Introduction into Flow Cytometry

Size: px
Start display at page:

Download "Introduction into Flow Cytometry"

Transcription

1 Introduction into Flow Cytometry Stephanie Gurka, Andreas Hutloff, Timo Lischke, Kroczek-Lab, Robert Koch Institute, Berlin

2 Flow Cytometry - FCM FACS = Fluorescence Activated Cell Sorting (also used for analytical cytometers) Analysis of the physical properties of single cells or other biological particles Basic principle: a single cell passes through a flow cell and is illuminated by a laser source detection and analysis of scattered / emitted light Use of fluorescence marked monoclonal antibodies multi-parameter analysis (up to 18) for each individual cell High flow-rate (> 20,000 cells/sec)

3 Particles can be measured with a flow cytometer Blood cells Tissue cells Algae Protozoa Chromosomes Yeast Prerequisite: single cell suspension (Disaggregation: mechanical or enzymatic)

4 Instrument Overview Sample (single cell suspension)

5 The Laser System typically used monochromatic laser sources (nm) Gas laser systems which require complex air or water cooling are more and more substituted with diode and solid-state lasers Modern Flow-cytometers (e.g. BD LSR II) accomodate up to five lasers

6 Multi-Laser Systems time delay 488 nm Laser 633 nm Laser 55 ms 17 ms 405 nm Laser

7 Optics - Forward Scatter Channel (FSC) Coherent lightsource (488 nm) detect the amount of light scattered in the forward direction (along the same axis that the laser light is traveling)

8 voltage voltage voltage Forward Scatter Detector time particle passes through the focus -> scattered light is detected by a photodetector, -> an electrical pulse is generated and presented to the signal processing electronics.

9 Intensity of forward scatter is most influenced by the size of cells 10 FSC-Histogram 9 Cell count Intensity

10 FSC-Threshold instrument is triggered when the signal exceeds a predefined threshold level -> reject non-particle events such as debris/noise from optical / electronic sources. FSC tends to be more sensitive to surface properties of particles (e.g. cell ruffling) -> can be used to distinguish live from dead cells

11 Optics - Side Scatter Channel (SSC) detect the amount of light scattered to the side (90 to the axis that the laser light is traveling) Intensity of SSC is most influenced by the shape and optical homogeneity of cells

12 Scatter Plot SSC tends to be more sensitive to inclusions within cells -> can be used to distinguish granulated cells from non-granulated cells

13 Which parameters can be measured? the relative size (FSC) the relative granularity or complexity (SSC) the fluorescence intensity (FL1/2, up to FL X) -> Analysis of complex primary samples (heterogeneous cells), such as immune cells Detection of rare cell types

14 Using Fluorescence in Flow Cytometry or cells transfected with fluorescent proteins Nucleic acid fluorochromes Fluorochromes for membrane potential analysis or for ion flux (e.g. Ca2+) Membrane label fluorochromes

15 What is Fluorescent Light? 488 nm 530nm FITC Stokes Shift Incident Light Emitted Fluorescent Light The fluorochrome absobs energy from the laser and releases the absorbed energy by: a) Vibration and heat dissipation b) Emission of photons of a longer wavelength =====> FLUORESCENCE Stokes shift: energy difference between the wavelength of absorption and emission

16 Properties of Fluorochromes Excitation/Emission Spectra

17 Fluorescence detection Fluorescence emitted by each fluorochrome is usually detected in a unique fluorescence channel. Fluorescence detector (PMT3, PMT4 etc.) SSC detector photo multiplier tube (PMT) FCS detector photo diode Laser Specificity controlled by the wavelength selectivity of optical filters and mirrors. signal levels are high

18 Optical Layout - BD FACSCalibur

19 Resolution Sensitivity: Clone RPA-T4 D W1 W2 Stain Index = D / W Reagent Filter Stain Index PE 585/ Alexa / APC 660/ PE-Cy7 780/ PE-Cy5 695/ PE-Alexa / Alexa / FITC 530/ APC-Cy7 7801/ Alexa / Pacific Blue 440/ D = difference between positive and negative peak medians W = 2 x rsd (robust standard deviation)

20 Fluorescence One Color Histogram in conjunction with fluorescence-based protein reporters (GFP) -> monitor both transfection efficiency and protein expression levels.

21 Data Analyis cell count Histogram: Light/Fluorescence Intensity Intensities of 2 Light/Fluorescence Parameters plotted against each other CD8 2D plot: CD4

22 Gating - Statistics MFI =10 Mean Fluorescence Intensity (MFI) Quadrant Statistic % Y+X- % Y+X+ MFI =150 %A Y %C %B % Y-X- % Y-X+ X

23 Gating - example

24 Gating - example

25 Basis of multicolor flow cytometry A laser beam of a single wavelength is used to excite several fluorochromes with different Stokes shifts and, thereby, produce a variety of fluorescent colors.

26 Fluorescence dyes used for flow cytometry Fluorochrome excitation wavelength (nm) emission maximum (nm) LP Mirror (Canto2) BP Filter (Canto2) FITC, CFSE /30 PE /42 PI PerCP / PerCP-Cy5.5 / PE-Cy / 695 / LP PE Cy /60 AF647 / Cy5 / APC / 667 / /20 A /45 APC-Cy /60 Pacific Blue / DAPI / /50 Pacific Orange / DAPI / /50 Knowing the excitation and emission properties of fluorescent compounds: Select combinations of fluorochromes that will work together optimally on a specific flow cytometer with specific lasers!

27 Fluorescence dyes used for flow cytometry Fluorochrome Company FITC, PE, PerCP, APC, Cy5 Becton Dickinson Alexa Fluor Molecular Probes (Invitrogen) efluor ebioscience V BD Horizon Pacific Oregon

28 Quenching Relative intensity Fluoresence intensity FITC ph dependence Concentration fluorescein ph Wanted properties of fluorochromes Brightness (high quantum yield) Photostability (no bleaching) ph insensitivity (stability of fluorescence emission) Water solubility (little hydrophobic interactions) % inital fluoresence intensity Fluorescence: points to consider Photobleaching Photostability / Photobleaching Instrument compatibility (fit to excitation wavelenght) Multiparameter Time (sec) (small emission spectrum) Molecular Probes

29 Types of Fluorochromes I) Small dyes: FITC, Cy5, AlexaFluor s, efluor s, FITC I) I) g Large Protein dyes: phycoerythrin, allophycocyanin, peridinin-chlorophyll-protein PEB accessory photosynthetic pigment of red (R-PE, PerCP) or bluegreen algae (APC). PE: APC: PerCP: 240-kDa protein with 34 phycoerythrobilin fluorochromes per molecule. 105-kDa protein with 6 phycocyanobilin chromophores per molecule. 35-kDa protein with phycoerythrobilin fluorochromes

30 Coupling of fluorescent dyes to antibodies I) Small dyes / haptens (FITC, Cy5, AFs, Dig, ) Reaction with primary amine groups of the mab fluorescein-5-ex succinimidyl ester

31 Coupling of fluorescent dyes to antibodies II) Protein dyes (phycoerythrin, allophycocyanin) Amine - thiol crosslinking 1) The bifunctional crosslinker Succinimidyl trans-4-(maleimidylmethyl)cyclohexane-1carboxylate (SMCC) reacts with amine groups of the fluorescent protein (R1) thereby introducing a maleimide group 2) The mab (R2) is partially reduced (with DTT) which yields free sulfhydryl groups

32 Antibody titration basics maximize signal:noise (pos/neg separation) This may occur at less than saturated staining This may or may not be the manufacturer s recommended titer increasing amount of mab signal noise S:N Intensity Titer is affected by: Staining volume Number of cells Staining time and temperature Type of sample (whole blood, PBMC, etc.) ng antibody 1

33 Fluorescence Tandem

34 Basis of multicolor flow cytometry A laser beam of a single wavelength is used to excite several fluorochromes with different Stokes shifts and, thereby, produce a variety of fluorescent colors.

35 Two Color Experiment - 1 Laser positive population negative population Filters collect 2 colors

36 Fluorescence Compensation positive population negative population mathematical subtraction of the fluorescence due to one fluorochrome from the fluorescence due to another PE-MFI (neg) = PE-MFI (pos)

37 Fluorescence Compensation

38 Fluorescence Compensation

39 Compensation controls Cells stained with a single fluorochrome-conjugated Ab (analyzed individually) -> One control for each of the fluorochromes used in the experiment + Single control for every tandem conjugate Negative and positive populations are required (>10%) Use bright markers to setup proper compensation Small errors in compensation of a dim control can result in large compensation errors with bright reagents CompBeads manually (up to 4 FL) or automatic compensation (>4 FL)

40 Specificity Controls Controls must undergo the same treatment (i.e., preparation, fixation) as all the tubes in an experiment. unstained / control: to detect "auto-fluorescence" or background staining (monocytes/macrophages, cultured cells, or activated cells) (to set up PMT-voltage for FSC, SSC and FL-channels) secondary control: for indirect staining (Bio/SAv, Dig/anti-Dig) - secondary Ab alone to control for non-specific binding of this polyclonal Ab to dead or sticky cells. specificity (experimental and gating) controls: e.g. Transfected cells: transfected / mock transfected / wt cell line, Primary cells: WT / KO or activated / naive

41 Further Specificity Controls not necessary for (lineage) markers with clearly separated populations Isotype Control: Ab with the same Ig isotype as the test Ab, specificity known to be irrelevant to the analyzed sample -> whether observed fluorescence is NOT due to non-specific (Fc receptors, dead cells) binding of the fluorescent Ab. (one for each class of antibody used for staining, with the same concentration and F/P ratio as Ab of interest) FMO Control: Fluorescence Minus One leaving out the antibody of interest in the staining panel -> fluorescence spillover of all other fluorochromes in channel of interest. Cold Block : Preincubation with an excess of unlabeled mab prior to addition of fluorophore labeled mab (no wash between) All events (cells) with fluorescence above the threshold set with the above controls are considered positive for the marker of interest.

42 Comparison of gating controls

43 Doublet discrimiation based on fluorescence height, fluorescence area and signal width.

44 Autofluorescence fluorescent signals generated by the cells themselves (from pyridine and flavin nucleotides) Present in all cells (viable and dead). Adds to fluorescence label of cells -> decreases fluorescence detection limit observed in all fluorescence channels, but decreases dramatically at longer wavelengths (>600 nm, far-red/infra-red). -> for cell types with high autofluorescence, a dye with a longer emission wavelength (APC, APC-Cy7) often provides excellent signal-to-noise ratio.

45 Dead cell exclusion Dead cells, with compromised membrane integrity, tend to be sticky -> bind all sorts of reagents unspecifically. -> exclude dead cells from analysis dye exclusion methods with DNA intercalating fluorochromes: propidium iodide (PI), 7-amino-actinomycin D (7-AAD) or DAPI staining to positively identify dead cells by their membrane permeability fixable live/dead stain with fluorescent dye General principle: Dye reacts with free amines. Live cells (left) react with the fluorescent reactive dye only on their surface (weakly fluorescent cells). Cells with compromised membranes (dead, right) react with the dye throughout their volume (brightly stained cells). In both cases, the excess reactive dye is washed away.

46 Signal Separation: different fluorochromes important for multicolor analysis: choice of which antibody to use with which fluorochrome (often many "correct" combinations possible) consider: For any given mab clone, the signal-to-noise ratio (positive/negative) can differ depending on the fluorochrome and instrument used Isotype Control FITC PE PE-Cy7 APC-Cy7 a- hu CD4 conjugates

47 Specificity / Non-Specificity: Fc-Receptors Ab bind to many cell types by their non-specific (Fc) ends. Monocytes, BC and DC, professionally bind many Ab through their Fc-receptors. Fab or F(ab )2 fragments Blocking of Fc receptors with polyclonal Ig or specific mab against Fc-Receptors (species specific!) -> significantly reduces background staining, (usually not necessary with cell lines) caution with indirect staining protocols and anti-rat-ig (use purified mouse-gamma globulin or mouse serum instead)

48 Analytical Variables to consider Sample preparation time, temperature, buffer (ph, salt concentration) Lysis, digestion, fixation, permeabilisation, washing steps instrument number and type of Lasers, Filters, Fluorescence Detectors -> antibody fluorochromes/ -combinations clone, affinity, monoclonal vs. polyclonal, Ig-Isotype, type of Fluorochrome, concentration, F/P ratio, (may differ from lot to lot) staining procedure: Cell number and concentration: depending on the number of events to be analyzed (due to cell loss during staining approx. 2 times more cells for staining than for analysis) Cell concentration during staining: Maximum density for staining is 5x107 cells/ml -> 50 μl staining volume for up to 2.5 Mio cells min at 4 C in the presence of NaN3 to be sure of minimizing capping / internalization/ miscellaneous loss of surface-bound antibodies Rapid and scalable: Performed in 96-well plates and in parallel

49 Multicolor analysis: Choice of Ab-Fluorochrome 1) Choose brightest set of fluorochromes for particular instrument configuration. 1) Choose fluorochromes to minimize the potential for spectral overlap. - high Compensation for adjacent channels, (FITC vs PE) - usually low Cross-beam compensation (blue vs red laser) Exceptions: GFP and very bright FITC signals like CFSE (also excited by 405 nm detected in PacO channel); PE-Cy5.5 / PerCP-Cy5.5 (excited by 633 nm detected in AF700 channel) 3) Reserve the brightest fluorochromes for dim antibodies, and vice versa. - Highly expressed Antigens will be resolved with almost any fluorophore - Antigens expressed at lower density might require brighter flurophores to separate the positive cells adequately from the unlabeled cells PacO < APC-Cy7 = PacB = FITC = AF700 = PerCP < PE-Cy7 < AF647 = PE = APC 1) Avoid spillover from bright cell populations into detectors requiring high sensitivity for those populations. - Strongly expressed Antigens impair the sensitivity/signal resolution of the adjacent channel - Preferentially, use this channel for Antigens which are not on the same cell as the Ag of interest 5) Take steps to avoid tandem dye degradation, and consider its impact upon results.

50 Analytical Variables to consider Data Acquisition, Analysis and Interpretation Instrument setup and performance adjust and optimize PMT settings (optimal sensitivity) Set voltages: Decrease voltages for any detectors where events are off-scale Increase voltages for any detectors where low-end resolution is poor Run single-stained compensation controls for each experiment and set compensation Run samples Run appropriate controls: Instrument setup controls (e.g., CompBeads) Gating controls (e.g., FMO) Biological controls (e.g., unstimulated samples, healthy donors) Speed of analysis (high flow rate -> less intensity resolution)

51 Analytical Variables to consider Data Analysis / Interpretation appropriate number of acquired events to ensure reliable results gating strategy, Visually inspect compensation Create a template containing dot plots of each color combination of the experiment, then examine a fully stained sample for possible compensation problems Check gating across all samples in the experiment. Gates may need to be adjusted across donors and/or experimental runs. -> Avoid classification errors and false conclusions due to improper compensation and/or gating, or sample artifacts Ask for interpreting the data, experiment and instrument setup -> save time and labor

52 Rare Event Detection sensitivity and throughput rates enable detection of extremely rare populations and events (frequencies < 10-6), Hematopoietic stem cells Dendritic cells Residual disease detection (tumor cell enumeration) Antigen-specific T cells Transient transfectants

53 Dump channels use of an"dump channel" significantly improves detection of rare cells or resolution of dim stains (e.g. CD11c). staining for an antigen not expressed by the cells of interest ("lineage negative ) -> exclusion of these cells for analysis e.g. B220 for murine T cells, CD3 + CD8 + Ly-6G/C + CD11b for B cells, CD3 + CD19 for dendritic cells. -> also exclude cells binding antibodies unspecifically. Preferentially, the CasY or A700 channels are used as dump.

Introduction to flow cytometry

Introduction to flow cytometry Introduction to flow cytometry Flow cytometry is a popular laser-based technology. Discover more with our introduction to flow cytometry. Flow cytometry is now a widely used method for analyzing the expression

More information

Multicolor Flow Cytometry: Setup and Optimization on the BD Accuri C6 Flow Cytometer

Multicolor Flow Cytometry: Setup and Optimization on the BD Accuri C6 Flow Cytometer Multicolor Flow Cytometry: Setup and Optimization on the BD Accuri C6 Flow Cytometer Presented by Clare Rogers, MS Senior Marketing Applications Specialist BD Biosciences 23-13660-00 Webinar Overview Multicolor

More information

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service Introduction into Flow Cytometry Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service How does a FACS look like? FACSCalibur FACScan What is Flow Cytometry?

More information

Application Note. Selecting Reagents for Multicolor Flow Cytometry. Holden Maecker and Joe Trotter BD Biosciences, San Jose

Application Note. Selecting Reagents for Multicolor Flow Cytometry. Holden Maecker and Joe Trotter BD Biosciences, San Jose Selecting Reagents for Multicolor Flow Cytometry Holden Maecker and Joe Trotter BD Biosciences, San Jose Contents 1 The basics: Know your instrument 2 Fluorochromes: Go for the bright 3 Colors and specificities:

More information

Three Rules for Compensation Controls

Three Rules for Compensation Controls From FlowJo s Daily Dongle Three Rules for Compensation Controls First and foremost, there must be a single-stained control for every parameter in the experiment! In addition, there are three rules for

More information

These particles have something in common

These particles have something in common These particles have something in common Blood cells Chromosomes Algae Protozoa Certain parameters of these particles can be measured with a flow cytometer Which parameters can be measured? the relative

More information

Introduction to Flow Cytometry

Introduction to Flow Cytometry Introduction to Flow Cytometry presented by: Flow Cytometry y Core Facility Biomedical Instrumentation Center Uniformed Services University Topics Covered in this Lecture What is flow cytometry? Flow cytometer

More information

Using the BD TM Cytometer Setup and Tracking (CS&T) System for Instrument Characterization and Performance Tracking

Using the BD TM Cytometer Setup and Tracking (CS&T) System for Instrument Characterization and Performance Tracking Using the BD TM Cytometer Setup and Tracking (CS&T) System for Instrument Characterization and Performance Tracking Mark KuKuruga Senior Technical Applications Specialist BD Biosciences 23-14462-00 Outline

More information

Technical Bulletin. An Introduction to Compensation for Multicolor Assays on Digital Flow Cytometers

Technical Bulletin. An Introduction to Compensation for Multicolor Assays on Digital Flow Cytometers An Introduction to Compensation for Multicolor Assays on Digital Flow Cytometers BD Biosciences, San Jose, CA Contents 2 Introduction to compensation 5 Tips for setting up compensation 10 Tools for easy,

More information

CyAn : 11 Parameter Desktop Flow Cytometer

CyAn : 11 Parameter Desktop Flow Cytometer CyAn : 11 Parameter Desktop Flow Cytometer Cyan ADP 3 excitation lines 488nm, 635nm, and UV or violet 11 simultaneous parameters FSC, SSC, and 7-9 colors with simultaneous width, peak, area, and log on

More information

Immunophenotyping peripheral blood cells

Immunophenotyping peripheral blood cells IMMUNOPHENOTYPING Attune Accoustic Focusing Cytometer Immunophenotyping peripheral blood cells A no-lyse, no-wash, no cell loss method for immunophenotyping nucleated peripheral blood cells using the Attune

More information

Using BD FACSDiva CST To. Evaluate Cytometer Performance, Create Custom Assay Settings. and

Using BD FACSDiva CST To. Evaluate Cytometer Performance, Create Custom Assay Settings. and Using BD FACSDiva CST To Evaluate Cytometer Performance, Create Custom Assay Settings and Implement Cross-Instrument and Cross-Site Standardization of Assays PART 2 Alan M. Stall Director, Advanced Cytometry

More information

CRITICAL ASPECTS OF STAINING FOR FLOW CYTOMETRY

CRITICAL ASPECTS OF STAINING FOR FLOW CYTOMETRY 页 码,1/6 CRITICAL ASPECTS OF STAINING FOR FLOW CYTOMETRY From Givan, A.L. (2000), chapter in In Living Color: Protocols in Flow Cytometry and Cell Sorting (R. Diamond and S. DeMaggio, eds). Springer, Berlin,

More information

MEASURABLE PARAMETERS: Flow cytometers are capable of measuring a variety of cellular characteristics such as:

MEASURABLE PARAMETERS: Flow cytometers are capable of measuring a variety of cellular characteristics such as: INTRODUCTION Flow Cytometry involves the use of a beam of laser light projected through a liquid stream that contains cells, or other particles, which when struck by the focused light give out signals

More information

Flow Data Analysis. Qianjun Zhang Application Scientist, Tree Star Inc. Oregon, USA FLOWJO CYTOMETRY DATA ANALYSIS SOFTWARE

Flow Data Analysis. Qianjun Zhang Application Scientist, Tree Star Inc. Oregon, USA FLOWJO CYTOMETRY DATA ANALYSIS SOFTWARE Flow Data Analysis Qianjun Zhang Application Scientist, Tree Star Inc. Oregon, USA Flow Data Analysis From Cells to Data - data measurement and standard Data display and gating - Data Display options -

More information

Instrument Characterization and Performance Tracking for Digital Flow Cytometers

Instrument Characterization and Performance Tracking for Digital Flow Cytometers Instrument Characterization and Performance Tracking for Digital Flow Cytometers BD Biosciences Cytometer Set-up & Tracking (CS&T) System For Research Use Only. Not for use in diagnostic or therapeutic

More information

APPLICATION INFORMATION

APPLICATION INFORMATION DRAFT: Rev. D A-2045A APPLICATION INFORMATION Flow Cytometry 3-COLOR COMPENSATION Raquel Cabana,* Mark Cheetham, Jay Enten, Yong Song, Michael Thomas,* and Brendan S. Yee Beckman Coulter, Inc., Miami FL

More information

COMPENSATION MIT Flow Cytometry Core Facility

COMPENSATION MIT Flow Cytometry Core Facility COMPENSATION MIT Flow Cytometry Core Facility Why do we need compensation? 1) Because the long emission spectrum tail of dyes causes overlap like with the fluorophores FITC and PE. 2) For sensitivity reasons,

More information

Boundary-breaking acoustic focusing cytometry

Boundary-breaking acoustic focusing cytometry Boundary-breaking acoustic focusing cytometry Introducing the Attune NxT Acoustic Focusing Cytometer a high-performance system that s flexible enough for any lab One of the main projects in my laboratory

More information

FlowSight. Flow cytometry with vision

FlowSight. Flow cytometry with vision FlowSight Flow cytometry with vision Flow cytometry with vision Introducing FlowSight Capable: Sensitive and flexible for every need Intuitive: Easy-to-use, with imagery for every cell Affordable: Designed

More information

BD FACSDiva 4.1 - TUTORIAL TSRI FLOW CYTOMETRY CORE FACILITY

BD FACSDiva 4.1 - TUTORIAL TSRI FLOW CYTOMETRY CORE FACILITY BD FACSDiva 4.1 - TUTORIAL TSRI FLOW CYTOMETRY CORE FACILITY IMPORTANT NOTES BEFORE READING THIS TUTORIAL This is a very expensive piece of equipment so PLEASE treat it with respect! After you are done

More information

123count ebeads Catalog Number: 01-1234 Also known as: Absolute cell count beads GPR: General Purpose Reagents. For Laboratory Use.

123count ebeads Catalog Number: 01-1234 Also known as: Absolute cell count beads GPR: General Purpose Reagents. For Laboratory Use. Page 1 of 1 Catalog Number: 01-1234 Also known as: Absolute cell count beads GPR: General Purpose Reagents. For Laboratory Use. Normal human peripheral blood was stained with Anti- Human CD45 PE (cat.

More information

BD FACSComp Software Tutorial

BD FACSComp Software Tutorial BD FACSComp Software Tutorial This tutorial guides you through a BD FACSComp software lyse/no-wash assay setup run. If you are already familiar with previous versions of BD FACSComp software on Mac OS

More information

Introduction to Flow Cytometry

Introduction to Flow Cytometry Outline Introduction to Flow Cytometry Basic Concept of Flow Cytometry Introduction to Instrument Subsystems Daisy Kuo Assistant Product Manager E-mail: daisy_kuo@bd.com BDBiosciences Application Examples

More information

No-wash, no-lyse detection of leukocytes in human whole blood on the Attune NxT Flow Cytometer

No-wash, no-lyse detection of leukocytes in human whole blood on the Attune NxT Flow Cytometer APPLICATION NOTE Attune NxT Flow Cytometer No-wash, no-lyse detection of leukocytes in human whole blood on the Attune NxT Flow Cytometer Introduction Standard methods for isolating and detecting leukocytes

More information

Principles of Flowcytometry

Principles of Flowcytometry Objectives Introduction to Cell Markers: Principles of Flowcytometry Michelle Petrasich NZIMLS Scientific Meeting August 24, 2010, Paihia What are cell markers How do we detect them Production of Monoclonal

More information

Compensation in Flow Cytometry

Compensation in Flow Cytometry Compensation in UNIT.4 The term compensation, as it applies to flow cytometric analysis, refers to the process of correcting for fluorescence spillover, i.e., removing the signal of any given fluorochrome

More information

Fluorescence Compensation. Jennifer Wilshire, PhD jennifer@flowjo.com

Fluorescence Compensation. Jennifer Wilshire, PhD jennifer@flowjo.com Fluorescence Compensation Jennifer Wilshire, PhD jennifer@flowjo.com Outline 1. Compensation Basics 2. Practical Applications -selecting comp controls (cells, stains?) 3. Multicolor Issues -spreading due

More information

Flow cytometry basics fluidics, optics, electronics...

Flow cytometry basics fluidics, optics, electronics... Title Flow cytometry basics fluidics, optics, electronics... RNDr. Jan Svoboda, Ph.D. Cytometry and Microscopy Core Facility IMB, CAS, v.v.i Vídeňská 1083 Fluorescence Fluorescence occurs when a valence

More information

Technical Bulletin. Standardizing Application Setup Across Multiple Flow Cytometers Using BD FACSDiva Version 6 Software. Abstract

Technical Bulletin. Standardizing Application Setup Across Multiple Flow Cytometers Using BD FACSDiva Version 6 Software. Abstract arch 212 Standardizing Application Setup Across ultiple Flow Cytometers Using BD FACSDiva Version 6 Ellen einelt, ervi Reunanen, ark Edinger, aria Jaimes, Alan Stall, Dennis Sasaki, Joe Trotter Contents

More information

Flow Cytometry for Everyone Else Susan McQuiston, J.D., MLS(ASCP), C.Cy.

Flow Cytometry for Everyone Else Susan McQuiston, J.D., MLS(ASCP), C.Cy. Flow Cytometry for Everyone Else Susan McQuiston, J.D., MLS(ASCP), C.Cy. At the end of this session, the participant will be able to: 1. Describe the components of a flow cytometer 2. Describe the gating

More information

Standard Operating Procedure

Standard Operating Procedure 1.0 Purpose: 1.1 The characterisation of of main leukocyte subsets in peripheral blood cells from mice by flow cytometry. Reliable values of frequencies of leukocyte clusters are very much dependent on

More information

Below is a list of things you should be aware of before you schedule your sort.

Below is a list of things you should be aware of before you schedule your sort. Sorting at the Flow Cytometry Facility At the present time, the assistance of a trained cell sorter operator is needed for all sorting applications. As such, if you are planning a first time sort you will

More information

1. Instrument Layout pg 2. 2. Summit Overview pg 3. 3. Data Storage and Data Files pgs 6-7. 4. Saving Data pg 7. 5. Start Up pg 8

1. Instrument Layout pg 2. 2. Summit Overview pg 3. 3. Data Storage and Data Files pgs 6-7. 4. Saving Data pg 7. 5. Start Up pg 8 Table of Contents 1. Instrument Layout pg 2 2. Summit Overview pg 3 3. Data Storage and Data Files pgs 6-7 4. Saving Data pg 7 5. Start Up pg 8 6. Choosing and Naming Parameters pg 9 7. Creating Histograms

More information

Introduction to Flow Cytometry -- BD LSR II. What is Flow Cytometry? What Can a Flow Cytometer Tell Us About a Cell? Particle Size

Introduction to Flow Cytometry -- BD LSR II. What is Flow Cytometry? What Can a Flow Cytometer Tell Us About a Cell? Particle Size Introduction to Flow Cytometry -- BD LSR II Daisy Kuo 郭 正 佼 Assistant Product Manager BD Biosciences Daisy_kuo@bd.com What is Flow Cytometry? Flow = Fluid Cyto = Cell Metry = Measurement A variety of measurements

More information

Flow Cytometry. flow cytometer DNA apoptosis ph

Flow Cytometry. flow cytometer DNA apoptosis ph Flow Cytometry flow cytometer DNA apoptosis ph flow cytometry flow cytometer (a) (b) cell counting instrument (c) 1960 ink-jet technology 17 19 1940 1950 fluorescence microscopy fluorescent dye DNA polyclonal

More information

Cell Cycle Tutorial. Contents

Cell Cycle Tutorial. Contents Cell Cycle Tutorial Contents Experimental Requirements...2 DNA Dyes...2 Protocols...3 PI Parameter & Analysis Setup...4 PI Voltage Adjustments...6 7-AAD Parameter Setup...6 To-Pro3 Parameter Setup...6

More information

Immunophenotyping Flow Cytometry Tutorial. Contents. Experimental Requirements...1. Data Storage...2. Voltage Adjustments...3. Compensation...

Immunophenotyping Flow Cytometry Tutorial. Contents. Experimental Requirements...1. Data Storage...2. Voltage Adjustments...3. Compensation... Immunophenotyping Flow Cytometry Tutorial Contents Experimental Requirements...1 Data Storage...2 Voltage Adjustments...3 Compensation...5 Experimental Requirements For immunophenotyping with FITC and

More information

EdU Flow Cytometry Kit. User Manual

EdU Flow Cytometry Kit. User Manual User Manual Ordering information: (for detailed kit content see Table 2) EdU Flow Cytometry Kits for 50 assays: Product number EdU Used fluorescent dye BCK-FC488-50 10 mg 6-FAM Azide BCK-FC555-50 10 mg

More information

Introduction to Flow Cytometry:

Introduction to Flow Cytometry: Introduction to Flow Cytometry: A Learning Guide Manual Part Number: 11-11032-01 April, 2000 BD Biosciences 2350 Qume Drive San Jose, CA 95131-1807 1-800-448-2347 Introduction to Flow Cytometry: A Learning

More information

Compensation Controls Data Visualization Panel Development Gating Quantum Dots

Compensation Controls Data Visualization Panel Development Gating Quantum Dots Compensation Controls Data Visualization Panel Development Gating Quantum Dots FITC Single Stain Control FITC PE Argon Laser FL1 FL2 450 500 550 600 FITC Compensation Control Unwanted signal detected in

More information

Chapter 6. Antigen-Antibody Properties 10/3/2012. Antigen-Antibody Interactions: Principles and Applications. Precipitin reactions

Chapter 6. Antigen-Antibody Properties 10/3/2012. Antigen-Antibody Interactions: Principles and Applications. Precipitin reactions Chapter 6 Antigen-Antibody Interactions: Principles and Applications Antigen-Antibody Properties You must remember antibody affinity (single) VS avidity (multiple) High affinity: bound tightly and longer!

More information

Application Information Bulletin: Set-Up of the CytoFLEX Set-Up of the CytoFLEX* for Extracellular Vesicle Measurement

Application Information Bulletin: Set-Up of the CytoFLEX Set-Up of the CytoFLEX* for Extracellular Vesicle Measurement Application Information Bulletin: Set-Up of the CytoFLEX Set-Up of the CytoFLEX* for Extracellular Vesicle Measurement Andreas Spittler, MD, Associate Professor for Pathophysiology, Medical University

More information

Analyzer Experiment setup guide for LSRII and Canto s

Analyzer Experiment setup guide for LSRII and Canto s Analyzer Experiment setup guide for LSRII and Canto s 1. Check the instrument configuration on our website to determine the most appropriate cytometer for your experiment, https://depts.washington.edu/flowlab/instrumentation.html,

More information

Uses of Flow Cytometry

Uses of Flow Cytometry Uses of Flow Cytometry 1. Multicolour analysis... 2 2. Cell Cycle and Proliferation... 3 a. Analysis of Cellular DNA Content... 4 b. Cell Proliferation Assays... 5 3. Immunology... 6 4. Apoptosis... 7

More information

Flow Cytometry. What is Flow Cytometry? What Can a Flow Cytometer Tell Us About a Cell? Particle Size. Flow = Fluid Cyto = Cell Metry = Measurement

Flow Cytometry. What is Flow Cytometry? What Can a Flow Cytometer Tell Us About a Cell? Particle Size. Flow = Fluid Cyto = Cell Metry = Measurement What is Flow Cytometry? Flow Cytometry Basic Principle and Applications BD Biosciences Daisy Kuo (daisy_kuo@bd.com) Flow = Fluid Cyto = Cell Metry = Measurement A variety of measurements are made on cells,

More information

Islet Viability Assessment by Single Cell Flow Cytometry

Islet Viability Assessment by Single Cell Flow Cytometry Islet Viability Assessment by Single Cell Flow Cytometry Page 1 of 8 Purpose: To comprehensively assess the viability of the islet cell preparation prior to transplantation. Tissue Samples: A sample containing

More information

Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis

Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis Bilge Karaçalı, PhD Department of Electrical and Electronics Engineering Izmir Institute of Technology Outline Compensation and gating

More information

Hoechst 33342 HSC Staining and Stem Cell Purification Protocol (see Goodell, M., et al. (1996) J Exp Med 183, 1797-806)

Hoechst 33342 HSC Staining and Stem Cell Purification Protocol (see Goodell, M., et al. (1996) J Exp Med 183, 1797-806) Hoechst 33342 HSC Staining and Stem Cell Purification Protocol (see Goodell, M., et al. (1996) J Exp Med 183, 1797-86) The Hoechst purification was established for murine hematopoietic stem cells (HSC)

More information

ab139418 Propidium Iodide Flow Cytometry Kit for Cell Cycle Analysis

ab139418 Propidium Iodide Flow Cytometry Kit for Cell Cycle Analysis ab139418 Propidium Iodide Flow Cytometry Kit for Cell Cycle Analysis Instructions for Use To determine cell cycle status in tissue culture cell lines by measuring DNA content using a flow cytometer. This

More information

ArC Amine Reactive Compensation Bead Kit

ArC Amine Reactive Compensation Bead Kit ArC Amine Reactive Compensation Bead Kit Catalog no. A1346 Table 1. Contents and storage information. Material Amount Composition Storage Stability ArC reactive beads (Component A) ArC negative beads (Component

More information

CELL CYCLE BASICS. G0/1 = 1X S Phase G2/M = 2X DYE FLUORESCENCE

CELL CYCLE BASICS. G0/1 = 1X S Phase G2/M = 2X DYE FLUORESCENCE CELL CYCLE BASICS Analysis of a population of cells replication state can be achieved by fluorescence labeling of the nuclei of cells in suspension and then analyzing the fluorescence properties of each

More information

A Basic Guide. Institute of Medical Biology, University of Southern Denmark. Ungated Gate 1 (= R1) Gate 4 (=R4) Gate3 (=R3) Gate 2 (= R2) R3 R4

A Basic Guide. Institute of Medical Biology, University of Southern Denmark. Ungated Gate 1 (= R1) Gate 4 (=R4) Gate3 (=R3) Gate 2 (= R2) R3 R4 Flow Cytometry A Basic Guide R1 Ungated Gate 1 (= R1) R2 R3 R4 Gate 2 (= R2) Gate3 (=R3) Gate 4 (=R4) Graham Leslie, PhD Institute of Medical Biology, University of Southern Denmark Graham Leslie, PhD

More information

The NIAID Flow Cytometry Advisory Committee; the Guidelines Subcommittee

The NIAID Flow Cytometry Advisory Committee; the Guidelines Subcommittee January, 1999 From: To: Subject: The NIAID Flow Cytometry Advisory Committee; the Guidelines Subcommittee NIAID DAIDS Flow Cytometry Laboratories Comparison study information for labs wishing to switch

More information

CyFlow SL. Microbiology. Detection and Analysis of Microorganisms and Small Particles

CyFlow SL. Microbiology. Detection and Analysis of Microorganisms and Small Particles CyFlow SL Microbiology Detection and Analysis of Microorganisms and Small Particles 01 COMPANY Flow Cytometry made in Germany New sophisticated applications and increasing requirements for reliable results

More information

CELL CYCLE BASICS. G0/1 = 1X S Phase G2/M = 2X DYE FLUORESCENCE

CELL CYCLE BASICS. G0/1 = 1X S Phase G2/M = 2X DYE FLUORESCENCE CELL CYCLE BASICS Analysis of a population of cells replication state can be achieved by fluorescence labeling of the nuclei of cells in suspension and then analyzing the fluorescence properties of each

More information

FACS Laboratory. BD LSRs Operator Training. Training Guide. http://london-research-institute.org.uk/technologies/facs

FACS Laboratory. BD LSRs Operator Training. Training Guide. http://london-research-institute.org.uk/technologies/facs FACS Laboratory facs_lab@cancer.org.uk Training Guide http://london-research-institute.org.uk/technologies/facs BD LSRs Operator Training LRI FACS lab 1 Components 1.1 Basic parts overview.pg3-6 Overview

More information

FLOW CYTOMETRY: PRINCIPLES AND APPLICATIONS. By: Douaa Moh. Sayed

FLOW CYTOMETRY: PRINCIPLES AND APPLICATIONS. By: Douaa Moh. Sayed FLOW CYTOMETRY: PRINCIPLES AND APPLICATIONS By: Douaa Moh. Sayed Definition Flow cytometry is a technique for counting, examining, and sorting microscopic particles suspended in a stream of fluid. It allows

More information

INSIDE THE BLACK BOX

INSIDE THE BLACK BOX FLOW CYTOMETRY ESSENTIALS INSIDE THE BLACK BOX Alice L. Givan Englert Cell Analysis Laboratory of the Norris Cotton Cancer Center Dartmouth Medical School HOW NOT TO BE A FLOW CYTOMETRIST Drawing by Ben

More information

powerful. Intuitive. Customizable. The new star of benchtop flow cytometry

powerful. Intuitive. Customizable. The new star of benchtop flow cytometry powerful. Intuitive. Customizable. The new star of benchtop flow cytometry About ACEA Established in 2002, ACEA Biosciences, Inc. develops cutting-edge cell analysis platforms for life science research.

More information

Supplementary Material. Free-radical production after post-thaw incubation of ram spermatozoa is related to decreased in vivo fertility

Supplementary Material. Free-radical production after post-thaw incubation of ram spermatozoa is related to decreased in vivo fertility 10.1071/RD14043_AC CSIRO 2015 Supplementary Material: Reproduction, Fertility and Development, 2015, 27(8), 1187 1196. Supplementary Material Free-radical production after post-thaw incubation of ram spermatozoa

More information

Technical Bulletin. Threshold and Analysis of Small Particles on the BD Accuri C6 Flow Cytometer

Technical Bulletin. Threshold and Analysis of Small Particles on the BD Accuri C6 Flow Cytometer Threshold and Analysis of Small Particles on the BD Accuri C6 Flow Cytometer Contents 2 Thresholds 2 Setting the Threshold When analyzing small particles, defined as particles smaller than 3.0 µm, on the

More information

Stepcount. Product Description: Closed transparent tubes with a metal screen, including a white matrix at the bottom. Cat. Reference: STP-25T

Stepcount. Product Description: Closed transparent tubes with a metal screen, including a white matrix at the bottom. Cat. Reference: STP-25T Product Description: Closed transparent tubes with a metal screen, including a white matrix at the bottom Cat. Reference: STP-25T Reagent provided:: 25 Stepcount tubes for 25 test INTENDED USE. Immunostep

More information

Multicolor Bead Flow Cytometry Standardization Heba Degheidy MD, PhD, QCYM DB/OSEL/CDRH/FDA Manager of MCM Flow Cytometry Facility

Multicolor Bead Flow Cytometry Standardization Heba Degheidy MD, PhD, QCYM DB/OSEL/CDRH/FDA Manager of MCM Flow Cytometry Facility Multicolor Bead Flow Cytometry Standardization Heba Degheidy MD, PhD, QCYM DB/OSEL/CDRH/FDA Manager of MCM Flow Cytometry Facility The mention of commercial products, their sources, or their use in connection

More information

PROTOCOL. Immunostaining for Flow Cytometry. Background. Materials and equipment required.

PROTOCOL. Immunostaining for Flow Cytometry. Background. Materials and equipment required. PROTOCOL Immunostaining for Flow Cytometry 1850 Millrace Drive, Suite 3A Eugene, Oregon 97403 Rev.0 Background The combination of single cell analysis using flow cytometry and the specificity of antibody-based

More information

Chapter 10 Immunofluorescence

Chapter 10 Immunofluorescence Chapter 10 Immunofluorescence J. Paul Robinson PhD, Jennifer Sturgis BS and George L. Kumar PhD Immunofluorescence (IF) is a common laboratory technique used in almost all aspects of biology. This technique

More information

Welcome to More Choice BD Analyte Specific Reagent (ASR) Catalog

Welcome to More Choice BD Analyte Specific Reagent (ASR) Catalog Welcome to More Choice BD Analyte Specific Reagent (ASR) Catalog 3 rd Edition Contents ASR Cell Lineage 3 15 Marker 16 25 Flow cytometry allows you to analyze multiple parameters simultaneously and by

More information

CyFlow Space Your flexible flow cytometer

CyFlow Space Your flexible flow cytometer Your flexible flow cytometer www.sysmex-partec.com its flexibility gives you the space you need for your work Analysing cells and particles, be it from blood, plasma, tissue, plants, cell cultures or other

More information

LIVE/DEAD Fixable Dead Cell Stain Kits

LIVE/DEAD Fixable Dead Cell Stain Kits USER GUIDE LIVE/DEAD Fixable Dead Cell Stain Kits Pub. No. MAN0002416 (MP34955) Rev. A.0 Table 1. Contents and storage Material Amount Storage Stability Individual Kits: Blue, violet, aqua, yellow-, green,

More information

UCHC Guide to FACS DiVa. LSR II instruments

UCHC Guide to FACS DiVa. LSR II instruments UCHC Guide to FACS DiVa LSR II instruments Start Up: Turn on the instrument using the Green power button. Fluidics pump power, LSR II-B & C LSR II-B and LSRII-C-> Turn on the fluidics pump and ensure that

More information

Notes on titering antibodies

Notes on titering antibodies Home Events This Week Bulletin Boards Lab Personnel Lab Policies Protocols MolBio Tetramers Proteins Flow Cytometry Immunoassays Instruments Computers Lab Publications Scientiific Literature Science on

More information

Spherotech, Inc. 27845 Irma Lee Circle, Unit 101, Lake Forest, Illinois 60045 1

Spherotech, Inc. 27845 Irma Lee Circle, Unit 101, Lake Forest, Illinois 60045 1 78 Irma Lee Circle, Unit 0, Lake Forest, Illinois 00 SPHERO TM Technical Note STN- Rev B 008 DETERMINING PMT LINEARITY IN FLOW CYTOMETERS USING THE SPHERO TM PMT QUALITY CONTROL EXCEL TEMPLATE Introduction

More information

Zecotek S Light Projection Network Marketing

Zecotek S Light Projection Network Marketing White Paper Zecotek Visible Fiber Laser Platform Enabling the future of laser technology Zecotek Photonics Inc. (TSX- V: ZMS; Frankfurt: W1I) www.zecotek.com is a Canadian photonics technology company

More information

Too Many B Cells: Chronic Lymphocytic Leukemia and the Role of Flow Cytometry

Too Many B Cells: Chronic Lymphocytic Leukemia and the Role of Flow Cytometry Too Many B Cells: Chronic Lymphocytic Leukemia and the Role of Flow Cytometry by Debby R. Walser-Kuntz Biology Department Carleton College, Northfield, MN Taylor goes in to see her doctor, Dr. Chavez,

More information

Standardization, Calibration and Quality Control

Standardization, Calibration and Quality Control Standardization, Calibration and Quality Control Ian Storie Flow cytometry has become an essential tool in the research and clinical diagnostic laboratory. The range of available flow-based diagnostic

More information

Flow Cytometry A Basic Overview

Flow Cytometry A Basic Overview Flow Cytometry A Basic Overview Overview Flow cytometry is a powerful technology for investigating many aspects of cell biology and for isolating cells of interest. Flow cytometry utilizes highly focused,

More information

DELPHI 27 V 2016 CYTOMETRY STRATEGIES IN THE DIAGNOSIS OF HEMATOLOGICAL DISEASES

DELPHI 27 V 2016 CYTOMETRY STRATEGIES IN THE DIAGNOSIS OF HEMATOLOGICAL DISEASES DELPHI 27 V 2016 CYTOMETRY STRATEGIES IN THE DIAGNOSIS OF HEMATOLOGICAL DISEASES CLAUDIO ORTOLANI UNIVERSITY OF URBINO - ITALY SUN TZU (544 b.c. 496 b.c) SUN TZU (544 b.c. 496 b.c.) THE ART OF CYTOMETRY

More information

Setting up and calibration of a flow cytometer for multicolor immunophenotyping

Setting up and calibration of a flow cytometer for multicolor immunophenotyping Journal of Biological Regulators and Homeostatic Agents Setting up and calibration of a flow cytometer for multicolor immunophenotyping J. KRAAN 1, J.W. GRATAMA 1, M. KEENEY 2, J.L. D HAUTCOURT 3 1 Department

More information

Flow Cytometry 101. Jodi Moore, PhD Jan 2012 Goldenson 113

Flow Cytometry 101. Jodi Moore, PhD Jan 2012 Goldenson 113 Flow Cytometry 101 Jodi Moore, PhD Jan 2012 Goldenson 113 Origins:? Dye Chemistry 1940-1980 s Electronics Microscopy Automated Clinical Cytology ID Apps Computers Cytometry vs. Flow Cytometry Microspectrophotometry

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

More information

Labeling and Detection. The best and brightest Alexa Fluor dyes

Labeling and Detection. The best and brightest Alexa Fluor dyes The best and brightest Alexa Fluor dyes Superior alternatives to standard dyes Brighter conjugate fluorescence Superior photostability Ideal spectral match for all of the popular filters Now you have a

More information

QDot Nanocrystals Insights

QDot Nanocrystals Insights QDot Nanocrystals Insights Invitrogen Corporation Eugene, OR. HeLa cell labeled with three Qdot conjugates for nucleus, Golgi, and tubulin What are quantum dots? Highly fluorescent, nanometer-size, crystals

More information

DNA Detection. Chapter 13

DNA Detection. Chapter 13 DNA Detection Chapter 13 Detecting DNA molecules Once you have your DNA separated by size Now you need to be able to visualize the DNA on the gel somehow Original techniques: Radioactive label, silver

More information

International Beryllium Conference, Montreal, Canada March 10, 2005

International Beryllium Conference, Montreal, Canada March 10, 2005 Alternative Lymphocyte Proliferation Tests: BrdU and Flow Cytometry Based Tests International Beryllium Conference, Montreal, Canada March 10, 2005 Tim K. Takaro Department of Environmental and Occupational

More information

Advantages of the Alexa Fluor 488 secondary antibody conjugates

Advantages of the Alexa Fluor 488 secondary antibody conjugates Secondary Antibodies Looking on the bright side with Alexa Fluor secondary antibody conjugates Alexa Fluor 488 dye a superior alternative to FITC You have a choice when it comes to green-fluorescent dye

More information

Instructions for Use. CyAn ADP. High-speed Analyzer. Summit 4.3. 0000050G June 2008. Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835

Instructions for Use. CyAn ADP. High-speed Analyzer. Summit 4.3. 0000050G June 2008. Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835 Instructions for Use CyAn ADP High-speed Analyzer Summit 4.3 0000050G June 2008 Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835 Overview Summit software is a Windows based application that

More information

Outline. 1. Experiment. 2. Sample analysis and storage. 3. Image analysis and presenting data. 4. Probemaker

Outline. 1. Experiment. 2. Sample analysis and storage. 3. Image analysis and presenting data. 4. Probemaker Tips and tricks Note: this is just an informative document with general recommendations. Please contact support@olink.com should you have any queries. Document last reviewed 2011-11-17 Outline 1. Experiment

More information

Cell Viability Measurement

Cell Viability Measurement Cell Viability Measurement Viability is a measure of the metabolic state of a cell population which is indicative of the potential for growth Most common method: membrane integrity Trypan blue exclusion:

More information

Lab 2. Isolation of mononuclear cells from peripheral blood and separation into subpopulations

Lab 2. Isolation of mononuclear cells from peripheral blood and separation into subpopulations Lab 2 Isolation of mononuclear cells from peripheral blood and separation into subpopulations Supervisors: Sissela Broos sissela.broos@immun.lth.se tel: 222 96 78 Niclas Olsson niclas.olsson@immun.lth.se

More information

BD LSR II and FACSDiVa Software. Dr. Jens Fleischer, Basel Dr. Norbert Leclere,, Berlin

BD LSR II and FACSDiVa Software. Dr. Jens Fleischer, Basel Dr. Norbert Leclere,, Berlin BD LSR II and FACSDiVa Software, Basel Dr. Norbert Leclere,, Berlin Overview Electronics Covers Fluidics Connectors Controlpanel Sample Port On/Off The Control Panel Ease of Use The basic procedures to

More information

Compensation: An Instrumental Perspective

Compensation: An Instrumental Perspective Compensation: An Instrumental Perspective Why Digital? Visualization Issues Boston User s Group September 10, 2003 Joe Trotter Joe_Trotter@bd.com Review: Instrument Sensitivity Measuring Sensitivity -

More information

Chapter 6: Antigen-Antibody Interactions

Chapter 6: Antigen-Antibody Interactions Chapter 6: Antigen-Antibody Interactions I. Strength of Ag-Ab interactions A. Antibody Affinity - strength of total noncovalent interactions between single Ag-binding site on an Ab and a single epitope

More information

FITC Annexin V/Dead Cell Apoptosis Kit with FITC annexin V and PI, for Flow Cytometry

FITC Annexin V/Dead Cell Apoptosis Kit with FITC annexin V and PI, for Flow Cytometry FITC Annexin V/Dead Cell Apoptosis Kit with FITC annexin V and PI, for Flow Cytometry Catalog no. V13242 Table 1. Contents and storage information. Material Amount Composition Storage* Stability FITC annexin

More information

BD StemFlow Human Pluripotent Stem Cell Sorting and Analysis Kit

BD StemFlow Human Pluripotent Stem Cell Sorting and Analysis Kit BD StemFlow Human Pluripotent Stem Cell Sorting and Analysis Kit Instruction Manual Catalog No. 560461 ii Human Pluripotent Stem Cell Sorting and Analysis Kit 2009, Becton, Dickinson and Company. All rights

More information

Application Note 10. Measurement of Cell Recovery. After Sorting with a Catcher-Tube-Based. Cell Sorter. Introduction

Application Note 10. Measurement of Cell Recovery. After Sorting with a Catcher-Tube-Based. Cell Sorter. Introduction Application Note 10 Measurement of Cell Recovery After Sorting with a Catcher-Tube-Based Cell Sorter Introduction In many experiments using sorted cells, it is important to be able to count the number

More information

Chapter 12 Filters for FISH Imaging

Chapter 12 Filters for FISH Imaging Chapter 12 Filters for FISH Imaging Dan Osborn The application of in situ hybridization (ISH) has advanced from short lived, non-specific isotopic methods, to very specific, long lived, multiple color

More information

MACSQuantify Software guide. Basics of flow cytometric analysis and software guide. Version 1 EN Original instructions

MACSQuantify Software guide. Basics of flow cytometric analysis and software guide. Version 1 EN Original instructions MACSQuantify Software guide Basics of flow cytometric analysis and software guide Version 1 EN Original instructions Miltenyi Biotec GmbH Friedrich-Ebert-Straße 68 51429 Bergisch Gladbach Germany Phone:

More information

FluoProbes dyes. FluoProbes dyes directly conjugated to secondary antibodies

FluoProbes dyes. FluoProbes dyes directly conjugated to secondary antibodies FluoProbes dyes Interchim's FluoProbes dyes exhibit optimal fluorescence intensity combined with excellent photostability. Activated dyes are available independent (please request information), conjugated

More information

CyFlow SL. Healthcare Immunology. Portable FCM System for 3-colour Immunophenotyping

CyFlow SL. Healthcare Immunology. Portable FCM System for 3-colour Immunophenotyping CyFlow SL Healthcare Immunology Portable FCM System for 3-colour Immunophenotyping 01 COMPANY Flow Cytometry made in Germany New sophisticated applications and increasing requirements for reliable results

More information

Optimizing Performance of the Transcreener ADP Assay for the BioTek Synergy 2 and 4 Multi-Mode Microplate Readers

Optimizing Performance of the Transcreener ADP Assay for the BioTek Synergy 2 and 4 Multi-Mode Microplate Readers Optimizing Performance of the Transcreener ADP Assay for the BioTek Synergy 2 and 4 Multi-Mode Microplate Readers Brad Larson 1, Karen Kleman-Leyer 1, Xavier Amouretti 2 1 BellBrook Labs, Madison, WI,

More information