Anais do XX Congresso Brasileiro de Automática Belo Horizonte, MG, 20 a 24 de Setembro de 2014 MODELS


 Milo Crawford
 1 years ago
 Views:
Transcription
1 MODELS ON ROAD TRAFFIC FORECASTING: IDENTIFICATION AND DISCUSSION OF DIFFERENT TIME SERIES MODELS FERNANDO FERNANDES NETO Insiuo de Pesquisas Tecnológicas do Esado de São Paulo IPT / Secrearia do Planejameno e Desenvolvimeno Regional do Esado de São Paulo Palácio dos Bandeiranes  Av. Morumbi, 4500, º Andar, Sala 42, Morumbi, São Paulo/SP s: / CLAUDIO GARCIA Escola Poliécnica da Universidade de São Paulo Deparameno de Engenharia de Telecomunicações e Conrole Avenida Prof. Luciano Gualbero, rav. 3, 58, Buanã, São Paulo/SP, Brasil s: Absrac In his paper are discussed and calibraed univariae models (scalar approach, SARIMA) and mulivariae models (vecor approach, VAR and VEC) aiming raffic forecass of equivalen axles in he AnchieaImigranes sysem. The bes performance models in he backesing procedure were hose of he second ype (vecor), having a mean absolue error of approximaely 3, in a monhly frequency. Keywords VAR, VEC, SARIMA, idenificaion, ime series, oll roads Resumo Nese arigo são discuidos e calibrados modelos univariados (abordagem escalar, SARIMA) e mulivariados (abordagem veorial, VAR e VEC) para a previsão de ráfego em eixos equivalenes no sisema AnchieaImigranes. Os modelos que iveram melhor desempenho no backesing foram os do segundo ipo (veorial), endo erro médio absoluo de aproximadamene 3 em uma frequência mensal. Palavraschave VAR, VEC, SARIMA, idenificação, séries emporais, rodovias Inroducion One of he main problems in he oll road secor is he cash flow planning and is forecasing, due o is idiosyncraic complexiy, e.g. levels of service, seasonal effecs and he inerial evoluion of he raffic; and o he impac of oher variables like he Gross Domesic Produc (). There is a wide range of mehods applied o raffic forecasing, from Time Series models, Kalman Filer based models, Neural Neworks; o Markov Chain models, simulaion models (muliagen based) and linear regression models, as shown by Bolshinsky and Freidman (202), or a combinaion of hem according o Fillare e al. (2005), varying from highfrequency o lowfrequency daa. Also, i is imporan o noice ha despie he rich exising lieraure on raffic forecasing, lile aenion has been paid o he predicion abiliy of mos of hese mehods, as can be seen in (Bain, 2009). In fac, here is a considerable error range in he U.S. raffic forecass, as poined by he same auhor: acual raffic urned ou o lie beween 86 below forecas o 5 above forecas. This considerable error range illusraes he possible magniude of uncerainy when raffic risk is passed o he privae secor. Hence, planning and forecasing play a fundamenal role in his field, in he sense ha mos of he necessary invesmens and, consequenly, heir respecive decisionmakings and cash ouflows, mus ake ino accoun a very long imeline concepion, consrucion, mauraion of he projec unil plain capaciy, ec. Thus, he main goal of his paper is he discussion of an alernaive raffic forecasing mehod in oll roads in his case Vecorial Auoregressive models (namely VAR and VEC) and Univariae ime series based on Seasonal ARIMA (SARIMA) models, discussed in he nex session illusraing one of he mos imporan highway sysems in Brazil, he AnchieaImigranes Sysem. This paper is divided ino he following secions: inroducion, mehodology, presenaion of he prob 625
2 lem, resuls, analysis of he resuls and conclusion. 2. Univariae Models 2 Mehodology The Univariae approach in he presen paper is based on SARIMA models, which are a naural exension o he classical ARIMA models, which is a produc of wo ARIMA polynomials, one wih he regular srucure of he ime series, and he oher one wih he seasonal srucure of he ime series, as can be seen in (Box and Jenkins, 976; Hamilon,994 and Morein and Tolói, 2004). 2.2 Mulivariae Models The Mulivariae Models are mainly based on Vecor Auoregression models. These are nohing more han a mulivariable exension of he classical scalar auo regression models (AR), in he sense ha he process is described in erms of marices and vecors, insead of scalars. Thus, here is a muual causaliy relaionship beween all variables in his dynamic sysem. For example, a VAR(p) process can be wrien as: = φ +φ φ p p + a () where he φ i erms are square marices of order n ; n are x n vecors of endogenous variables; a is a x n vecor of uncorrelaed residuals; n is he endogenous variable number and p is he number of lags. In addiion o ha, as he classical scalar auo regression models (AR), if all variables are saionary, his model can be esimaed using he Ordinary Leas Squares (OLS) mehod. On he oher hand, when one or more variables in VAR models are nonsaionary, he OLS resuls may be no valid anymore. Consequenly, he Theory of Coinegraion was developed in order o analyze hese possible relaionships beween nonsaionary ime series. Furhermore, Granger and Newbold (974) discussed and exposed he problems of spurious regressions over nonsaionary ime series. They also verified ha given wo series compleely uncorrelaed and nonsaionary, he regression beween hem may produce a significan apparen relaionship. Therefore, if wo variables are nonsaionary and have a longrun equilibrium relaionship, hey may be coinegraed ha is, boh are uncorrelaed, nonsaionary, bu wih a relaionship beween hem as exposed by Ashley and Granger (979), Engle and Granger (987) and Johansen (988). Thus Vecor Error Correcion Models (VEC) were developed, which can be seen as exensions o VAR according o Hendry and Juselius (2000, 200) and Lükepohl (99), where i is inroduced an error correcion erm. In order o verify he coinegraion assumpion, in he curren paper he approach ha was made is he verificaion ha all variables are nonsaionary, using he Augmened DickeyFuller (979) es, using a 95 confidence inerval; hen if and only if he variables are nonsaionary following Engle and Granger (987), he coinegraion residuals are obained by running a regression over he variables and hese residuals are esed for saionariy. If hese residuals are saionary (esed using he Augmened DickeyFuller es again) he ime series are coinegraed, oherwise hey are no coinegraed. In order o explain how he VEC model srucure is obained, one can sar from a wo variable dynamic sysem, where boh are coinegraed (by hypohesis), following (Hendry and Juselius, 2000, 200; Lükepohl, 99, 2004 and Morein, 20). Be, and 2, wo nonsaionary coinegraed variables, and assume ha here is an equilibrium relaion beween hem given by:, β 2, = µ ~ N(0,σ ) (2) If considered ha he variaions in, and 2, depend on he deviaions of his equilibrium in , i follows ha: Δ, = α (, β 2, )+ a, : a, ~ N(0,σ ) (3.) Δ 2, = α 2 (, β 2, )+ a 2, : a 2, ~ N(0,σ 2 ) (3.2) One can generalize his error correcion model ino a more general form, where hese correcions in he equilibrium may depend on previous changes in he equilibrium due o possible auocorrelaions, like: Δ, = α (, β 2, )+φ, Δ, +φ,2 Δ 2, + a, : a, ~ N(0,σ ) (4.) Δ 2, = α 2 (, β 2, )+φ 2, Δ, +φ 2,2 Δ 2, + a 2, : a 2, ~ N(0,σ 2 ) (4.2) where his model acually is a VAR() model. In order o verify ha, one can simply pu hese pair of equaions ino marix form, resuling in (5) and (6). where: Δ = αβ ' + AΔ + a (5) 626
3 α = α $ α 2, β ' = β $, A = φ, φ $,2 φ 2, φ 2,2 or rewriing as: = ( αβ ' + A + I) A 2 + a (7) (6) Acually, according o Gujarai e al. (20) such relaionship can be generalized and guaraneed by he Granger Represenaion Theorem, which shows ha any VAR(p) can be wrien as a VEC(q) and viceversa. Depending on he auocorrelaion srucure, one migh find ineresing having a VEC(q) model and is respecive VAR(p). More deails can be found in (Greene, 2005). 3 Presenaion of he Problem In his paper, i is considered a VAR and a VEC model wih he following variables: raffic and Gross Domesic Produc () all of hem endogenous, and wo kinds of univariae SARIMA models, one wih a seasonal difference plus an sochasic seasonal shock, and anoher one wih an auoregressive seasonal erm. The is available a IPEA ( Insiuo de Pesquisas Econômicas Aplicadas Brazilian Insiue of Applied Economic Research) sie, while he oher series are publicly available upon reques o ARTESP Transporaion Regulaory Agency of São Paulo Sae, Brazil ( Agência Reguladora de Transpores do Esado de São Paulo ). The ime series encompasses monhly observaions from March 3 s, 998 unil July 3 s, 203. The las six observaions are lef o es he prevision accuracy of he model. In addiion o ha, i is possible o poin ou as a main concern he fac ha considering he Gross Domesic Produc as an endogenous variable may be counerinuiive. However, i is known ha raffic can ac as a leading indicaor for he behavior, and acually, such assumpion is esed in his paper, hrough he verificaion of coinegraion beween boh variables. The raffic was normalized under an equivalen vehicle basis, in order o ransform differen ypes of vehicles in cars, e.g. a heavy ruck is equivalen o n cars, while a ligh ruck is equivalen o n2 cars. The Seasonaliy in he vecor models was considered by including a vecor of dummy variables, since he daa is on a monhly basis. Then, having all he ime series normalized, considered he seasonal effecs, he rank of coinegraion and he number of lags mus be esablished. In his case, he rank of coinegraion is he number of coinegraing vecors which is esed according o (Johansen, 988) and he leas Informaion Crierion number deermines he number of lags, in boh univariae and mulivariae models, as suggesed in (Lükepohl and Kräzig, 2004). For mulivariae models, Bayesian Informaion Crierion was chosen, due o he fac ha i imposes sronger penalies for he inclusion of new parameers, as his kind of model naurally happens o have a larger number of parameers. On he oher hand, for univariae models, Akaike Informaion Crierion was used, due o he fac ha hese models generally have less parameers han he mulivariae ones. The esimaion of he parameers and all ess menioned are compued using GRETL Gnu Regression, Economerics and Time Library (for mulivariae models) and R (univariae models). 4 Resuls In Table, are presened he resuls of he Bayesian Informaion Crieria lagsearch for mulivariae models. Table. Bayesian Informaion Crierion of he Lag Search. lags BIC * So, as can be seen in his able, he mulivariae models mus have only one lag. For he univariae models, i was esed down for he mos common lag composiions over shocks and auoregressive erms, according o he auo.arima funcion, provided in forecas package, wihin he R saisical sofware, o check he opimal ARIMA regular srucure. I resuled in an ARIMA polynomial of he form ARIMA (p=, d=, q=4). In words, a firsorder auoregressive par; a firsorder difference over he original series; and four lags over he innovaions (shocks). Then, he wo mos usual seasonal polynomials were calibraed, SARIMA (p=, d=0, q=0) and SARIMA (p=0, d=, q=), following he same noaion above. The Rank of coinegraion was deermined according o he Johansen es (988), and for a null rank marix (null hypohesis), here is a pvalue of So, he saisical evidence poins ou ha here is no coinegraing relaionship beween he variables. De 627
4 spie ha, in his paper he VEC model was sill esimaed for comparison purposes. Thus, 4 differen models were obained as follows. Seasonal Model wih Seasonal Difference: Thus, if he monh o be prediced is January, one mus sum up he coefficien S plus he consan, and so on according o he respecive prediced monh. Finally, he VEC model wih seasonal dummies is presened as follows. Δ Δ a a a = Δ a a (8) Δ$ ' = $ + $ ' $ ' ' $ [ ] + K $ K 2 () ' ' Seasonal Model wih Auoregressive Seasonal componens: Δ = 0,5280 Δ a a Δ a a 2 VAR Model wih Seasonal Dummies: (0) $ = $ $ + K $ K 2 (9) where K and K are he seasonal dummies, as follows in Table 2 2. Table 2. Seasonal Parameers Esimaes of he VAR Model. K K2 S S S S S S S S S S S Consan where K and K are he seasonal dummies, as follows in Table 2 3: Table 3. Seasonal Parameer Esimaes of he VEC Model. K K2 S S S S S S S S S S S Consan Analysis of he Resuls Aiming he selecion of he bes model, he ouofsample forecasing accuracy is measured in erms of he absolue error mean, as follows. Table 4. Ouofsample Errors of he Models. Model ARIMA(,,4)  Seasonal IMA() ARIMA(,,4)  Seasonal AR() VAR() VEC() Mean Absolue Error Thus, he very surprising resul is ha he VEC() model, ha shouldn be even esimaed according o he exising lieraure, is he bes model in erms of ouofsample performance, despie he fac ha only six samples ou of he validaion se were used due o sampling issues, which may influence hese resuls. Noneheless, i was already expeced ha a mulivar 628
5 Anais do XX Congresso Brasileiro de Auomáica iae model should perform beer han an univariae model, due o he fac ha more informaion is being included. Anoher ineresing fac is ha he loglikelihood of he univariae models are far worse han he mulivariae ones, as can be seen in Table 5 he model which has he larges loglikelihood is he bes one. he oher hand, vecor based models (Figure ) rely on seasonal deerminisic dummy variables. Thus, despie pas values are unknown o he auoregressive par, here are already values being insered in he model, providing esimaes of he seasonal flucuaions. Anoher ineresing poin is he fac ha, despie having a larger number of variables (mulivariae), hey had a poorer performance wihin he sample, so basically, he models which were acually overfied were he univariae ones. Finally, here i is shown he mos imporan feaure of vecor models in erms of policy analysis, which is he impulse response srucure ha can be rerieved of he sysem, following (Sims, 980). This mehod is based on he decomposiion of he covariance marix using a Cholesky algorihm, o obain wha is called a Srucural VAR/VEC. Table 5. LogLikelihood of he Models. Model ARIMA(,,4)  Seasonal IMA() ARIMA(,,4)  Seasonal AR() VAR() VEC() Log Likelihood Hence, based on hese resuls, i seems ha he backesing procedure is a very imporan par of he modeling process, since he loglikelihood esimae does no provide all necessary informaion o analyze which model is he bes. When analyzing he models fied values agains he observed values ( Obs in Figures and 2), i is possible o see ha SARIMA (Figure 2) models converge slower owards o he observed values han he vecor based models. I can be explained due he fac ha hese univariae seasonal models rely on pas observed values o forecas he seasonal facors. On Considering i as a VAR wih conemporaneous relaionships, as in he following expression. φ0 = φ + φ φn n + K + a (2) Muliplying he whole equaion by he inverse of φ0 one ges a VAR as in Equaion (), ha can be esimaed using he radiional OLS algorihm. 629
6 Anais do XX Congresso Brasileiro de Auomáica Therefore, afer decomposing he covariance marix, i is possible o impose causal resricions, in order o rerieve he conemporary relaionship marix. So, for example, if hough ha he economy () is expeced o cause he raffic in he road, one may infer how he dynamics beween he ime series may behave wih an impulseresponse of he raffic agains he. This is a powerful ool ha enables he researcher o verify dynamic effecs insead of jus applying a firsorder (linear), as in he radiional simple linear regression over he logarihms of he variables (his procedure is acually called elasiciy calculaion ). 6 Conclusion In his paper i was shown ha i is possible o build an auoregressive mulivariable model o describe he raffic daa in one of he mos imporan Toll Road in Brazil, wih significan seasonal effecs and a large amoun of vehicles. Then, four kinds of models were esimaed: a VAR, a VEC and wo kinds of Seasonal ARIMA models. Furhermore, i were discussed mehodologies for esing he coinegraion beween he variables, uniary roo and opimal lag srucure obenion. Thus, i is possible o observe ha boh mulivariae mehodologies produced very similar forecass beween hem, as occurred beween boh univariae models oo. Despie ha, boh kinds of models were significanly differen in he longrun and in he shorrun, being he firs kind (mulivariae) he bes of hem, producing reasonable forecass 3 mean absolue error. Noneheless, i is imporan o noice ha his paper shows he usefulness of impulseresponse analysis, which seems o be far more reasonable han he radiional elasiciy measures applied over simple linear regression based models in policy analysis. As perspecive for fuure analysis and work, i is suggesed expanding his analysis o oher large road sysems in Brazil and oher counries, coninuing o updae he exising daabase and verifying possible srucural and parameer changes in hese models, and include in his comparison he performance of NARX models (nonlinear auoregressive models) and sandard neuralnework based models, using only auoregressive componens of he dependen variable, or evaluae he inclusion of oher possible Figure 3. ImpulseResponse of Trafego o a Shock in. As can be seen in Figure 3, a sandard shock (a uniary shock in erms of he covariance marix rerieved in he VAR/VEC models) in he evoluion of he causes an increase of 50 housand vehicles, afer 4 monhs and reaches sabiliy afer 5 monhs. 630
7 candidae independen variables (e.g. ). 7 References ASHLE, R.A., GRANGER, C.W.J. (979). Time series analysis of residuals from S. Louis model. In Journal of Macroeconomics,, BAIN, R. (2009). Error and opimism bias in oll road raffic forecass, Working Paper, RePEC. BOLSHINSKI, E., FREIDMAN, R. (202). Traffic flow forecas survey. Tech. rep., Technion Israel Insiue of Technology. BOX, G.E.P., JENKINS, G.M. (976). Times Series Analysis: Forecasing and Conrol. s Ediion, San Francisco Holden Day. DICKE, D.A., FULLER, W.A. (979) Disribuion of he esimaors for auoregressive ime seires wih a uni roo. In European Journal of Finance, vol. 5, p ENGLE, R.F., GRANGER, C.W.J. (987). Coinegraion and error correcion: Represenaion, esimaion and esing. In Economerica, vol. 55, FILLATRE, L., MARAKOV, D., VATON, S. December (2005). Forecasing Seasonal Traffic Flows. Workshop EuroNGI, Paris. GRANGER, C.W.J., NEWBOLD, P. (974). Spurious Regressions in Economerics, Journal of Economerics, vol. 2, 20. GREENE, W.H. (2002). Economeric Analysis, 5 h Ediion, Upper Saddle River, New Jersey, Prenice Hall. GUJARATI, D.N., PORTER, D.C. (20) Economeria Básica, Ediora Bookman, São Paulo. HAMILTON, J.D. (994). Time Series Analysis, s Ediion, Princeon, New Jersey, Princeon Universiy Press. HENDR, D.F., JUSELIUS, K. (2000). Explaining Coinegraion Analysis: Par. In The Energy Journal, Inernaional Associaion for Energy Economics, vol. 0 (Number ), 42 HENDR, D.F., JUSELIUS, K. (200). Explaining Coinegraion Analysis: Par 2. Em The Energy Journal, Inernaional Associaion for Energy Economics, vol. 0 (Number ), IPEADATA, no síio hp://www.ipeadaa.gov.br, visiado em 0//203. JOHANSEN, S. (988). Saisical Analysis of coinegraion vecors. In Journal of Economic Dynamics and Conrol, vol. 2, LÜTKEPOHL, H. (2004). Applied Time Series Economerics, s Ediion, New ork, Cambridge Universiy Press. LÜTKEPOHL, H. (99). Inroducion o Muliple Time Series Analysis, Heidelberg, Springer Verlag. MORETTIN, P.A. (20). Economeria Financeira: Um Curso em Séries Temporais Financeiras, ª Edição, São Paulo, Ediora Edgar Blücher. MORETTIN, P.A., TOLÓI, C. (2004). Análise de Séries Temporais, ª Edição, São Paulo, Ediora Edgar Blücher. SCHWARZ, G. (978). Esimaing he dimension of a model. In The Annals of Saisics, vol. 6, SIMS, C. (980). Macroeconomics and Realiy. In Economerica, vol. 48, no.,
The Ten Commandments for Optimizing ValueatRisk and Daily Capital Charges*
The Ten Commandmens for Opimizing ValueaRisk and Daily Capial Charges* Michael McAleer Deparmen of Quaniaive Economics Compluense Universiy of Madrid and Economeric Insiue Erasmus Universiy Roerdam Revised:
More informationForecasting Electricity Prices
Forecasing Elecriciy Prices Derek W. Bunn 1 and Nekaria Karakasani London Business School 2003 v1 Absrac This is a review paper documening he main issues and recen research on modeling and forecasing elecriciy
More informationThe power and size of mean reversion tests
Journal of Empirical Finance 8 493 535 www.elsevier.comrlocaereconbase he power and size of mean reversion ess Ken Daniel ) Kellogg School of Managemen, Norhwesern UniÕersiy, Sheridan Road, EÕanson, IL
More informationDeveloping Equity Release Markets: Risk Analysis for Reverse Mortgages and Home Reversions
Developing Equiy Release Markes: Risk Analysis for Reverse Morgages and Home Reversions Daniel Alai 2, Hua Chen, Daniel Cho 2, Kaja Hanewald 2, and Michael Sherris 2 Absrac: Equiy release producs are sorely
More informationForecasting Exchange Rates OutofSample with Panel Methods and RealTime Data. Onur Ince * University of Houston
Forecasing Exchange Raes OuofSample wih anel Mehods and Realime Daa Onur Ince * Universiy of Houson Absrac his paper evaluaes ouofsample exchange rae forecasing wih urchasing ower ariy () and aylor
More informationExchange Rate PassThrough into Import Prices: A Macro or Micro Phenomenon? Abstract
Exchange Rae PassThrough ino Impor Prices: A Macro or Micro Phenomenon? Absrac Exchange rae regime opimaliy, as well as moneary policy effeciveness, depends on he ighness of he link beween exchange rae
More informationAn Analysis of Tax Revenue Forecast Errors
An Analysis of Tax Revenue Forecas Errors Marin Keene and Peer Thomson N EW Z EALAND T REASURY W ORKING P APER 07/02 M ARCH 2007 NZ TREASURY WORKING PAPER 07/02 An Analysis of Tax Revenue Forecas Errors
More informationRisk Management and Payout Design of Reverse Mortgages
Risk Managemen and Payou Design of Reverse Morgages Daniel Cho, Kaja Hanewald and Michael Sherris School of Risk and Acuarial Sudies and Ausralian Research Council Cener of Excellence in Populaion Ageing
More informationA Working Solution to the Question of Nominal GDP Targeting
A Working Soluion o he Quesion of Nominal GDP Targeing Michael T. Belongia Oho Smih Professor of Economics Universiy of Mississippi Box 1848 Universiy, MS 38677 mvp@earhlink.ne and Peer N. Ireland Deparmen
More informationAnchoring Bias in Consensus Forecasts and its Effect on Market Prices
Finance and Economics Discussion Series Divisions of Research & Saisics and Moneary Affairs Federal Reserve Board, Washingon, D.C. Anchoring Bias in Consensus Forecass and is Effec on Marke Prices Sean
More informationFirms as Buyers of Last Resort
Firms as Buyers of Las Resor Harrison Hong Princeon Universiy Jiang Wang MIT and CCFR Jialin Yu Columbia Universiy Firs Draf: May 005 This Draf: April 007 Absrac: We develop a model o explore he asse pricing
More informationGovernment Revenue Forecasting in Nepal
Governmen Revenue Forecasing in Nepal T. P. Koirala, Ph.D.* Absrac This paper aemps o idenify appropriae mehods for governmen revenues forecasing based on ime series forecasing. I have uilized level daa
More informationAlternative Settlement Methods and Australian Individual Share Futures Contracts. Donald Lien and Li Yang * (Draft: September 2003)
Alernaive Selemen Mehods and Ausralian Individual Share Fuures Conracs Donald Lien and Li Yang * (Dra: Sepember 2003) Absrac Individual share uures conracs have been inroduced in Ausralia since 1994. Iniially
More informationEMBARGO: December 4th, 2014, 11am Pacific/2pm Eastern/7pm UK. The Social Bayesian Brain: Does Mentalizing Make a Difference When We Learn?
EMBARGO: December 4h, 2014, 11am Pacific/2pm Easern/7pm UK The Social Bayesian Brain: Does Menalizing Make a Difference When We Learn? Marie Devaine 1,2, Guillaume Hollard 3,4, Jean Daunizeau 1,2,5 * 1
More informationUncertainty and International Banking *
Uncerainy and Inernaional Banking * Claudia M. Buch (Deusche Bundesbank) Manuel Buchholz (Halle Insiue for Economic Research) Lena Tonzer (Halle Insiue for Economic Research) July 2014 Absrac We develop
More informationAsymmetry of the exchange rate passthrough: An exercise on the Polish data 1
Asymmery of he exchange rae passhrough: An exercise on he Polish daa Jan Przysupa Ewa Wróbel 3 Absrac We propose a complex invesigaion of he exchange rae passhrough in a small open economy in ransiion.
More informationInsurance Premium Structure of Reverse Mortgage Loans in Korea Seungryul Ma and Yongheng Deng. September, 2006
Insurance Premium Srucure of Reverse Morgage Loans in Korea Seungryul Ma and Yongheng Deng Sepember, 2006 Absrac We analyze he insurance premium srucure of reverse morgage loans in Korea. Our analyses
More information2009 / 2 Review of Business and Economics. Federico Etro 1
The Economic Impac of Cloud Compuing on Business Creaion, Employmen and Oupu in Europe An applicaion of he Endogenous Marke Srucures Approach o a GPT innovaion Federico Ero ABSTRACT Cloud compuing is a
More informationWorldtrade web: Topological properties, dynamics, and evolution
PHYSICAL REVIEW E 79, 365 29 Worldrade web: Topological properies, dynamics, and evoluion Giorgio Fagiolo* Laboraory of Economics and Managemen, San Anna School of Advanced Sudies, Piazza Mariri della
More informationThe impact of preannounced daytoday interventions on the Colombian exchange rate 1
The impac of preannounced dayoday inervenions on he Colombian exchange rae 1 Juan José Echavarría Luis Fernando Melo Saniago Téllez Mauricio Villamizar Absrac The adopion of a managed regime assumes
More informationWP/15/85. Financial Crisis, US Unconventional Monetary Policy and International Spillovers. by Qianying Chen, Andrew Filardo, Dong He, and Feng Zhu
WP/15/85 Financial Crisis, US Unconvenional Moneary Policy and Inernaional Spillovers by Qianying Chen, Andrew Filardo, Dong He, and Feng Zhu 2015 Inernaional Moneary Fund WP/15/85 IMF Working Paper European
More informationKONSTANTĪNS BEŅKOVSKIS IS THERE A BANK LENDING CHANNEL OF MONETARY POLICY IN LATVIA? EVIDENCE FROM BANK LEVEL DATA
ISBN 9984 676 20 X KONSTANTĪNS BEŅKOVSKIS IS THERE A BANK LENDING CHANNEL OF MONETARY POLICY IN LATVIA? EVIDENCE FROM BANK LEVEL DATA 2008 WORKING PAPER Lavias Banka, 2008 This source is o be indicaed
More informationBreakeven Determination of Loan Limits for Reverse Mortgages under Information Asymmetry
IRES011016 IRES Working Paper Series Breakeven Deerminaion of Loan Limis for Reverse Morgages under Informaion Asymmery Ming Pu GangZhi Fan Yongheng Deng December, 01 Breakeven Deerminaion of Loan Limis
More informationPreliminary. Comments welcome. Equity Valuation Using Multiples
Preliminary. Commens welcome. Equy Valuaion Using Muliples Jing Liu Anderson Graduae School of Managemen Universy of California a Los Angeles (310) 2065861 jing.liu@anderson.ucla.edu Doron Nissim Columbia
More informationCostSensitive Learning by CostProportionate Example Weighting
CosSensiive Learning by CosProporionae Example Weighing Bianca Zadrozny, John Langford, Naoki Abe Mahemaical Sciences Deparmen IBM T. J. Wason Research Cener Yorkown Heighs, NY 0598 Absrac We propose
More informationBanco Central de Chile Documentos de Trabajo. Central Bank of Chile Working Papers EXCHANGE RATE PASSTHROUGH INTO IMPORT PRICES: THE CASE OF CHILE
Banco Cenral de Chile Documenos de Trabajo Cenral Bank of Chile Working Papers N 465 Abril 2008 EXCHANGE RATE PASSTHROUGH INTO IMPORT PRICES: THE CASE OF CHILE Robero Álvarez Paricio Jaramillo Jorge Selaive
More informationThe Pasts and Futures of Private Health Insurance in Australia
The Pass and Fuures of Privae Healh Insurance in Ausralia Casey Quinn NCEPH Working Paper Number 47 W O R K I N G P A P E R S NATIONAL CENTRE FOR EPIDEMIOLOGY AND POPULATION HEALTH Naional Cenre for Epidemiology
More informationToday s managers are very interested in predicting the future purchasing patterns of their customers, which
Vol. 24, No. 2, Spring 25, pp. 275 284 issn 7322399 eissn 1526548X 5 242 275 informs doi 1.1287/mksc.14.98 25 INFORMS Couning Your Cusomers he Easy Way: An Alernaive o he Pareo/NBD Model Peer S. Fader
More informationIs China OverInvesting and Does it Matter?
WP/12/277 Is China OverInvesing and Does i Maer? Il Houng Lee, Muraza Syed, and Liu Xueyan 2012 Inernaional Moneary Fund WP/12/277 IMF Working Paper Asia and Pacific Deparmen Is China OverInvesing and
More informationWhen Is Growth ProPoor? Evidence from a Panel of Countries
Forhcoming, Journal of Developmen Economics When Is Growh ProPoor? Evidence from a Panel of Counries Aar Kraay The World Bank Firs Draf: December 2003 Revised: December 2004 Absrac: Growh is propoor
More information