Notes on Groups S O(3) and S U(2)


 Bryce Page
 1 years ago
 Views:
Transcription
1 Notes on Groups S O(3) and S U() Ivan G. Avramidi New Mexico Institute of Mining and Technology October, 011 Author: IGA File: su.tex; Date: November 9, 011; Time: 10:07
2 1 1 Group S O(3) 1.1 Algebra so(3) The generators X i = X i, i = 1,, 3, of the algebra so(3) are 3 3 real antisymmetric matrices defined by or X 1 = , X = , X 3 = , (1.1) (X i ) k j = ε k i j = ε ik j (1.) Raising and lowering a vector index does not change anything; it is done just for convenience of notation. These matrices have a number of properties and where Therefore, they satisfy the algebra The Casimir operator is defined by X i X j = E ji Iδ i j, (1.3) ε i jk X k = E i j E ji (1.4) (E ji ) kl = δ k j δl i (1.5) [X i, X j ] = ε k i jx k (1.6) X = X i X i (1.7) It is equal to and commutes with all generators X = I (1.8) [X i, X ] = 0. (1.9) su.tex; November 9, 011; 10:07; p. 1
3 where A general element of the group S O(3) in canonical coordinates y i has the form exp (X(y)) = I cos r + P(1 cos r) + X(y) sin r r (1.10) = P + Π cos r + X(y) sin r, r (1.11) r = y i y i, θ i = yi r X(y) = X i y i, and the matrices Π and P are defined by In particular, for r = π we have (1.1) P i j = θ i θ j (1.13) Π i j = δ i j θ i θ j (1.14) exp (X(y)) = P Π (1.15) Notice that and, therefore, tr P = 1, tr Π = (1.16) tr exp (X(y)) = 1 + cos r. (1.17) Also, det sinh X(y) X(y) ( ) sin r = (1.18) r 1. Representations of S O(3) Let X i be the generators of S O(3) in a general irreducible representation satisfying the algebra [X i, X j ] = ε i jk X k (1.19) They are determined by symmetric traceless tensors of type ( j, j) (with j a positive integer) (X i ) l 1...l j k1...k j = jε (l 1 i(k1 δ l k δ l j) k j ) (1.0) Then X = j( j + 1)I (1.1) su.tex; November 9, 011; 10:07; p.
4 3 where Another basis of generators is (J +, J, J 3 ), where I l 1...l jk1...k j = δ (l 1 (k 1 δ l j) k j ) (1.) J + = ix 1 + X (1.3) J = ix 1 X (1.4) J 3 = ix 3 (1.5) so that J + = J, J 3 = J 3. (1.6) They satisfy the commutation relations [J +, J ] = J 3, [J 3, J + ] = J +, [J 3, J ] = J. (1.7) The Casimir operator in this basis is X = J + J J 3 + J 3 = J J + J 3 J 3 (1.8) From the commutation relations we have J 3 J + = J + (J 3 + 1) (1.9) J 3 J = J (J 3 1) (1.30) J J + = X J 3 J 3 (1.31) J + J = X J 3 + J 3 (1.3) Since J 3 commutes with X they can be diagonalized simultaneously. Since they are both Hermitian, they have real eigenvalues. Notice also that since X i are antihermitian, then X 0. (1.33) Let λ, m be the basis in which both operators are diagonal, that is, X λ, m = λ λ, m (1.34) J 3 λ, m = m λ, m (1.35) There are many ways to show that the eigenvalues m of the operator J 3 are integers. Now, since X 1 + X = X X 3 = X + J 3 0 (1.36) su.tex; November 9, 011; 10:07; p. 3
5 4 then the eigenvalues of J 3 are bounded by a maximal integer j, m j (1.37) that is, m takes ( j + 1) values j, j + 1,, 1, 0, 1,, j 1, j (1.38) From the commutation relations above we have J + λ, m = const λ, m + 1 (1.39) J λ, m = const λ, m 1 (1.40) Let λ, 0 be the eigenvector corresponding to the eigenvalue m = 0, that is J 3 λ, 0 = 0. (1.41) Then for positive m > 0 λ, m = a λm J+ m λ, 0 (1.4) λ, m = a λ, m J m λ, m (1.43) Then J + λ, j = 0 (1.44) J λ, j = 0 (1.45) Therefore, 0 = J J + λ, j = ( X J 3 J 3) λ, j (1.46) 0 = J + J λ, j = ( X J 3 + J 3) λ, j (1.47) Thus, ( λ j j ) λ, j = 0 (1.48) So, the eigenvalues of the Casimir operator X are labeled by a nonnegative integer j 0, λ j = j( j + 1). (1.49) su.tex; November 9, 011; 10:07; p. 4
6 5 These eigenvalues have the multiplicity d j = j + 1. (1.50) In particular, for j = 1 we get λ 1 = as expected before. From now on we will denote the basis in which the operators X and J 3 are diagonal by λ j, m = j. (1.51) m The matrix elements of the generators J ± can be computed as follows. First of all, j m J j 3 = δ m mm m (1.5) We have and This gives j j( j + 1) = m J j j + m 1 m 1 J j + m m (1.53) m j m J j j + = m 1 m 1 J j m j m J j + m j m J j m (1.54) = δ m,m 1 ( j + m)( j m + 1) (1.55) = δ m,m+1 ( j m)( j + m + 1) (1.56) The matrix elements of the generators X i are j m X j i 1 = δ m m,m 1 ( j + m)( j m + 1) i +δ m,m+1 ( j m)( j + m + 1) (1.57) j m X j 1 = δ m m,m 1 ( j + m)( j m + 1) 1 δ m,m+1 ( j m)( j + m + 1) (1.58) j m X j 3 = δ m mm im (1.59) su.tex; November 9, 011; 10:07; p. 5
7 6 Thus, irreducible representations of S O(3) are labeled by a nonnegative integer j 0. The matrices of the representation j in canonical coordinates y i will be denoted by j D j mm (y) = m exp [ X(y) ] j (1.60) m where X(y) = X i y i. The characters of the irreducible representations are χ j (y) = j Dmm(y) j = m= j Group S U() j e imr = 1 + m= j j cos(mr) (1.61) m=1.1 Algebra su() Pauli matrices σ i = σ i, i = 1,, 3, are defined by 0 1 σ 1 = 1 0, σ 0 i = i 0, σ 3 = They have the following properties (.1) σ i = σ i (.) σ i = I (.3) det σ i = 1 (.4) tr σ i = 0, (.5) σ 1 σ = iσ 3 (.6) σ σ 3 = iσ 1 (.7) σ 3 σ 1 = iσ (.8) σ 1 σ σ 3 = ii (.9) (.10) which can be written in the form σ i σ j = δ i j I + iε i jk σ k. (.11) su.tex; November 9, 011; 10:07; p. 6
8 7 They satisfy the following commutation relations The traces of products are Also, there holds [σ i, σ j ] = iε i jk σ k (.1) tr σ i σ j = δ i j (.13) tr σ i σ j σ k = iε i jk (.14) σ i σ i = 3I. (.15) The Pauli matrices satisfy the anticommutation relations σ i σ j + σ j σ i = δ i j I (.16) Therefore, Pauli matrices form a representation of Clifford algebra in 3 dimensions and are, in fact, Dirac matrices σ i = (σ i B ), where A, B = 1,, in 3 dimen A sions. The spinor metric E = (E AB ) is defined by 0 1 E = 1 0. (.17) Notice that and the inverse metric E 1 = (E AB ) is Then E = iσ (.18) E 1 = E (.19) σ T i = Eσ i E 1 (.0) This allows to define the matrices Eσ i = (σ i AB ) with covariant indices Eσ 1 = 1 0 σ 3 = 0 1, (.1) Eσ = i 0 ii = 0 i, (.) Eσ 3 = 0 1 σ 1 = 1 0. (.3) su.tex; November 9, 011; 10:07; p. 7
9 8 Notice that the matrices Eσ i are all symmetric (Eσ i ) T = Eσ i (.4) Pauli matrices satisfy the following completeness relation which implies This gives In a more symmetric form σ i A B σ i C D = δ A Dδ C B δ A Bδ C D (.5) σ i (A (B σ i C) D) = δ (A (Bδ C) D) (.6) σ i AB σ i CD = E AD E CB E AB E CD (.7) σ i AB σ i CD = E AD E CB + E BD E CA (.8) A spinor is a two dimensional complex vector ψ = (ψ A ), A = 1, in the spinor space C. We use the metric E to lower the index to get the covariant components which defines the cospinor ψ = (ψ A ) We also define the conjugated spinor ψ = ( ψ A ) by ψ A = E AB ψ B (.9) ψ = Eψ (.30) ψ A = ψ A (.31) On the complex spinor space there are two invariant bilinear forms ψ, ϕ = ψϕ = ψ A ϕ A (.3) and Note that and ψϕ = ψ A ϕ A = E AB ψ B ϕ A = ψ 1 ϕ ψ ϕ 1 (.33) ψ, ψ = ψψ = ψ A ψ A = ψ 1 + ψ (.34) ψψ = ψ A ψ A = 0 (.35) su.tex; November 9, 011; 10:07; p. 8
10 9 The matrices X i = i σ i (.36) are the generators of the Lie algebra su() with the commutation relations [X i, X j ] = ε i jk X k (.37) The Casimir operator is It commutes with all generators X = X i X i (.38) [X i, X ] = 0. (.39) There holds X = 3 4 I (.40) Notice that tr X i X j = 1 δ i j (.41) X = j( j + 1)I (.4) with j = 1, which determines the fundamental representation of S U(). An arbitrary element of the group S U() in canonical coordinates y i has the form ( i ) exp σ jy j = I cos r + iσ jθ j sin r, (.43) This can be written in the form exp (X(y)) = I cos(r/) + X(y) sin(r/). (.44) r/ where X(y) = X i y i. In particular, for r = π exp (X(y)) = I. (.45) Obviously, tr exp (X(y)) = cos(r/) (.46) su.tex; November 9, 011; 10:07; p. 9
11 10. Representations of S U() We define symmetric contravariant spinors ψ A 1...A j of rank j. Each index here can be lowered by the metric E AB. The number of independent components of such spinor is precisely j 1 = ( j + 1) (.47) i=0 Let X i be the generators of S U() in a general irreducible representation satisfying the algebra [X i, X j ] = ε i jk X k (.48) They are determined by symmetric spinors of type ( j, j) Then (X k ) A 1...A j B1...B j = i jσ k (A 1(B1 δ A B δ A j) B j ) (.49) X = j( j + 1)I (.50) where I A 1...A j B 1...B j = δ (A 1 (B 1 δ A j) B j ) (.51) Another basis of generators is J + = ix 1 + X (.5) J = ix 1 X (.53) J 3 = ix 3 (.54) They have all the properties of the generators of S O(3) discussed above except that the operator J 3 has integer eigenvalues m. One can show that they can be either integers or halfintegers taking ( j + 1) values j, j + 1,..., j 1, j, m j (.55) with j being a positive integer or halfinteger. If j is integer, then all eigenvalues m of J 3 are integers including 0. If j is a halfinteger, then all eigenvalues m are halfintegers and 0 is excluded. We choose a basis in which the operators X and J 3 are diagonal. Let ψ = ψ A 1...A j be a symmetric spinor of rank j. Let e 1 = (e A 1 ) and e = (e A ) be the basis cospinors defined by e 1 A = δ A 1, e A = δ A. (.56) su.tex; November 9, 011; 10:07; p. 10
12 11 Let e j,m A 1...A j+m B 1...B j m = e 1 (A1 e 1 A j+m e B1 e B j m ) = δ (A 1 1 δ A j+m 1 δ B 1 δb j m) (.57) Then this is an eigenspinor of the operator J 3 with the eigenvalue m Then the spinors J 3 e j,m = me j,m (.58) j ( ) 1/ ( j)! = e j,m (.59) m ( j + m)!( j m)! form an orthonormal basis in the space of symmetric spinors of rank j. The matrix elements of the generators X i are given by exactly the same formulas j m X j i 1 = δ m m,m 1 ( j + m)( j m + 1) i +δ m,m+1 ( j m)( j + m + 1) (.60) j m X j 1 = δ m m,m 1 ( j + m)( j m + 1) 1 δ m,m+1 ( j m)( j + m + 1) (.61) j m X j 3 = δ m mm im (.6) but now j and m are either both integers or halfintegers. Thus, irreducible representations of S U() are labeled by a nonnegative halfinteger j 0. The matrices of the representation j in canonical coordinates y i are j D j mm (y) = m exp [ X(y) ] j (.63) m where X(y) = X i y i. The representations of S U() with integer j are at the same time representations of S O(3). However, representations with halfinteger j do not give representations of S O(3), since for r = π D j mm (y) = δ mm. (.64) su.tex; November 9, 011; 10:07; p. 11
13 1 The characters of the irreducible representations are: for integer j χ j (y) = and for halfinteger j χ j (y) = 1 + j j Dmm(y) j = m= j k= 1 j D j 1 +k, 1 +k(y) = 1 + j j e imr = 1 + m= j k= 1 j exp j cos(mr) (.65) m=1 [ ( ) ] 1 i + k r = Now, let X i and Y j be the generators of two representations and let Then G i generate the product representation X Y and j k=1 [( ) ] 1 cos + k r (.66) G i = X i I Y + I X Y i (.67) exp[g(y)] = exp[x(y)] exp[y(y)] (.68) Therefore, the character of the product representation factorizes χ G (y) = χ X (y)χ Y (y) (.69).3 Double Covering Homomorphism S U() S O(3) Recall that the matrices Eσ i = (σ i AB ) are symmetric and the matrix E = (E AB ) is antisymmetric. Let ψ AB be a symmetric spinor. Then one can form a vector A i = σ i BA ψ AB = tr (Eσ i ψ). (.70) Conversely, given a vector A i we get a symmetric spinor of rank by ψ AB = 1 Ai σ i AB (.71) or ψ = 1 Ai σ i E 1 (.7) More generally, given a symmetric spinor of rank j we can associate to it a symmetric tensor of rank j by A i1...i j = σ i1 A 1 B 1 σ i j A j B j ψ A 1...A j B 1...B j (.73) su.tex; November 9, 011; 10:07; p. 1
14 13 One can show that this tensor is traceless. Indeed by using the eq. (??) and the fact that the spinor is symmetric we see that the tensor A is traceless. The inverse transformation is defined by ψ A1...A j B 1...B j = 1 j Ai 1...i j σ i1 A 1 B 1 σ i j A j B j (.74) The double covering homomorphism Λ : S U() S O(3) (.75) is defined as follows. Let U S U(). Then the matrices Uσ i U 1 satisfy all the properties of the Pauli matrices and are therefore in the algebra su(). Therefore, Uσ i U 1 = Λ j i(u)σ j. (.76) That is, Λ i j(u) = 1 tr σi Uσ j U 1 (.77) The matrix Λ(U) depends on the matrix U and is, in fact, in S O(3). For infinitesimal transformations U = exp(x k y k ) = I + i σ ky k + (.78) the matrix Λ is Λ i j = δ i j + ε i jk y k + = [ exp(x k y k ) ] i j (.79) It is easy to see that So, in short where Λ(I) = Λ( I) = I. (.80) Λ(exp(X i y i )) = exp(λ(x i )y i ) (.81) [Λ(σ k )] i j = iε i k j (.8) 3 Invariant Vector Fields Let y i be the canonical coordinates on the group S U() ranging over ( π, π). The position of the indices on the coordinates will be irrelevant, that is, y i = y i. We introduce the radial coordinate r = y = y i y i, so that the geodesic distance su.tex; November 9, 011; 10:07; p. 13
15 14 from the origin is equal to r, and the angular coordinates (the coordinates on S ) θ i = ŷ i = y i /r. Let us consider the fundamental representation of the group S U() with generators T a = iσ a, where σ a are the Pauli matrices satisfying the algebra Let T(y) = T i y i. Then where (y, p) = y i p i, (y p) k = ε i jk y i p j and Therefore, where ŷ is a unit vector. Next, we compute [T a, T b ] = ε c abt c. (3.83) T(y)T(p) = (y, p) T(y p) (3.84) [T(y)] = y I (3.85) exp[rt(ŷ)] = cos r + T(ŷ) sin r (3.86) exp[t(f(r ˆq, ρ ˆp))] = cos r cos ρ (ˆq, ˆp) sin r sin ρ + cos r sin ρt( ˆp) + cos ρ sin rt(ˆq) sin r sin ρt(ˆq ˆp) (3.87) This defines the group multiplication map F(q, p) in canonical coordinates. This map has a number of important properties. In particular, F(0, p) = F(p, 0) = p and F(p, p) = 0. Another obvious but very useful property of the group map is that if q = F(ω, p), then ω = F(q, p) and p = F( ω, q). Also, there is the associativity property and the inverse property F(ω, F(p, q)) = F(F(ω, p), q) (3.88) F( p, ω) = F(ω, p). (3.89) This map defines all the properties of the group. We introduce the matrices L α b(x) = y b Fα (y, x), (3.90) y=0 R α b(x) = y b Fα (x, y), (3.91) y=0 su.tex; November 9, 011; 10:07; p. 14
16 15 Let X and Y be the inverses of the matrices L and R, that is, Also let so that LX = XL = RY = YR = I. (3.9) D = XR, D 1 = YL (3.93) L = RD 1, X = DY (3.94) Let C a be the matrices of the adjoint representation defined by and C = C(x) be the matrix defined by Then one can show that X = exp(c) I C L = It is easy to see also that (C a ) b c = ε b ac (3.95) C = C a x a. (3.96), Y = I exp( C) C, (3.97) C exp(c) I, R = C I exp( C). (3.98) x a = L a bx b = R a bx b = X a bx b = Y a bx b. (3.99) and and as well as X = Y T, L = R T (3.100) ( ) sinh(c/) XY = YX =, C/ (3.101) ( ) C/ LR = RL =, sinh(c/) (3.10) D = XR = RX = exp(c), D T = YL = LY = exp( C). (3.103) su.tex; November 9, 011; 10:07; p. 15
17 16 Note that where r = x and with θ i = x i /r. Therefore, C = 4r Π, (3.104) Π i j = δ i j θ i θ j (3.105) C n = ( 1) n (r) n Π, C n+1 = ( 1) n (r) n C (3.106) Therefore, the eigenvalues of the matrix C are (ir, ir, 0), and for any analytic function f (C) = f (0)(I Π) + Π 1 and, therefore, This enables one to compute Then one can show that [ f (ir) + f ( ir) ] + 1 4ir C [ f (ir) f ( ir ] tr f (C) = f (0) + f (ir) + f ( ir) (3.107) det f (C) = f (0) f (ir) f ( ir) (3.108) Y = I Π + sin r r X = I Π + sin r r cos rπ 1 sin r cos rπ + 1 C (3.109) r sin r C (3.110) r R = I Π + r cot rπ + 1 C (3.111) L = I Π + r cot rπ 1 C (3.11) D = I Π + Π cos(r) + sin(r) C (3.113) r x µ Fα (x, y) = L α γ(f(x, y))x γ µ(x), (3.114) x µ Fα (y, x) = R α γ(f(y, x))y γ µ(x). (3.115) These matrices satisfy important identities µ X a ν ν X a µ = ε a bcx b µx c ν, (3.116) µ Y a ν ν Y a µ = ε a bcy b µy c ν. (3.117) su.tex; November 9, 011; 10:07; p. 16
18 17 and Let us define the oneforms They satisfy important identities Next, we define the vector fields. L µ a µ L ν b L µ b µ L ν a = ε c abl γ c, (3.118) R µ a µ R ν b R µ b µ R ν a = ε c abr ν c. (3.119) σ a = X a µ(x)dx µ, σ a + = Y a µ(x)dx µ. dσ a = ε a bcσ b σ c, (3.10) dσ a + = ε a bcσ b + σ c +. (3.11) K a = L µ a(x) µ, K + a = R µ a(x) µ. These are the rightinvariant and the leftinvariant vector fields on the group. They are related by K a = D a b K + b (3.1) They form two representations of the group S U() and satisfy the algebra [K + a, K + b ] = εc abk + c (3.13) [K a, K b ] = εc abk c (3.14) [K + a, K b ] = 0 (3.15) That is, the leftinvariant vector fields commute with the rightinvariant ones. Now, let T a be the generators of some representation of the group S U() satisfying the same algebra. Then, of course, exp[t(ω)] exp[t(p)] = exp[t(f(ω, p))] (3.16) First, one can derive a useful commutation formula exp[t(ω)]t b exp[ T(ω)] = D a bt a, (3.17) where the matrix D = (D a b) is defined by D = exp C. More generally, exp[t(ω)] exp[t(p)] exp[ T(ω)] = exp[t(d(ω)p)]. (3.18) su.tex; November 9, 011; 10:07; p. 17
19 18 Next, one can show that This means that exp[ T(ω)] ω i exp[t(ω)] = Ya it a, (3.19) ω i exp[t(ω)] = Ya i exp[t(ω)]t a = Y i a T a exp[t(ω)], (3.130) The Killing vectors have important properties K + a exp[t(ω)] = (exp[t(ω)])t a (3.131) K a exp[t(ω)] = T a (exp[t(ω)]) (3.13) This immediately leads to further important equations and exp[k + (p)] exp[t(ω)] = exp[t(ω)] exp[t(p)] (3.133) exp[k (q)] exp[t(ω)] = exp[t(q)] exp[t(ω)] (3.134) where K ± (p) = p a K ± a. More generally, exp[k + (p) + K (q)] exp[t(ω)] = exp[t(q)] exp[t(ω)] exp[t(p)] (3.135) and, therefore, exp[k + (p) + K (q)] exp[t(ω)] = exp[t(q)] exp[t(p)] = exp[t(f(q, p))] ω=0 (3.136) In particular, for the adjoint representation this formulas take the form DC b = D a bc a D (3.137) K + a D = DC a (3.138) K a D = C a D (3.139) exp[k + (p)]d(x) = D(x)D(p) (3.140) exp[k (q)]d(x) = D(q)D(x) (3.141) exp[k + (p) + K (q)]d(x) = D(q)D(x)D(p) (3.14) su.tex; November 9, 011; 10:07; p. 18
20 19 Then for a scalar function f (ω) the action of the rightinvariant and leftinvariant vector fields is simply exp[k + (p)] f (ω) = f (F(ω, p)), exp[k (q)] f (ω) = f (F(q, ω)). (3.143) Since the action of these vector fields commutes, we have more generally Therefore, that is, exp[k + (p) + K (q)] f (ω) = f (F(q, F(ω, p))). (3.144) exp[k + (p) + K (q)] f (ω) = f (F(q, p)). (3.145) ω=0 The biinvariant metric is defined by g αβ = δ ab Y a αy b β = δ ab X a αx b β (3.146) g αβ = δ ab L α al β b = δ ab R α ar β b, (3.147) ( ) sinh[c/] g = = I Π + sin r Π. (3.148) C/ r The Riemannian volume elements of the metric g is defined as usual where dvol = g 1/ (x)dx 1 dx dx 3 (3.149) g 1/ = (det g µν ) 1/ = sin r r. (3.150) Thus the biinvariant volume element of the group is dvol (x) = sin r r dx = sin r dr dθ (3.151) where dx = dx 1 dx dx 3, and dθ is the volume element on S. The invariance of the volume element means that for any fixed p dvol (x) = dvol (F(x, p)) = dvol (F(p, x)) (3.15) Notice also, that F(p, q) is nothing but the geodesic distance between the points p and q. su.tex; November 9, 011; 10:07; p. 19
21 0 We will always use the orthonormal basis of the rightinvariant vector fields K + a and oneforms σ a + and denote the covariant derivative with respect to K + a simply by a. The LeviCivita connection of the biinvariant metric in the rightinvariant basis is defined by a K + b = εc bak + c (3.153) so that the coefficients of the affine connection are so that for an arbitrary vector ω a bc = σ a +( c K + b ) = εa bc. (3.154) a V = [ (K + a V b ) + ε b cav c] K + b (3.155) Then where a K d = Mb dak + b (3.156) M b da = K + a D d b + ε b cad d c = ε b cad d c + ε b cad d c = ε b cad d c (3.157) so that Now, the curvature tensor is The Ricci curvature tensor and the scalar curvature are The scalar Laplacian is One can show that Further, a K d = εb cad d c K + b (3.158) R a bcd = ε f cdε a f b. (3.159) R ab = δ ab, R = 6. (3.160) 0 = δ ab K a K b = δab K + a K + b. (3.161) 0 ω sin ω = ω sin ω (3.16) 0 exp[t(ω)] = (exp[t(ω)])t = T exp[t(ω)] (3.163) su.tex; November 9, 011; 10:07; p. 0
22 1 where T = T a T a. This means that exp[t 0 ] exp[t(ω)] = exp(tt ) exp[t(ω)] (3.164) The Killing vector fields K a ± are divergence free, which means that they are antiselfadjoint with respect to the invariant measure dvol (ω). that is, Thus the Laplacian 0 is selfadjoint with respect to the same measure as well. Let be the total connection on a vector bundle V realizing the representation G. Let us define the oneforms A = σ a +G a = G a Y a µdx µ. (3.165) and F = da + A A. Then, by using the above properties of the rightinvariant oneforms we compute where F = 1 F abσ a + σ b + = 1 F aby a µy b νdx µ dx ν (3.166) F ab = ε c abg c (3.167) Thus A is the YangMills curvature on the vector bundle V with covariantly constant curvature. The covariant derivative of a section of the bundle V is then (recall that a = K + a ) a ϕ = (K + a + G a )ϕ (3.168) and the covariant derivative of a section of the endomorphism bundle End(V) along the rightinvariant basis is then Therefore, we find a Q = K + a Q + [G a, Q] (3.169) a G b = ε c bag c + [G a, G b ] = 0. (3.170) Then the derivatives along the leftinvariant vector fields are K a ϕ = (K a + B a )ϕ (3.171) where K a Q = K a Q + [B a, Q] (3.17) B a = D a b G b (3.173) su.tex; November 9, 011; 10:07; p. 1
23 The Laplacian takes the form = a a = (K + a + G a )(K + a + G a ) = 0 + G a K + a + G (3.174) where G = G i G i. We want to rewrite the Laplacian in terms of Casimir operators of some representations of the group S U(). The covariant derivatives a do not form a representation of the algebra S U(). The operators that do are the covariant Lie derivatives. The covariant Lie derivatives along a Killing vector ξ of sections of this vector bundle are defined by L ξ = ξ 1 σa +( b ξ)ε bc ag c (3.175) By denoting the Lie derivatives along the Killing vectors K ± a by K ± a this gives for the rightinvariant and the leftinvariant bases K + a = L K + a = a + G a = K + a + G a. (3.176) K a = L K a = K a B a = K a. (3.177) It is easy to see that these operators form the same algebra S U() S U() [K + a, K + b ] = εc abk + c (3.178) [K a, K b ] = εc abk c (3.179) [K + a, K b ] = 0 (3.180) Now, the Laplacian is given now by the sums of the Casimir operators = K G (3.181) where K = 1 K K (3.18) and K ± = K ± a K ± a. 4 Heat Kernel on S 3 Our goal is to evaluate the heat kernel diagonal. Since it is constant we can evaluate it at any point, say, at the origin. We use the geodesic coordinates y i defined su.tex; November 9, 011; 10:07; p.
24 3 above. That is why, we will evaluate the heat kernel when one point is fixed at the origin. We will denote it simply by U(t; y). We obviously have exp(t ) = exp ( tg ) exp ( tk ). (4.1) Therefore, the heat kernel is equal to U(t, y) = exp ( tg ) ( t ) Ψ, y (4.) where Ψ(t, y) = exp(tk )δ(y) is the heat kernel of the operator K. 4.1 Scalar Heat Kernel Let Φ(t, ω) = (4πt) 3/ e t n= ω + πn sin ω ) ( ω + πn) exp ( 4t One can show by direct calculation that this function satisfies the equation (4.3) t Φ = 0 Φ (4.4) with the initial condition Φ(0, ω) = δ S 3(ω) (4.5) Therefore, this is the scalar heat kernel on the group S U() and, therefore, on S 3. Now, let us compute the integral Ψ(t) = dvol (ω)φ(t, ω) exp[t(ω)] (4.6) S U() Obviously, Ψ(0) = 1. Next, we have t Ψ = dvol (ω) exp[t(ω)] 0 Φ(t, ω) (4.7) S U() Now, by integrating by parts we get t Ψ = DωΦ(t, ω) 0 exp[t(ω)] (4.8) S U() which gives t Ψ = ΨT (4.9) su.tex; November 9, 011; 10:07; p. 3
25 4 Thus, we obtain a very important equation exp(tt ) = dvol (ω) Φ(t, ω) exp[t(ω)] (4.10) S U() This is true for any representation of S U(). We derive two corollaries. First, we get exp(tt ) = dvol (ω) Φ(t, ω) exp[t(p)] exp[t(ω)] exp[ T(p)] (4.11) S U() which means that for any p or Also, we see that exp[(t + s)t ] = Φ(t, ω) = Φ(t, F( p, F(ω, p)). (4.1) Φ(t, F(p, q)) = Φ(t, F(q, p)). (4.13) S 3 S 3 dvol (q)dvol (p)φ(t, q)φ(s, p) exp[t(q)] exp[t(p)] (4.14) By changing the variables z = F(q, p) and p p we obtain exp[(t + s)t ] = dvol (z) dvol (p)φ(t, F(p, z))φ(s, p) exp[t(z)] which means that S U() S U() S U() (4.15) dvol (p)φ(t, F(p, z))φ(s, p) = Φ(t + s, z) (4.16) In particular, for z = 0 and s = t this becomes dvol (p)φ(t, p)φ(t, p) = Φ(t, 0) (4.17) S U() su.tex; November 9, 011; 10:07; p. 4
Chapter 9 Unitary Groups and SU(N)
Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three
More informationSemiSimple Lie Algebras and Their Representations
i SemiSimple Lie Algebras and Their Representations Robert N. Cahn Lawrence Berkeley Laboratory University of California Berkeley, California 1984 THE BENJAMIN/CUMMINGS PUBLISHING COMPANY Advanced Book
More informationSome notes on group theory.
Some notes on group theory. Eef van Beveren Departamento de Física Faculdade de Ciências e Tecnologia P COIMBRA (Portugal) February Contents Some intuitive notions of groups.. What is a group?..............................
More informationA Modern Course on Curves and Surfaces. Richard S. Palais
A Modern Course on Curves and Surfaces Richard S. Palais Contents Lecture 1. Introduction 1 Lecture 2. What is Geometry 4 Lecture 3. Geometry of InnerProduct Spaces 7 Lecture 4. Linear Maps and the Euclidean
More informationAn Introduction to 3Dimensional Contact Topology. XiaoSong Lin
An Introduction to 3Dimensional Contact Topology XiaoSong Lin 2 Contents Preface 5 1 Basics 7 1.1 Contact structures............................... 7 1.2 Symplectic structures..............................
More informationRIGID MODULES OVER PREPROJECTIVE ALGEBRAS
RIGID MODULES OVER PREPROJECTIVE ALGEBRAS CHRISTOF GEISS, BERNARD LECLERC, AND JAN SCHRÖER Abstract. Let Λ be a preprojective algebra of simply laced Dynkin type. We study maximal rigid Λmodules, their
More informationINTRODUCTION TO THE THEORY OF BLACK HOLES
ITPUU09/11 SPIN09/11 INTRODUCTION TO THE THEORY OF BLACK HOLES internet: Gerard t Hooft Institute for Theoretical Physics Utrecht University and Spinoza Institute Postbox 80.195 3508 TD Utrecht, the
More information8430 HANDOUT 3: ELEMENTARY THEORY OF QUADRATIC FORMS
8430 HANDOUT 3: ELEMENTARY THEORY OF QUADRATIC FORMS PETE L. CLARK 1. Basic definitions An integral binary quadratic form is just a polynomial f = ax 2 + bxy + cy 2 with a, b, c Z. We define the discriminant
More informationMODULES OVER A PID KEITH CONRAD
MODULES OVER A PID KEITH CONRAD Every vector space over a field K that has a finite spanning set has a finite basis: it is isomorphic to K n for some n 0. When we replace the scalar field K with a commutative
More informationOrthogonal Bases and the QR Algorithm
Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries
More informationThe Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonaldiagonalorthogonal type matrix decompositions Every
More informationSpaceTime Approach to NonRelativistic Quantum Mechanics
R. P. Feynman, Rev. of Mod. Phys., 20, 367 1948 SpaceTime Approach to NonRelativistic Quantum Mechanics R.P. Feynman Cornell University, Ithaca, New York Reprinted in Quantum Electrodynamics, edited
More informationHow Bad is Forming Your Own Opinion?
How Bad is Forming Your Own Opinion? David Bindel Jon Kleinberg Sigal Oren August, 0 Abstract A longstanding line of work in economic theory has studied models by which a group of people in a social network,
More informationA Tutorial on Spectral Clustering
A Tutorial on Spectral Clustering Ulrike von Luxburg Max Planck Institute for Biological Cybernetics Spemannstr. 38, 7276 Tübingen, Germany ulrike.luxburg@tuebingen.mpg.de This article appears in Statistics
More information2 Polynomials over a field
2 Polynomials over a field A polynomial over a field F is a sequence (a 0, a 1, a 2,, a n, ) where a i F i with a i = 0 from some point on a i is called the i th coefficient of f We define three special
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationA First Course in General Relativity Bernard F Schutz. Solutions to Selected Exercises
A First Course in General Relativity Bernard F Schutz (2 nd Edition, Cambridge University Press, 2009) Solutions to Selected Exercises (Version 1.0, November 2009) To the user of these solutions: This
More informationA NoNonsense Introduction to General Relativity
A NoNonsense Introduction to General Relativity Sean M. Carroll Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL, 60637 carroll@theory.uchicago.edu c 2001 1 1 Introduction
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version /4/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationI. Vectors and Geometry in Two and Three Dimensions
I. Vectors and Geometry in Two and Three Dimensions I.1 Points and Vectors Each point in two dimensions may be labeled by two coordinates (a,b) which specify the position of the point in some units with
More informationControllability and Observability of Partial Differential Equations: Some results and open problems
Controllability and Observability of Partial Differential Equations: Some results and open problems Enrique ZUAZUA Departamento de Matemáticas Universidad Autónoma 2849 Madrid. Spain. enrique.zuazua@uam.es
More informationSketching as a Tool for Numerical Linear Algebra
Foundations and Trends R in Theoretical Computer Science Vol. 10, No. 12 (2014) 1 157 c 2014 D. P. Woodruff DOI: 10.1561/0400000060 Sketching as a Tool for Numerical Linear Algebra David P. Woodruff IBM
More informationNew Results on Hermitian Matrix RankOne Decomposition
New Results on Hermitian Matrix RankOne Decomposition Wenbao Ai Yongwei Huang Shuzhong Zhang June 22, 2009 Abstract In this paper, we present several new rankone decomposition theorems for Hermitian
More informationA Concise Course in Algebraic Topology. J. P. May
A Concise Course in Algebraic Topology J. P. May Contents Introduction 1 Chapter 1. The fundamental group and some of its applications 5 1. What is algebraic topology? 5 2. The fundamental group 6 3.
More informationGeneralized Compact Knapsacks are Collision Resistant
Generalized Compact Knapsacks are Collision Resistant Vadim Lyubashevsky Daniele Micciancio University of California, San Diego 9500 Gilman Drive, La Jolla, CA 920930404, USA {vlyubash,daniele}@cs.ucsd.edu
More informationThe Backpropagation Algorithm
7 The Backpropagation Algorithm 7. Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single
More informationMarkov Chains. Table of Contents. Schedules
Markov Chains These notes contain material prepared by colleagues who have also presented this course at Cambridge, especially James Norris. The material mainly comes from books of Norris, Grimmett & Stirzaker,
More informationFast Greeks by algorithmic differentiation
The Journal of Computational Finance (3 35) Volume 14/Number 3, Spring 2011 Fast Greeks by algorithmic differentiation Luca Capriotti Quantitative Strategies, Investment Banking Division, Credit Suisse
More informationGeneralized compact knapsacks, cyclic lattices, and efficient oneway functions
Generalized compact knapsacks, cyclic lattices, and efficient oneway functions Daniele Micciancio University of California, San Diego 9500 Gilman Drive La Jolla, CA 920930404, USA daniele@cs.ucsd.edu
More informationLectures on Symplectic Geometry
Lectures on Symplectic Geometry Ana Cannas da Silva 1 revised January 2006 Published by SpringerVerlag as number 1764 of the series Lecture Notes in Mathematics. The original publication is available
More information