Correspondence should be addressed to Prof. I.T. Kim and Prof. J. Hur
|
|
- Paula Daniels
- 4 days ago
- Views:
Transcription
1 Supporting information Enabling high performance calcium-ion batteries from Prussian blue and metal-organic compound materials Thuan Ngoc Vo, a Jaehyun Hur, a,** and Il Tae Kim a,* a Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea * Correspondence should be addressed to Prof. I.T. Kim and Prof. J. Hur S1
2 Experimental Synthesis of Prussian Blue Firstly, 5.28 g of K 4 Fe(CN) 6.3H 2 O was dissolved in 125 ml of DI water to form a clear solution A. 125 ml of solution containing 2.52 g Fe(NO 3 ) 3.9H 2 O was dropped into solution A at 60 o C for 2 hours to obtain a dark blue mixture. The precipitation was isolated via centrifugation at rpm and washed with DI water/ ethanol/ acetone several times. The Prussian blue was dried at 70 o C under vacuum overnight. Synthesis of Ni-based MOCs (Nibdc, NibdcNH2, Ni4ABA) 1.66 g of 1,4-benzenedicarboxylic acid was reacted with 0.80 g of NaOH in 100 ml DI water at 90 o C for 6 hours to obtain a clear solution. Later, 1.54 g of NiCl 2 in 50 ml DI water was dropped into the aforementioned solution at 80 o C and left overnight. The obtained precipitated Nibdc was extracted via centrifugation, washed with DI water before drying at 70 o C under vacuum overnight. For the preparation of NibdcNH2 and Ni4ABA, 10 mmol of 2-amino-1,4-benzenedicarboxylic acid and 4-aminobenzoic acid were, respectively, used with an appropriate amount of NaOH. S2
3 Figure S1. Solubility test of Ni-based MOC anode materials in acetonitrile at 2 mg ml -1. S3
4 Figure S2. SEM image of the prepared Prussian blue. S4
5 Figure S3. Ex situ energy dispersive X-ray spectrum of a discharged cathode from the cell consisting of Prussian blue as a cathode and NibdcNH2 as an anode at 0.01 V The presence of current collector (stainless steel SS316L) led to the existence of other elements (Cr, Cu) within the spectrum. S5
6 Figure S4. Bode plots and residuals of equivalent models for the measured impedances of cells with Prussian blue cathode and MOCs-type anodes. a) Nibdc, b) NibdcNH2. The interpretation of EIS results was based on the residual of Z factor: residual of Z = Z Z simulate Z 100% (S1) where Z and Z simulate are the modulus of actual and simulated impedances of the system. The residual of Z indicates the difference between simulated impedances of a preferred model and observed impedances. Thus, well matched model will let the residual of Z approach 0. To analyze the observed impedances, the limitation of residual of Z was set at ±10%. S6
7 The diffusion coefficient D (cm 2 s -1 ) was calculated by the following equation: D = W2 yr 2 T 2 2A 2 n 4 F 4 C 2 (S2) where: W y is the reciprocal of the Warburg coefficient, Ss 0.5 ; R is the gas constant, J mol -1 K -1 ; T is the thermodynamic temperature, K; A is the area of the electrode, cm 2 ; n is the valence of Ca 2+ ion; F is the Faraday constant, C mol -1 ; C is the concentration of Ca 2+ ion within the electrolyte, mol cm -3 ; After carrying out the EIS simulation, the values of W y for Nibdc and NibdcNH2 cases were Ss 0.5 and Ss 0.5, respectively. S7
8 Figure S5. Weight deviation and electrical conductivity of graphite foil and stainless steel SS316L foil. The mean and the standard deviation of the mass for graphite foil (Alfa, 99.8%) were 28.7 mg and 0.86 mg cm -2, respectively. S8
Summer 2003 CHEMISTRY 115 EXAM 3(A)
Summer 2003 CHEMISTRY 115 EXAM 3(A) 1. In which of the following solutions would you expect AgCl to have the lowest solubility? A. 0.02 M BaCl 2 B. pure water C. 0.02 M NaCl D. 0.02 M KCl 2. Calculate
5.111 Principles of Chemical Science
MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Page 1 of 10 pages
Electrochemistry Voltaic Cells
Electrochemistry Voltaic Cells Many chemical reactions can be classified as oxidation-reduction or redox reactions. In these reactions one species loses electrons or is oxidized while another species gains
Redox and Electrochemistry
Name: Thursday, May 08, 2008 Redox and Electrochemistry 1. A diagram of a chemical cell and an equation are shown below. When the switch is closed, electrons will flow from 1. the Pb(s) to the Cu(s) 2+
Chem 1721 Brief Notes: Chapter 19
Chem 1721 Brief Notes: Chapter 19 Chapter 19: Electrochemistry Consider the same redox reaction set up 2 different ways: Cu metal in a solution of AgNO 3 Cu Cu salt bridge electrically conducting wire
1332 CHAPTER 18 Sample Questions
1332 CHAPTER 18 Sample Questions Couple E 0 Couple E 0 Br 2 (l) + 2e 2Br (aq) +1.06 V AuCl 4 + 3e Au + 4Cl +1.00 V Ag + + e Ag +0.80 V Hg 2+ 2 + 2e 2 Hg +0.79 V Fe 3+ (aq) + e Fe 2+ (aq) +0.77 V Cu 2+
Name Electrochemical Cells Practice Exam Date:
Name Electrochemical Cells Practice Exam Date: 1. Which energy change occurs in an operating voltaic cell? 1) chemical to electrical 2) electrical to chemical 3) chemical to nuclear 4) nuclear to chemical
Additional Lecture: TITRATION BASICS
Additional Lecture: TITRATION BASICS 1 Definition and Applications Titration is the incremental addition of a reagent solution (called titrant) to the analyte until the reaction is complete Common applications:
2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.
1. Using the Activity Series on the Useful Information pages of the exam write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as,
Determining Equivalent Weight by Copper Electrolysis
Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.
IB Chemistry. DP Chemistry Review
DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount
LEAD-ACID STORAGE CELL
3.14 MATERIALS LABORATORY MODULE BETA 1 NOVEMBER 13 17, 26 GEETHA P. BERERA LEAD-ACID STORAGE CELL OBJECTIVES: Understand the relationship between Gibbs Free Energy and Electrochemical Cell Potential.
Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ
Experiment 5 Chemical Reactions OBJECTIVES 1. To observe the various criteria that are used to indicate that a chemical reaction has occurred. 2. To convert word equations into balanced inorganic chemical
CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY
CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus
Electrochemistry - ANSWERS
Electrochemistry - ANSWERS 1. Using a table of standard electrode potentials, predict if the following reactions will occur spontaneously as written. a) Al 3+ + Ni Ni 2+ + Al Al 3+ + 3e - Al E = -1.68
Supporting Information
Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Methanol Behavior in Direct Methanol Fuel Cells Younkee Paik, Seong-Soo Kim, and Oc Hee Han * Experimental Section Preparation of MEA: Standard
ELECTROCHEMICAL CELLS
1 ELECTROCHEMICAL CELLS Allessandra Volta (1745-1827) invented the electric cell in 1800 A single cell is also called a voltaic cell, galvanic cell or electrochemical cell. Volta joined several cells together
EXPERIMENT 7 Reaction Stoichiometry and Percent Yield
EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry
5.111 Principles of Chemical Science
MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 26.1 5.111 Lecture
Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.
Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and
Chemical Reactions in Water Ron Robertson
Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds
Experiment 3 Limiting Reactants
3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The
Question Bank Electrolysis
Question Bank Electrolysis 1. (a) What do you understand by the terms (i) electrolytes (ii) non-electrolytes? (b) Arrange electrolytes and non-electrolytes from the following substances (i) sugar solution
1. Qualitative Analysis of Chromium, Iron, and Copper
1. Qualitative Analysis of Chromium, Iron, and Copper Introduction We have used copper and iron as basic materials since the Bronze and Iron Ages, but our extensive use of chromium began only after the
SODIUM CARBOXYMETHYL CELLULOSE
SODIUM CARBOXYMETHYL CELLULOSE Prepared at the 28th JECFA (1984), published in FNP 31/2 (1984) and in FNP 52 (1992). Metals and arsenic specifications revised at the 55 th JECFA (2000). An ADI not specified
Chemistry 122 Mines, Spring 2014
Chemistry 122 Mines, Spring 2014 Answer Key, Problem Set 9 1. 18.44(c) (Also indicate the sign on each electrode, and show the flow of ions in the salt bridge.); 2. 18.46 (do this for all cells in 18.44
Metals and Non-metals. Comparison of physical properties of metals and non metals
Metals and Non-metals Comparison of physical properties of metals and non metals PHYSICAL PROPERTY METALS NON-METALS Physical State Metallic lustre (having a shining surface) Mostly solids (Liquid -mercury)
Molarity of Ions in Solution
APPENDIX A Molarity of Ions in Solution ften it is necessary to calculate not only the concentration (in molarity) of a compound in aqueous solution but also the concentration of each ion in aqueous solution.
K + Cl - Metal M. Zinc 1.0 M M(NO
Redox and Electrochemistry This section should be fresh in your minds because we just did this section in the text. Closely related to electrochemistry is redox chemistry. Count on at least one question
Electrochemistry Worksheet
Electrochemistry Worksheet 1. Assign oxidation numbers to each atom in the following: a. P 4 O 6 b. BiO 3 c. N 2 H 4 d. Mg(BrO 4 ) 2 e. MnSO 4 f. Mn(SO 4 ) 2 2. For each of the reactions below identify
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/04 Paper 4 Theory (Extended) For Examination from 2016 SPECIMEN PAPER
Figure 1. A voltaic cell Cu,Cu 2+ Ag +, Ag. gas is, by convention, assigned a reduction potential of 0.00 V.
Voltaic Cells Introduction In this lab you will first prepare a set of simple standard half-cells and then measure the voltage between the half-cells with a voltmeter. From this data you will be able to
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:
The Empirical Formula of a Compound
The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,
Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.
T-27 Tutorial 4 SOLUTION STOICHIOMETRY Solution stoichiometry calculations involve chemical reactions taking place in solution. Of the various methods of expressing solution concentration the most convenient
Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.
Chapter 13: Electrochemistry Redox Reactions Galvanic Cells Cell Potentials Cell Potentials and Equilbrium Batteries Electrolysis Electrolysis and Stoichiometry Corrosion Prevention Electrochemistry The
General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction
General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not
Determination of a Chemical Formula
1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl
Electrochemical Half Cells and Reactions
Suggested reading: Chang text pages 81 89 Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various
Discovering Electrochemical Cells
Discovering Electrochemical Cells Part I Electrolytic Cells Many important industrial processes PGCC CHM 102 Cell Construction e e power conductive medium What chemical species would be present in a vessel
Paper 1 (7404/1): Inorganic and Physical Chemistry Mark scheme
AQA Qualifications AS Chemistry Paper (7404/): Inorganic and Physical Chemistry Mark scheme 7404 Specimen paper Version 0.6 MARK SCHEME AS Chemistry Specimen paper Section A 0. s 2 2s 2 2p 6 3s 2 3p 6
Sodium and Potassium chlorate synthesis, the complete guide
Sodium and Potassium chlorate synthesis, the complete guide Made by Plante1999 It is know that chlorates can be easily made. Much of the chlorate made by individual are used in pyrotechnic, but this thread
Marmara Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü / Biyokimya Anabilim Dalı PURIFICATION AND CHARACTERIZATION OF PROTEINS
EXPERIMENT VI PURIFICATION AND CHARACTERIZATION OF PROTEINS I- Protein isolation and dialysis In order to investigate its structure and properties a protein must be obtained in pure form. Since proteins
Galvanic Cells and the Nernst Equation
Exercise 7 Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Galvanic Cells and the Nernst Equation Name: Equipment Voltage probe wires 0.1 M solutions of Pb(NO 3, Fe(NO 3 ) 3, and KNO
Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V
44 CALCULATIONS INVOLVING SOLUTIONS INTRODUCTION AND DEFINITIONS Many chemical reactions take place in aqueous (water) solution. Quantities of such solutions are measured as volumes, while the amounts
CELL POTENTIAL, E. Terms Used for Galvanic Cells. Uses of E o Values CELL POTENTIAL, E. Galvanic Cell. Organize halfreactions
Electrons move from anode to cathode in the wire. Anions & cations move thru the salt bridge. Terms Used for Galvanic Cells Galvanic Cell We can calculate the potential of a Galvanic cell using one of
Chapter 7: Chemical Reactions
Chapter 7 Page 1 Chapter 7: Chemical Reactions A chemical reaction: a process in which at least one new substance is formed as the result of a chemical change. A + B C + D Reactants Products Evidence that
AP Chemistry 2005 Scoring Guidelines Form B
AP Chemistry 2005 Scoring Guidelines Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to
Practical Examples of Galvanic Cells
56 Practical Examples of Galvanic Cells There are many practical examples of galvanic cells in use in our everyday lives. We are familiar with batteries of all types. One of the most common is the lead-acid
Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)
Chapter 17 2) a) HCl and CH 3 COOH are both acids. A buffer must have an acid/base conjugate pair. b) NaH 2 PO 4 and Na 2 HPO 4 are an acid/base conjugate pair. They will make an excellent buffer. c) H
lung cancer targeted photodynamic therapy and imaging
99m Tc-Hematoporphyrin linked albumin nanoparticles for lung cancer targeted photodynamic therapy and imaging Su-Geun Yang, Ji-Eun Chang, Byungchul Shin, Sanghyun Park, Kun Na and Chang-Koo Shim* *Corresponding
Galvanic Cells. SCH4U7 Ms. Lorenowicz. Tuesday, December 6, 2011
Galvanic Cells SCH4U7 Ms. Lorenowicz 1 Electrochemistry Concepts 1.Redox reactions involve the transfer of electrons from one reactant to another 2.Electric current is a flow of electrons in a circuit
AP Chemistry 2010 Scoring Guidelines Form B
AP Chemistry 2010 Scoring Guidelines Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded
DATE PERFORMED: DATE DUE:
Sample lab report The first page is the cover page for the report. Title: Experiment #12 Determination of the Atomic Mass of Zinc ( p 117, Hunt and Block) YOUR NAME: PARTNER(S) NAME: DATE PERFORMED: DATE
Chapter 21a Electrochemistry: The Electrolytic Cell
Electrochemistry Chapter 21a Electrochemistry: The Electrolytic Cell Electrochemical reactions are oxidation-reduction reactions. The two parts of the reaction are physically separated. The oxidation reaction
CHM1 Review Exam 12. Topics REDOX
CHM1 Review Exam 12 Topics REDOX REDOX Reactions Oxidation Reduction Oxidizing agent Reducing agent Galvanic (Voltaic) Cells Anode Cathode Salt bridge Electrolyte Half-reactions Voltage o Positive voltages
DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3
DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants
10. Calculate the mass percent nitrogen in (NH 4 ) 2 CO 3 (molar mass = 96.09 g/mol). a. 29.1 % c. 17.9 % e. 14.6 % b. 35.9 % d. 0.292 % f. 96.
Chem 171-2-3: Final Exam Review Multiple Choice Problems 1. What is the molar mass of barium perchlorate, Ba(ClO 4 ) 2? a. 189.90 g/mol c. 272.24 g/mol e. 336.20 g/mol b. 240.24 g/mol d. 304.24 g/mol f.
Chapter 1 The Atomic Nature of Matter
Chapter 1 The Atomic Nature of Matter 6. Substances that cannot be decomposed into two or more simpler substances by chemical means are called a. pure substances. b. compounds. c. molecules. d. elements.
Name AP CHEM / / Collected Essays Chapter 17 Answers
Name AP CHEM / / Collected Essays Chapter 17 Answers 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the
Exp 13 Volumetric Analysis: Acid-Base titration
Exp 13 Volumetric Analysis: Acid-Base titration Exp. 13 video (time: 47:17 minutes) Titration - is the measurement of the volume of a standard solution required to completely react with a measured volume
4.4 Calculations Involving the Mole Concept
44 Section 43 Questions 1 Define Avogadro s constant, and explain its significance in quantitative analysis 2 Distinguish between the terms atomic mass and molar mass 3 Calculate the mass of a molecule
Theoretical and Experimental Modeling of Multi-Species Transport in Soils Under Electric Fields
United States National Risk Management Environmental Protection Research Laboratory Agency Cincinnati, OH 45268 Research and Development EPA/6/SR-97/54 August 997 Project Summary Theoretical and Experimental
EXPERIMENT 8: Activity Series (Single Displacement Reactions)
EPERIMENT 8: Activity Series (Single Displacement Reactions) PURPOSE a) Reactions of metals with acids and salt solutions b) Determine the activity of metals c) Write a balanced molecular equation, complete
Experiment 9 Electrochemistry I Galvanic Cell
9-1 Experiment 9 Electrochemistry I Galvanic Cell Introduction: Chemical reactions involving the transfer of electrons from one reactant to another are called oxidation-reduction reactions or redox reactions.
EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion
EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1 Introduction This lab is designed for you to discover the properties of electrochemical cells. It requires little previous knowledge of electrochemical
Building Electrochemical Cells
Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various voltaic cells and compare the data with the
6 Reactions in Aqueous Solutions
6 Reactions in Aqueous Solutions Water is by far the most common medium in which chemical reactions occur naturally. It is not hard to see this: 70% of our body mass is water and about 70% of the surface
Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction:
Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction: The development of coordination chemistry prior to 1950 involved the synthesis and characterization
SAMPLE PROBLEM 8.1. Solutions of Electrolytes and Nonelectrolytes SOLUTION STUDY CHECK
Solutions of Electrolytes and Nonelectrolytes SAMPLE PROBLEM 8.1 Indicate whether solutions of each of the following contain only ions, only molecules, or mostly molecules and a few ions: a. Na 2 SO 4,
Stoichiometry. Lecture Examples Answer Key
Stoichiometry Lecture Examples Answer Key Ex. 1 Balance the following chemical equations: 3 NaBr + 1 H 3 PO 4 3 HBr + 1 Na 3 PO 4 2 C 3 H 5 N 3 O 9 6 CO 2 + 3 N 2 + 5 H 2 O + 9 O 2 2 Ca(OH) 2 + 2 SO 2
Galvanic cell and Nernst equation
Galvanic cell and Nernst equation Galvanic cell Some times called Voltaic cell Spontaneous reaction redox reaction is used to provide a voltage and an electron flow through some electrical circuit When
Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)
Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical
ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING. Grégoire Seyrig Wenqian Shan
ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING Grégoire Seyrig Wenqian Shan College of Engineering, Michigan State University Spring 2007 ABSTRACT The groundwater with high level initial
Chapter 8: Chemical Equations and Reactions
Chapter 8: Chemical Equations and Reactions I. Describing Chemical Reactions A. A chemical reaction is the process by which one or more substances are changed into one or more different substances. A chemical
Factors Affecting Precipitation of Calcium Carbonate
Factors Affecting Precipitation of Calcium Carbonate John A. Wojtowicz Chemcon Laboratory tests with clear solutions showed that precipitation of calcium carbonate does not occur in the ph range 7.5 to
Mass of thoroughly dried filter paper. Mass of filter paper + precipitate after third drying. Mass of filter paper + precipitate after second drying
Mass of KI tablet Mass of thoroughly dried filter paper Mass of filter paper + precipitate after first drying Mass of filter paper + precipitate after second drying Mass of filter paper + precipitate after
Chemistry 151 Final Exam
Chemistry 151 Final Exam Name: SSN: Exam Rules & Guidelines Show your work. No credit will be given for an answer unless your work is shown. Indicate your answer with a box or a circle. All paperwork must
CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS
1 CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS The Chemical Equation A chemical equation concisely shows the initial (reactants) and final (products) results of
Potassium ion charge would be +1, so oxidation number is +1. Chloride ion charge would be 1, so each chlorine has an ox # of -1
Chapter 18-1 1. Assign oxidation numbers to each atom in: Ni Nickel ion charge would be +2, so oxidation number is +2 Chloride ion charge would be 1, so each chlorine has an ox # of -1 Mg 2 Ti 4 Magnesium
Recovery of Elemental Copper from Copper (II) Nitrate
Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform
I. ACID-BASE NEUTRALIZATION, TITRATION
LABORATORY 3 I. ACID-BASE NEUTRALIZATION, TITRATION Acid-base neutralization is a process in which acid reacts with base to produce water and salt. The driving force of this reaction is formation of a
Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness
Journal of ELECTRONIC MATERIALS, Vol. 36, No. 11, 2007 DOI: 10.1007/s11664-007-0270-x Ó 2007 TMS Special Issue Paper -Cu Intermetallic Grain Morphology Related to Layer Thickness MIN-HSIEN LU 1 and KER-CHANG
Amino Acids, Peptides, and Proteins
1 Amino Acids, Peptides, and Proteins Introduction Amino Acids Amino acids are the building blocks of proteins. In class you learned the structures of the 20 common amino acids that make up proteins. All
Chemistry Diagnostic Questions
Chemistry Diagnostic Questions Answer these 40 multiple choice questions and then check your answers, located at the end of this document. If you correctly answered less than 25 questions, you need to
AP* Chemistry ELECTROCHEMISTRY
Terms to Know: AP* Chemistry ELECTROCHEMISTRY the study of the interchange of chemical and electrical energy OIL RIG oxidation is loss, reduction is gain (of electrons) Oxidation the loss of electrons,
Faraday s Law 1. Experiment 8: Copper Electroplating and Faraday s Law 1
Faraday s Law 1 Experiment 8: Copper Electroplating and Faraday s Law 1 Purpose: An electrochemical cell is constructed to determine the efficiency of copper electroplating. Chemical treatments are tested
CORROSION PROTECTION METHODS OF STRUCTURAL STEEL AGAINST ATMOSPHERIC CORROSION
CORROSION PROTECTION METHODS OF STRUCTURAL STEEL AGAINST ATMOSPHERIC CORROSION E. Daflou a, E. Rakanta b, *G. Batis c a Chemical Engineer, Chemical Engineering School, Section of Materials Science and
Summer Holidays Questions
Summer Holidays Questions Chapter 1 1) Barium hydroxide reacts with hydrochloric acid. The initial concentration of the 1 st solution its 0.1M and the volume is 100ml. The initial concentration of the
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/03 Paper 3 Theory (Core) For Examination from 2016 SPECIMEN PAPER 1 hour
Name: Class: Date: 2 4 (aq)
Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of
The Atomic Mass of an Unknown Metal
The Atomic Mass of an Unknown Metal Background Historically, a relative atomic mass scale for the elements was gradually assembled from many experiments leading up to Mendeleev's eventual arrangement of
Electrochemistry. Chapter 18 Electrochemistry and Its Applications. Redox Reactions. Redox Reactions. Redox Reactions
John W. Moore Conrad L. Stanitski Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 18 Electrochemistry and Its Applications Stephen C. Foster Mississippi State University Electrochemistry
Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.
GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all
The Periodic Table: Periodic trends
Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has
H 2 + O 2 H 2 O. - Note there is not enough hydrogen to react with oxygen - It is necessary to balance equation.
CEMICAL REACTIONS 1 ydrogen + Oxygen Water 2 + O 2 2 O reactants product(s) reactant substance before chemical change product substance after chemical change Conservation of Mass During a chemical reaction,
Elements, Atoms & Ions
Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Elements, Atoms & Ions Chapter 4 1 2 Elements Aims: To learn about the relative abundances of the elements,
Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole
Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present
Prussian blue and cyanotype printing
CHEM 101lab, fall 2008, J. Peters and cyanotype printing Ferric ferrocyanide, commonly known as, was first synthesized in 1704 in Berlin. has a very intense dark blue color and has been used extensively
Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.
TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present