Final Project Presentation End to End Delay Performance Evaluation for VoIP in the LTE Network Dai, Hongxin Ishita, Farah Lo, Hao Hua danield @ sfu.ca fishita

More information

Wireless Access of GSM

Wireless Access of GSM Wireless Access of GSM Project Report FALL, 1999 Wireless Access of GSM Abstract: Global System for Mobile communications (GSM) started to be developed by Europeans when the removal of many European trade

More information

Mobile Phone Networks

Mobile Phone Networks Mobile Phone Networks Basic Organizations Infrastructure networks Downlink: tower to phones (forward) Uplink: phones to tower (reverse) Arranged into cells Hence the terminology cell phones Cell Towers

More information

UMTS vs. LTE: a comparison overview

UMTS vs. LTE: a comparison overview UMTS vs. LTE: a comparison overview Unik4230: Mobile Communications Khai Vuong May 16, 2011 Agenda 3GPP Network Architecture UMTS LTE Radio Access Technologies WCDMA OFDMA Discussion 3GPP Standards (I)

More information

THE PERFORMANCE ANALYSIS OF LTE NETWORK

THE PERFORMANCE ANALYSIS OF LTE NETWORK ENSC 427: Communication Networks Spring 2014 THE PERFORMANCE ANALYSIS OF LTE NETWORK http://www.sfu.ca/~jla235/427project.html Team 06 Guo Enzo 301126666 shuohuag@sfu.ca Lin James 301126878 jla235@sfu.ca

More information

Mobile Communication An overview Lesson 05 Introduction to 2G and 3G Data Communication Standards

Mobile Communication An overview Lesson 05 Introduction to 2G and 3G Data Communication Standards Mobile Communication An overview Lesson 05 Introduction to 2G and 3G Data Communication Standards Oxford University Press 2007. All rights reserved. 1 First and Second Generations (1G and 2G) First generation

More information

Evolution of Wireless Communications Javan Erfanian IEEE Communications Society Lisbon - March 2011

Evolution of Wireless Communications Javan Erfanian IEEE Communications Society Lisbon - March 2011 Evolution of Wireless Communications Javan Erfanian IEEE Communications Society Lisbon - March 2011 IEEE Communications Society DSP J Erfanian March 2011 1 The Picture Rich Communication / Messaging Tele-

More information

Placeholder pic Please replace Towards Fixed Mobile Convergence (FMC) Innovation

Placeholder pic Please replace Towards Fixed Mobile Convergence (FMC) Innovation Placeholder pic Please replace Towards Fixed Mobile Convergence (FMC) Innovation Texas A&M University Internet2 Technology Evaluation Center (ITEC) Presenter: Jason McConnell Who is ITEC? TAMU ITEC established

More information

GSM GPRS. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides)

GSM GPRS. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides) GSM Example of a PLMN (Public Land Mobile Network) At present most successful cellular mobile system (over 200 million subscribers worldwide) Digital (2 nd Generation) cellular mobile system operating

More information

Latency in LTE Systems

Latency in LTE Systems Latency in LTE Systems Agenda Introduction Handover theory GSM Handover UMTS Handover Inter RAT Handover Handover and performance Introduction What is Latency? The time from a user sending a piece of data,req

More information

Mobile Communications TCS 455

Mobile Communications TCS 455 Mobile Communications TCS 455 Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 26 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Announcements Read the following from the SIIT online

More information

Architecture Overview NCHU CSE LTE - 1

Architecture Overview NCHU CSE LTE - 1 Architecture Overview NCHU CSE LTE - 1 System Architecture Evolution (SAE) Packet core networks are also evolving to the flat System Architecture Evolution (SAE) architecture. This new architecture optimizes

More information

Mobile Phone Networks

Mobile Phone Networks Mobile Phone Networks Basic Organizations Infrastructure networks Downlink: tower to phones (forward) Uplink: phones to tower (reverse) Arranged into cells Hence the terminology cell phones ENEE 426 Communication

More information

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular

More information

192620010 Mobile & Wireless Networking. Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4]

192620010 Mobile & Wireless Networking. Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4] 192620010 Mobile & Wireless Networking Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4] Geert Heijenk Outline of Lecture 5 Cellular Systems (UMTS / LTE) (1/2) q Evolution of cellular

More information

UTRA-UTRAN Long Term Evolution (LTE) and 3GPP System Architecture Evolution (SAE)

UTRA-UTRAN Long Term Evolution (LTE) and 3GPP System Architecture Evolution (SAE) UTRA-UTRAN Long Term Evolution (LTE) and 3GPP System Architecture Evolution (SAE) Long Term Evolution of the 3GPP radio technology 3GPP work on the Evolution of the 3G Mobile System started with the RAN

More information

Upcoming Enhancements to LTE: R9 R10 R11!

Upcoming Enhancements to LTE: R9 R10 R11! Upcoming Enhancements to LTE: R9 R10 R11! Jayant Kulkarni Award Solutions jayant@awardsolutions.com Award Solutions Dallas-based wireless training and consulting company Privately held company founded

More information

Mobility and cellular networks

Mobility and cellular networks Mobility and cellular s Wireless WANs Cellular radio and PCS s Wireless data s Satellite links and s Mobility, etc.- 2 Cellular s First generation: initially debuted in Japan in 1979, analog transmission

More information

LTE / EPC. addressing the broadening of the mobile data market

LTE / EPC. addressing the broadening of the mobile data market LTE / EPC addressing the broadening of the mobile data market Vivek Badrinath executive vice president networks, carriers, platforms and infrastructure France Telecom June, 29 th 2009 agenda 1 LTE is part

More information

Wireless Information Transmission System Lab. Introduction to Wireless Communications

Wireless Information Transmission System Lab. Introduction to Wireless Communications Wireless Information Transmission System Lab. Introduction to Wireless Communications Wireless Communication Systems Network Radio wave wire wire LAN Network Base station transceiver LAN 2 Wireless Technologies

More information

Single Radio Voice Call Continuity (SRVCC) Testing Using Spirent CS8 Interactive Tester

Single Radio Voice Call Continuity (SRVCC) Testing Using Spirent CS8 Interactive Tester Application Note Single Radio Voice Call Continuity (SRVCC) Testing Using Spirent CS8 Interactive Tester September 2013 Rev. A 09/13 Single Radio Voice Call Continuity (SRVCC) Testing Using Spirent CS8

More information

Part 1: Super 3G Overview and Standardization Activities

Part 1: Super 3G Overview and Standardization Activities Part 1: Super Overview and Standardization Activities Super, which is now being studied as a means of making a smooth migration from to technology, will be explained in two parts. In this issue, Part 1

More information

Prepared by: Date: Document: Angel Ivanov 23 Nov 2010 NT

Prepared by: Date: Document: Angel Ivanov 23 Nov 2010 NT TD-LTE and FDD-LTE A Basic Comparison Prepared by: Date: Document: Angel Ivanov 23 Nov 2010 NT10-00185 Ascom (2010) All rights reserved. TEMS is a trademark of Ascom. All other trademarks are the property

More information

Foreword... 2 Introduction to VoIP... 3 SIP:... 3 H.323:... 4 SER:... 4 Cellular network... 4 GSM... 5 GPRS... 6 3G... 6 Wimax... 7 Introduction...

Foreword... 2 Introduction to VoIP... 3 SIP:... 3 H.323:... 4 SER:... 4 Cellular network... 4 GSM... 5 GPRS... 6 3G... 6 Wimax... 7 Introduction... Foreword... 2 Introduction to VoIP... 3 SIP:... 3 H.323:... 4 SER:... 4 Cellular network... 4 GSM... 5 GPRS... 6 3G... 6 Wimax... 7 Introduction... 7 Fixed-WiMAX based on the IEEE 802.16-2004... 8 Mobile

More information

CS 8803 - Cellular and Mobile Network Security: CDMA/UMTS Air Interface

CS 8803 - Cellular and Mobile Network Security: CDMA/UMTS Air Interface CS 8803 - Cellular and Mobile Network Security: CDMA/UMTS Air Interface Hank Carter Professor Patrick Traynor 10/4/2012 UMTS and CDMA 3G technology - major change from GSM (TDMA) Based on techniques originally

More information

UMTS LTE. Topic 5 EPL657. Part of this lecture is adapted from: UMTS LTE Lawrence Harte Althos Publishing web: www.althos.com

UMTS LTE. Topic 5 EPL657. Part of this lecture is adapted from: UMTS LTE Lawrence Harte Althos Publishing web: www.althos.com UMTS LTE Topic 5 EPL657 Part of this lecture is adapted from: UMTS LTE Lawrence Harte Althos Publishing web: www.althos.com 1 UMTS LTE Universal mobile telecommunications system - UMTS - Long Term Evolution

More information

PDF vytvořeno zkušební verzí pdffactory www.fineprint.cz UMTS

PDF vytvořeno zkušební verzí pdffactory www.fineprint.cz UMTS UMTS Generations of mobile systems Generation 1 (1980-1995) 2 (1992-2000) 2,5 (1999-2010) 3 (2004-20?) Names NMT (Nordic Mobile Telephone); 450 MHz, 900 MHz AMPS (Advance Mobile Telephone System); USA

More information

EETS 8316 Wireless Networks Fall 2013

EETS 8316 Wireless Networks Fall 2013 EETS 8316 Wireless Networks Fall 2013 Lecture: LTE Scheduling and DRX http://lyle.smu.edu/~skangude/eets8316.html Shantanu Kangude skangude@lyle.smu.edu Scheduling & Rate Control Scheduler operation Signalling

More information

Delivery of Voice and Text Messages over LTE

Delivery of Voice and Text Messages over LTE Delivery of Voice and Text Messages over LTE 1. The Market for Voice and SMS! 2. Third Party Voice over IP! 3. The IP Multimedia Subsystem! 4. Circuit Switched Fallback! 5. VoLGA LTE was designed as a

More information

Mobile Devices Security: Evolving Threat Profile of Mobile Networks

Mobile Devices Security: Evolving Threat Profile of Mobile Networks Mobile Devices Security: Evolving Threat Profile of Mobile Networks SESSION ID: MBS-T07 Anand R. Prasad, Dr.,ir., Selim Aissi, PhD Objectives Introduction Mobile Network Security Cybersecurity Implications

More information

Mobile Computing. Basic Call Calling terminal Network Called terminal 10/25/14. Public Switched Telephone Network - PSTN. CSE 40814/60814 Fall 2014

Mobile Computing. Basic Call Calling terminal Network Called terminal 10/25/14. Public Switched Telephone Network - PSTN. CSE 40814/60814 Fall 2014 Mobile Computing CSE 40814/60814 Fall 2014 Public Switched Telephone Network - PSTN Transit switch Transit switch Long distance network Transit switch Local switch Outgoing call Incoming call Local switch

More information

Telecommunications and the Information Age ET108B LM#13. Wireless Broadband. Broadband Cellular Protocols Wi-Fi Wireless Fidelity WiMax Bluetooth

Telecommunications and the Information Age ET108B LM#13. Wireless Broadband. Broadband Cellular Protocols Wi-Fi Wireless Fidelity WiMax Bluetooth Telecommunications and the Information Age ET108B LM#13 Wireless Broadband Broadband Cellular Protocols Wi-Fi Wireless Fidelity WiMax Bluetooth Broadband Cellular Services Background First Cellular Broadband

More information

Chapter 3: WLAN-GPRS Integration for Next-Generation Mobile Data Networks

Chapter 3: WLAN-GPRS Integration for Next-Generation Mobile Data Networks Chapter 3: WLAN-GPRS Integration for Next-Generation Mobile Data Networks IEEE Wireless Communication, Oct. 2002 Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National

More information

EE 4105 Communication Engg-II Dr. Mostafa Zaman Chowdhury Slide # 1

EE 4105 Communication Engg-II Dr. Mostafa Zaman Chowdhury Slide # 1 EE 4105 Communication Engg-II Dr. Mostafa Zaman Chowdhury Slide # 1 1 Circuit-Switched Systems In a circuit-switched system, each traffic channel is dedicated to a user until its cell is terminated. Circuit

More information

C.M.D.N.Y. Capital Markets Day New York May 11, 2006

C.M.D.N.Y. Capital Markets Day New York May 11, 2006 Capital Markets Day New York May 11, 2006 Håkan Djuphammar V.P. R&D Systems Management Cellular Evolution Agenda Overview of cellular standards Evolution of and commercial deployments LTE ( Super 3G )

More information

Long-Term Evolution: Simplify the Migration to 4G Networks

Long-Term Evolution: Simplify the Migration to 4G Networks White Paper Long-Term Evolution: Simplify the Migration to 4G Networks What You Will Learn With the convergence of the Internet and wireless communications, mobile data services are undergoing tremendous

More information

LTE-SAE architecture and performance

LTE-SAE architecture and performance LTE-SAE architecture and performance Per Beming, Lars Frid, Göran Hall, Peter Malm, Thomas Noren, Magnus Olsson and Göran Rune LTE-SAE (Long-term evolution system architecture evolution) systems promise

More information

Global System for Mobile Communication Technology

Global System for Mobile Communication Technology Global System for Mobile Communication Technology Mobile Device Investigations Program Technical Operations Division DHS - FLETC GSM Technology Global System for Mobile Communication or Groupe Special

More information

Understanding LTE with MATLAB an overview. By: Houman Zarrinkoub PhD.

Understanding LTE with MATLAB an overview. By: Houman Zarrinkoub PhD. Understanding LTE with MATLAB an overview By: Houman Zarrinkoub PhD. Motivations Why LTE? Delivers global broadband mobile communications for 21 st century Features innovative new air interface technologies

More information

Mobile Computing. Wireless Technology

Mobile Computing. Wireless Technology Mobile Computing General Wireless Networking and Related Concepts Wireless Technology Wireless Communication Transfer of Information over a Distance (both long and short) without the Use of Wires/Cables

More information

Protocol Signaling Procedures in LTE

Protocol Signaling Procedures in LTE White Paper Protocol Signaling Procedures in LTE By: V. Srinivasa Rao, Senior Architect & Rambabu Gajula, Lead Engineer Overview The exploding growth of the internet and associated services has fueled

More information

Chapter 11 Multicast for Mobile Multimedia Messaging Service

Chapter 11 Multicast for Mobile Multimedia Messaging Service Chapter 11 Multicast for Mobile Multimedia Messaging Service Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Outline 11.1 Existing Multicast Mechanisms

More information

Wireless Cellular Networks: 1G and 2G

Wireless Cellular Networks: 1G and 2G Wireless Cellular Networks: 1G and 2G Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available

More information

Mobile Services (ST 2010)

Mobile Services (ST 2010) Mobile Services (ST 2010) Chapter 2: Mobile Networks Axel Küpper Service-centric Networking Deutsche Telekom Laboratories, TU Berlin 1 Mobile Services Summer Term 2010 2 Mobile Networks 2.1 Infrastructure

More information

Long Term Evolution LTE Solutions from NEC. Empowering the Next Generation of Mobile Networks

Long Term Evolution LTE Solutions from NEC. Empowering the Next Generation of Mobile Networks Long Term Evolution LTE Solutions from NEC Empowering the Next Generation of Mobile Networks Users want more from mobile devices. LTE technology answers the call. Worldwide demand for mobile data services

More information

Outline. Abstract. Cont. Introduction. Cont. Chapter 11 Multicast for Mobile Multimedia Messaging Service

Outline. Abstract. Cont. Introduction. Cont. Chapter 11 Multicast for Mobile Multimedia Messaging Service Chapter 11 Multicast for Mobile Multimedia Messaging Service Associate Prof. Yuh-Shyan Chen Department of CSIE National Chung Cheng University April 2006 Outline 11.1 Existing Multicast Mechanisms for

More information

Performance Issues of TCP and MPEG-4 4 over UMTS

Performance Issues of TCP and MPEG-4 4 over UMTS Performance Issues of TCP and MPEG-4 4 over UMTS Anthony Lo A.Lo@ewi.tudelft.nl 1 Wiskunde end Informatica Outline UMTS Overview TCP and MPEG-4 Performance Summary 2 1 Universal Mobile Telecommunications

More information

Mobile IPv6 deployment opportunities in next generation 3GPP networks. I. Guardini E. Demaria M. La Monaca

Mobile IPv6 deployment opportunities in next generation 3GPP networks. I. Guardini E. Demaria M. La Monaca Mobile IPv6 deployment opportunities in next generation 3GPP networks I. Guardini E. Demaria M. La Monaca Overview of SAE/LTE Terminology SAE (System Architecture Evolution): core network/system aspects

More information

UMTS/GPRS system overview from an IP addressing perspective. David Kessens Jonne Soininen

UMTS/GPRS system overview from an IP addressing perspective. David Kessens Jonne Soininen UMTS/GPRS system overview from an IP addressing perspective David Kessens Jonne Soininen Introduction 1) Introduction to 3GPP networks (GPRS, UMTS) Technical overview and concepts for 3GPP networks Mobility

More information

Next Generation of Railways and Metros wireless communication systems IRSE ASPECT 2012 Alain BERTOUT Alcatel-Lucent

Next Generation of Railways and Metros wireless communication systems IRSE ASPECT 2012 Alain BERTOUT Alcatel-Lucent Next Generation of Railways and Metros wireless communication systems IRSE ASPECT 2012 Alain BERTOUT Alcatel-Lucent Slide 1 Wireless communication: What s at stake for Rail? Some of the key challenges

More information

Mobile Communication: GSM, EDGE, UMTS, WLAN - and Beyond? Dr. Hans-Joachim Dreßler Siemens AG

Mobile Communication: GSM, EDGE, UMTS, WLAN - and Beyond? Dr. Hans-Joachim Dreßler Siemens AG Mobile Communication: GSM, EDGE, UMTS, WLAN - and Beyond? Dr. Hans-Joachim Dreßler Siemens AG Overview 3G* =3rd generation 9. Fuldaer Elektrotechnik-Kolloquium, 29.10.2004 Page 2 Siemens, 2004 Evolution

More information

Optimization Handoff in Mobility Management for the Integrated Macrocell - Femtocell LTE Network

Optimization Handoff in Mobility Management for the Integrated Macrocell - Femtocell LTE Network Optimization Handoff in Mobility Management for the Integrated Macrocell - Femtocell LTE Network Ms.Hetal Surti PG Student, Electronics & Communication PIT, Vadodara E-mail Id:surtihetal99@gmail.com Mr.Ketan

More information

Wireless Cellular Networks: 3G

Wireless Cellular Networks: 3G Wireless Cellular Networks: 3G Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 7-1 Overview Wireless

More information

LTE Perspective. Ericsson Inc. Sridhar vadlamudi LTE HEAD, India

LTE Perspective. Ericsson Inc. Sridhar vadlamudi LTE HEAD, India LTE Perspective Ericsson Inc. Sridhar vadlamudi LTE HEAD, India Topics Mobile Broadband growth Why LTE? Trials/Commercial deployments Public Ericsson AB 2010 2010-05-31 Page 2 A wider vision: Everything

More information

Evolution of the Air Interface From 2G Through 4G and Beyond

Evolution of the Air Interface From 2G Through 4G and Beyond Evolution of the Air Interface From 2G Through 4G and Beyond Presentation to IEEE Ottawa Section / Alliance of IEEE Consultants Network (AICN) - 2nd May 2012 Frank Rayal BLiNQ Networks/ Telesystem Innovations

More information

3G Technology. Name :K.G Thilina Munasinghe Register No :EP581 Department :Computing and Information System University :Sabaragamuwa University

3G Technology. Name :K.G Thilina Munasinghe Register No :EP581 Department :Computing and Information System University :Sabaragamuwa University Name :K.G Thilina Munasinghe Register No :EP581 Department :Computing and Information System University :Sabaragamuwa University Definition of 3G 3G is the third generation of wireless technologies. It

More information

EHRPD EV-DO & LTE Interworking. Bill Chotiner Ericsson CDMA Product Management November 15, 2011

EHRPD EV-DO & LTE Interworking. Bill Chotiner Ericsson CDMA Product Management November 15, 2011 EHRPD EV-DO & LTE Interworking Bill Chotiner Ericsson CDMA Product Management November 15, 2011 ehrpd LTE & CDMA Interworking What is ehrpd? HRPD Is Standards Name For EV-DO ehrpd Is evolved HRPD ehrpd

More information

CS Fallback Function for Combined LTE and 3G Circuit Switched Services

CS Fallback Function for Combined LTE and 3G Circuit Switched Services EPC Voice over Circuit Switched Services Special Articles on SAE Standardization Technology CS Fallback Function for Combined and Circuit Switched Services The PP, an international standardization body

More information

Priority-Coupling A Semi-Persistent MAC Scheduling Scheme for VoIP Traffic on 3G LTE

Priority-Coupling A Semi-Persistent MAC Scheduling Scheme for VoIP Traffic on 3G LTE Priority-Coupling A Semi-Persistent MAC Scheduling Scheme for VoIP Traffic on 3G LTE S. Saha * and R. Quazi ** * Helsinki University of Technology, Helsinki, Finland ** University of Dhaka, Dhaka, Bangladesh

More information

MNS Viewpoint: LTE EVOLUTION IN AFRICA 1. Introduction

MNS Viewpoint: LTE EVOLUTION IN AFRICA 1. Introduction MNS Viewpoint: LTE EVOLUTION IN AFRICA 1. Introduction Wireless communications have evolved rapidly since the emergence of 2G networks. 4G technology (also called LTE), enables to answer the new data market

More information

LTE A Technical Overview. Titus Lo

LTE A Technical Overview. Titus Lo LTE A Technical Overview Titus Lo tlo@neocific.com 1 Scope of Presentation Cellular wireless systems LTE system & architecture Key Technologies 2 Cellular Wireless Systems 3 Wireless Standard Evolution

More information

MME SGW PGW. This sequence diagram was generated with EventStudio Sytem Designer -

MME SGW PGW. This sequence diagram was generated with EventStudio Sytem Designer - LTE Mobile Network Core Network UE Target Source 20-Apr-13 22:03 (Page 1) This sequence diagram was generated with EventStudio Sytem Designer - http://www.eventhelix.com/eventstudio/ s in LTE are interconnected

More information

3GPP Long-Term Evolution / System Architecture Evolution Overview

3GPP Long-Term Evolution / System Architecture Evolution Overview 3GPP Long-Term Evolution / System Architecture Evolution Overview September 2006 Ulrich Barth Outline 2 3G-LTE Introduction Motivation Workplan Requirements LTE air-interface LTE Architecture SAE Architecture

More information

Development of Wireless Networks

Development of Wireless Networks Development of Wireless Networks Cellular Revolution In 1990 mobile phone users populate 11 million. By 2004 the figure will become 1 billion Phones are most obvious sign of the success of wireless technology.

More information

LTE CDMA Interworking

LTE CDMA Interworking LTE CDMA Interworking ehrpd - Use of a Common Core and a Stepping Stone to LTE Mike Dolan Consulting Member of Technical Staff Alcatel-Lucent Overview ehrpd (evolved High Rate Packet Data*) ehrpd involves

More information

Telesystem Innovations. LTE in a Nutshell: Protocol Architecture WHITE PAPER

Telesystem Innovations. LTE in a Nutshell: Protocol Architecture WHITE PAPER Telesystem Innovations LTE in a Nutshell: Protocol Architecture WHITE PAPER PROTOCOL OVERVIEW This whitepaper presents an overview of the protocol stack for LTE with the intent to describe where important

More information

Modul 11 GSM & GPRS Standard

Modul 11 GSM & GPRS Standard TT 4113 Cellular Communication Systems Modul 11 GSM & GPRS Standard 1 Faculty of Electrical and Communication Institut Teknologi Telkom Bandung 2010 2 Development of GSM Standard 3 History of GSM 1st &

More information

Single Radio Voice Call Continuity. (SRVCC) with LTE. White Paper. Overview. By: Shwetha Vittal, Lead Engineer CONTENTS

Single Radio Voice Call Continuity. (SRVCC) with LTE. White Paper. Overview. By: Shwetha Vittal, Lead Engineer CONTENTS White Paper Single Radio Voice Call Continuity (SRVCC) with LTE By: Shwetha Vittal, Lead Engineer Overview Long Term Evolution (LTE) is heralded as the next big thing for mobile networks. It brings in

More information

GSM and Similar Architectures Lesson 03 GSM System Architecture

GSM and Similar Architectures Lesson 03 GSM System Architecture GSM and Similar Architectures Lesson 03 GSM System Architecture 1 Mobile communication using base station in cellular networks A mobile station, MS, communicates with a GSM public land mobile network (PLMN)

More information

Cellular Technology Sections 6.4 & 6.7

Cellular Technology Sections 6.4 & 6.7 Overview Cellular Technology Sections 6. & 6.7 CSC 9 December, 0 Cellular architecture evolution Cellular telephony and internet terminology Mobility for cellular mobiles 6- Components of cellular architecture

More information

The Evolution and Future of Mobile Communication Systems. Written by David G Ainscough Copyright 2001 D.G.Ainscough

The Evolution and Future of Mobile Communication Systems. Written by David G Ainscough Copyright 2001 D.G.Ainscough The Evolution and Future of Mobile Communication Systems Written by David G Ainscough Copyright 2001 D.G.Ainscough Chapter 3 : EDGE (Enhanced Data rates for GSM Evolution) 3 3.1 The Evolution of the GSM

More information

GSM v. CDMA: Technical Comparison of M2M Technologies

GSM v. CDMA: Technical Comparison of M2M Technologies GSM v. CDMA: Technical Comparison of M2M Technologies Introduction Aeris provides network and data analytics services for Machine-to- Machine ( M2M ) and Internet of Things ( IoT ) applications using multiple

More information

3GPP LTE Channels and MAC Layer

3GPP LTE Channels and MAC Layer 3GPP LTE s and MAC Layer 2009 Inc. All Rights Reserved. LTE MAC Layer Functions Mapping between Transparent and Logical s Error Correction Through Hybrid ARQ MAC Priority Handling with Dynamic Scheduling

More information

Use Current Success to Develop Future Business

Use Current Success to Develop Future Business >THIS IS THE WAY Use Current Success to Develop Future Business Malur Narayan / Nitin Khanna February 2005 >THIS IS Wireless Broadband Opportunities & Segments Mobile Broadband Access Enterprise Broadband

More information

GSM. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides) GPRS

GSM. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides) GPRS GSM Example of a PLMN (Public Land Mobile Network) At present most successful cellular mobile system (over 200 million subscribers worldwide) Digital (2 nd Generation) cellular mobile system operating

More information