Applications of solar energy to cars: perspectives and problems

Size: px
Start display at page:

Download "Applications of solar energy to cars: perspectives and problems"

Transcription

1 Applications of solar energy to cars: perspectives and problems Gianfranco Rizzo DIMEC,, Italy SAENA - SAE NAPLES SECTION ONE DAY WORKSHOP Istituto Motori CNR, Naples November 8, 2010

2 The Background Solar Energy Summary PV Assisted Vehicles - Hybrid Solar Vehicles Research Issues Integration with Grid Conclusions

3 WHY SHOULD WE CHANGE OUR CARS?

4 Energy demand 4

5 Fossil Fuels 5

6 Environmental Risk 6

7 Climate Changes 7

8 Transport contribute to CO 2 8

9 From conferences to movies and cartoons

10 WHY SOLAR ENERGY?

11 Solar energy potentiality A pictorial view of the potentialities of photovoltaic: the areas defined by the dark disks could provide more than the world's total primary energy demand (assuming a conversion efficiency of 8%).

12 Solar Energy vs. Energy Consumption The solar energy striking the US in one day is almost equivalent to the energy consumption for one and a half year = +

13 WHAT ARE EFFICIENCY AND COSTS OF PHOTOVOLTAIC PANELS?

14 PV cell efficiency trends Best research results Efficiency of most commercial panels From Wikipedia, Courtesy of L.L. Kazmerski, NREL

15 Solar Panels Production and Prices The production of photovoltaic panels has remarkably increased since 90 s in terms of installed power. Their cost, after a continuous decrease and an inversion of the trend occurred in 2004, is decreasing again

16 Solar assisted vehicles: cost issues VS According to some recent studies, PV panels added to hybrid or electric cars could be even more cost effective than PV panels added to buildings. Neil C., Solar Hybrid Vehicles, 2006,

17 Payback time [Years] Payback time [Years] Payback of fixed and moving solar roofs for vehicles The payback of fixed (horizontal) and moving (ideal) roofs are compared, for two different latitudes (Los Angeles 33.9 and Minneapolis 44.9), using the insulation data provided by PVWatts (www.nrel.gov/rredc/pvwatts) PV Area (m2)=2 - Fuel cost ( /l)=0.8 LA - mobile roof LA - fixed horizontal roof MN - mobile roof MN - fixed horizontal roof Assumptions: PV panel efficiency η=18% Battery charging/discharging eff. = 0.9 PV area = 2 m 2 Fuel costs = 0.8 and 1.45 /l Roof cost: C=C 1 +C 2 *Area+C 3 C 1 =50 is a fixed cost for roof structure C 2 =300 /m 2 is the unit cost of PV panels C 3 =200 is the cost for the orienting mechanism The energy consumed for handling the solar roof has been neglected Mean efficiency of generation PV Area (m2)=2 - Fuel cost ( /l)=1.45 LA - mobile roof LA - fixed horizontal roof MN - mobile roof MN - fixed horizontal roof Mean efficiency of generation

18 WHAT ABOUT ENERGY DENSITY?

19 Energy density and fuel distribution Fossil fuel have high energy density. Moreover, there is a very efficient distribution network (in advanced countries). The higher energy density results in higher range of conventional vehicles with respect to other solutions (electric, solar, fuel-cell). The range of a today car is about 1000 Km. Number of fuel pumps in European countries (2005) Average density (Italy, France, Germany, UK)=0.04 pumps/km 2

20 Energy density: batteries vs liquid fuels Liquid fuels can deliver about 42 MJ per kg ( kwh/ton, kwh/m 3 )

21 Energy density: batteries vs liquid fuels kwh/ton % kwh/m3 % Liquid Fuel , ,00 Lead-Acid 30 0, ,32 Li-Ion 130 1, ,25 Considering that only 25% of fuel chemical energy can be converted in mechanical energy: kwh/ton % kwh/m3 % Liquid Fuel , ,00 Lead-Acid 30 1, ,29 Li-Ion 130 4, ,00 Further increases in energy density for Lithium-Ion batteries can be achieved by adopting innovative nano-composite materials (Magasinki et al., 2010).

22 About the range 1000 Km Almost 30 different countries and about fuel pumps in a radius of 1000 Km (with an average density of about 0,04 pumps per Km 2 ) Is a 1000 Km range really necessary for a car?

23 Energy Density GAP [/] How much should battery energy density increase? but considering a range of 400 km, and including also the powertrains in weight comparison, an increase by a factor 5 is needed Conventional vs Electric Vehicle Powertrain Weight not Included Powertrain Weight Included - EM Mean Power Powertrain Weight Included - EM Max Power To assure a range of 1200 km at the same weight of fuel tank, battery energy density should increase by a factor EV Range [km] Conventional Vs Electric Vehicle Reference conventional vehicle: Power=50 kw, Range=1200 km Fuel Tank (Diesel)=75 l, density = 0.85 kg/l, output energy density=2917 kwh/t Battery energy density = 130 kwh/t Conventional Powertrain = 2.25 kg/kw Electric Motor mean power) & Inverter = 1.6 kg/kw Electric Motor peak power) & Inverter = 0.94 kg/kw

24 WHY HYBRID SOLAR VEHICLES?

25 Solar Cars Various propotypes of solar cars have been developed since 70 s, mainly for racing and demonstrative purposes

26 World Solar Challenge 1987: Sunraycer, by GM solar cells with Gallium Arsenide, 20% efficiency. Power=1,5 kw, max speed=109 km/h, mean speed=67 km/h. WSC started in Km (1877 miles) from Darwin to Adelaide, in Australia : Nuna, University of Delft. 1996: Honda Dream. Mean speed=90 km/h, max speed=139 km/h, cell efficiency=23.5% Nuna I In 2007, Nuna IV, even reducing solar area from 8 to 6 sqm, wins with a mean speed of 100 km/h and max speed of about 160 km/h. Solar cell efficiency (triple junction gallium arsenide) approaches 30%. Nuna IV

27 Limits of Solar Cars Solar Cars do not represent realistic alternative to normal cars, due to: Limited power and performance. Limited range. Discontinuous energy source. High cost.

28 F.Porsche, 1900 G.Rizzo - Applications of solar energy to cars: perspectives and problems Hybrid Electric Vehicles Buick Skylark, 1974 Toyota Prius Ford Escape Honda Insight GM Precept Mercedes S400 Hybrid-Diesel Peugeot 308 Hybrid-Diesel

29 HEV and PV: a possible marriage?

30 Some HSV prototypes Viking 23 Western Washington University Tokyo University of Agriculture and Technology Ultra-Commuter The University of Queensland Solar Toyota Prius By Steve Lapp

31 Recent HSV Toyota Prius, with an aftermarket 215 W monocristalline solar module with peak power tracking and a 95% efficiency DC-DC Converter Astrolab Venturi Toyota Prius Solar Antro

32 A SOLAR PANEL ON A CAR: IT IS WORTH IT?

33 Is solar contribute significant? 1/4 Car PV Panel Ratio Power (kw) 70 0,3 0,004 PV panels power is about two order of magnitudes lower than engine power.

34 Is solar contribute significant? 2/4 Car PV Panel Ratio Power (kw) 70 0,3 Average Power (kw) 8 0,2 0,004 0,02 PV panels average power Speed [km/h] during daylight is comparable to its maximum power. 50 The average power of a car in urban driving is about one order of magnitude less than car maximum power Speed [km/h] 60 Power [KW] Time [s]

35 Is solar contribute significant? 3/4 Car PV Panel Ratio Power (kw) 70 0,3 0,004 Average Power (kw) 8 0,2 0,02 Time (h/day) A solar panel can receive solar energy many hours per day. Some recent studies of the UK government stated that: - about 71% of UK users reaches their office by car; - 46% of them have trips shorter than 20 min - mostly with only one person on board. (Source: Labour Force Survey,

36 Is solar contribute significant? 4/4 Power (kw) Average Power (kw) Time (h/day) Energy (kwh/day) Car PV Panel 0,3 0, Ratio 0,004 0, ,25 Considering the daily energy spent for driving during the prevailing urban use, it emerges that solar energy can give a substantial contribute.

37 SO, PUT A SOLAR PANEL ON A HYBRID ELECTRIC VEHICLE. IS THAT ALL?

38 HSV vs HEV HEV Conventional Car + Electric Motor Significant research has been necessary to develop Hybrid Electric Vehicles, even starting from mature technologies. HSV HEV + PV Similarly, a Hybrid Solar Vehicle is not the simple addition of a solar panel to an existing Hybrid Electric Vehicle.

39 HSV vs HEV PV panel control and power electronics Mission profile (HSV should be optimized for urban driving) Different SOC management strategies. Look-ahead requirements. Different structure (vehicle dimension, hybrid architecture)

40 PV panel control (MTTP) PV specific problems in automotive applications: Limited surface Maximum power extraction needed Mismatching effects due to: the need of connecting cells of different types within the same array (roof, windows, lateral sides); Irregular insulation due to panel curvature, clouds, shadows and car movement. Uniform conditions (single peak) Mismatching (multiple peaks) Conventional MPPT (Maximum Power Point Tracking) based on classical Perturb&Observe techniques tends to fail in presence of mismatching conditions. More advanced approach needed (Model Based Control). Use of multi-converters configurations, with soft-switching topologies and planar magnetic structures is advisable.

41 Sources of mismatching Different solar irradiation levels due to: Clouds Shadows Different orientation of parts of the PV field Dirtiness Tolerances (due to manufacturing and/or ageing) Different types of panels (different models, photo-glass, coloured) in the same string

42 HSV vs HEV control In most HEVs, a charge sustaining strategy is adopted: the battery State Of Charge (SOC) is unchanged within a driving path. SOC driving path Time A suitable strategy for HSV instead can restore the initial SOC within a whole day, considering battery charging during parking time. SOC Charge depletion driving path day Time ΔSOC parking

43 Vehicle Length Width Height HSV Prototype Piaggio Porter m m m Drive ratio 1:4.875 Electric Motor Continuous Power Peak Power Batteries Mass Capacity Photovoltaic Panels BRUSA MV V 9 KW 15 KW 16 6V Modules Pb-Gel 520 Kg 180 Ah Polycrystalline Surface 1.44 m 2 Weight 60 kg Efficiency 0.13 Electric Generator Diesel Yanmar S 6000 Power COP/LTP Specific fuel cons. Weight Overall weight (with driver) Weight 5.67/6.92 kva 272 g/kwh 120 kg 1950 kg A prototype of hybrid solar vehicle with series structure has been developed at the, within the EU Leonardo Program Energy Conversion Systems and Their Environmental Impact (www.dimec.unisa.it/leonardo)

44 HSV: Dissemination and Organization Participation to Ecotarga 2007, Sicily Web site in eigth languages, at the top positions on Google. Newsletter sent to about 6000 users. Two international Workshops on Hybrid and Solar Vehicles organized

45 Models Flow Chart CONTROL VARIABLES Control Strategy for EG MPPT for PV DESIGN SPECIFICATION Power demand Insolation HSV Structure Battery type DESIGN VARIABLES PV Panel Area and Position EG and EM Power Car dimensions Materials EXHOGENOUS VARIABLES Fuel Price Panel Efficiency Unit weight and costs MODELS Energy Flows for HSV/CV Car sizing - Weight - Cost OUTPUT Car Stability Fuel Savings Weight - Payback Objective Function and Constraints

46 PV Panels and Car Dimensions The maximum surface of horizontal and vertical panels have been expressed as function of length, width and height h w Horizontal A PV, H lw 0.30w 0. 05lw Vertical A 2l w h PV, V l Volume V lwh

47 Optimal design results # c f /kg c PV /m 2 /W P [/] A PV,H [m2 ] P EG [kw] PB [yrs] / / / / A very good payback (2.4 years) is by doubling fuel cost, reducing by 4 panel cost, and considering 16% panel efficiency Fuel Price in Italy 2.1 /KG, June 2008 Lowest Mono-crystalline Module Price $2.80/Wp ( 1.99/Wp) Lowest Multi- crystalline Module Price $2.48/Wp ( 1.76/Wp) Solarbuzz.com, July 2009

48 HSV: Optimal Management and Control Fuel Economy (km/l) on ECE Cycle - HSV vs. Toyota Prius A actual prototype B PV eff.=18% - Batt.=75 Ah C B+ 20% weight off Lithium-Ion Batt. Implementable Rule-Based Control: fuel economy very similar to benchmark, obtained by Genetic Algorithms Optimal management computed considering engine thermal effects on fuel consumption and HC (SI engine)

49 T [ C] ICE thermal transients Engine temperature dynamics is estimated by a first order dynamic model T t T T T e K ss in ss t Engine temperature 60 Steady state temperatures and time constants are assigned for ICE on and ICE off events ICE operation ON OFF T ss [ C] K [s] N = 1 N = Time [s]

50 dsoc dsoc G.Rizzo - Applications of solar energy to cars: perspectives and problems Rule-based (RB) approach to HSV on-board energy management External task Day time base S f Eq. (2) SOC f ON/OFF ICE strategy SOC up =SOC f +dsoc SOC lo =SOC f -dsoc Intermittency Ratio dsoc P tr Eq. (3-4) P EG Internal task Minutes time base SOC up SOC P [kw] SOC f Solar factor: S f E E sun, day sun, day SOC lo P EG P tr year-based average ICE-ON ICE-OFF Time [min] P sun

51 P batt [kw] P [kw] G.Rizzo - Applications of solar energy to cars: perspectives and problems Analysis of Rules Internal task At high P tr, P EG must have a load following behavior P rule EG 5 P EG,opt =21.5 kw average P tr average P [kw] tr At low P tr, P EG can be lower than most efficient value (P EG,opt ) to limit battery internal losses P EG =12.9 kw P EG =21.5 kw dsoc rule [/] t/t end [/] average University P [kw] of Salerno

52 km/l km/l km/l km/l Int. Task 28,00 G.Rizzo - Applications of solar energy to cars: perspectives and problems Impact of RB rules on Fuel Economy dsoc impact 27,00 Ext. Task SOC f impact 26,00 24,00 24,00 S f =1 22,00 20,00 21,00 18,00 CYC_1015_6PRIUS FUDS ECEEUDC FHDS dsoc_rule dsoc= ,00 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 SOCf 28,00 26,00 P EG impact 33,00 30,00 27,00 S f =1.5 24,00 24,00 22,00 20,00 18,00 52 CYC_1015_6PRIUS FUDS ECEEUDC FHDS PEG_rule PEG_opt=21.5 kw 21,00 18,00 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 SOCf CYC_1015_6PRIUS FUDS ECEEUDC FHDS

53 Cloud cover % Cloud cover % Cloud cover % Cloud cover % What s the weather like? Choice of optimal State Of Charge in HSV is controversial: SOC=0.6-07: reduced energy losses for charging and discharging and longer battery life SOC= : more energy can be accumulated during parking SOC=1 SOC=0 A possible solution: use of real-time weather forecast for estimating the optimal value of final SOC for driving cycle Session MC2, 17:40-18:05 Rizzo G., Sorrentino M. (2010), Introducing Sunshine Forecast to Improve On-Board Energy Management of Hybrid Solar Vehicles, IFAC Symposium Advances in Automotive Control, July , Munich, Germany Date of forecast:03-nov :47:14 03-Nov Nov Nov Nov Hour

54 IS A SOLAR VEHICLE CONVENIENT ONLY IN TROPICAL COUNTRIES?

55 Solar Calculator (PVWatts ) Anchorage (61.17 ) Chicago (41.78 ) Honolulu (21.33 ) San Antonio (29.53 ) Average Energy [KWh] for four different sites for a crystalline silicon PV system rated 1 KW AC at SRC, at different azimuth and tilt angles, has been computed, based on National Solar Radiation Data Base (NSRDB), considering real weather conditions.

56 Effects of Panel Position on Energy Negligible differences between 2- axis and 1-axis tracking systems. Almost a factor 2 between maximum and minimum latitudes. Average Yearly Energy (KWh/year) % axis tracking 1 axis tracking Tilt=Latitude Horizontal Vertical (mean) For fixed panels, there is not a relevant loss by adopting horizontal position with respect to optimal tilt, particularly at low latitudes % Energy absorbed with vertical position is significantly lower, mainly at low latitudes Latitude (deg)

57 Beyond the fixed horizontal roof Average net energy (kwh/day) 3,5 3 2,5 2 1,5 1 0,5 +91% +143% 2 m 2 tracking + 2 m 2 vertical 2 m 2 horizontal (fixed) + 2 m 2 vertical 2 m 2 horizontal (fixed) Latitude (deg) PV Efficiency 18% Data from PVWatts The adoption of tracking roof (for parking phases) and the use of windows and lateral surfaces greatly enhances net energy. The benefits are particularly significant at high latitudes, so enlarging the potential market of solar assisted vehicles.

58 Normalized energy (%) Study on a moving solar roof LOSANGELES - Lat Ideal 2 axis Moving roof Horizontal Month A moving solar roof for parking phases is in development at the. G Coraggio, C Pisanti, G Rizzo, A Senatore (2010) A Moving Solar Roof for a Hybrid Solar Vehicle In: 6th IFAC Symposium "Advances in Automotive Control", AAC10, July 11-14, 2010, Munich (Germany) Session MA2

59 Papers & Conferences on HSV USA: Monterey, 2007 UK: Loughborough, 2010 France: Paris, 2008, 2009 Mulhouse, 2010 Germany: Munich, 2010 Italy: Salerno, 2006 Salerno, 2007 Perugia, 2007 Capri, 2009 L Aquila, 2009 Palermo, 2007, 2010 Hungary: Budapest, 2009 China: Beijing, 2010 Turkey: Istanbul, 2005, 2006, 2007, 2008 Korea: Seoul, 2008 Japan: Kobe, 2008 Mishima, 2009 Taiwan: Taipei, 2006 Many papers presented at conferences and seminars. Further info available at

60 WHAT ABOUT CONNECTIONS WITH GRID?

61 BEV and PHEV Sales Forecast Courtesy of California Air Resources Board Grid connected vehicles (BEV & PHEV) are expected to grow significantly in next decades, based on the historical rate of Hybrid Electric Vehicle (HEV) growth. All Electric Range is expected to grow from 10 miles (2020) to 50 miles (2050). The cost for electricity to power PHEV for all-electric operation has been estimated at less than one quarter of the cost of gasoline. PHEV s have a battery capacity not less than 4 kwh.

62 Charging options 1. AC Level 1-120V AC charging from standard 15 or 20 amp NEMA outlet, on-board vehicle charger (~1.9kW) 2. AC Level AC charging up to 80 amps, on-board vehicle charger (~19kW) 3. DC Charging (Fast Charging)** Off-board charger connects directly to vehicle high voltage battery bus. Charger controlled by vehicle which allows for extremely high power transfer (>100kW) and thus faster recharge times (minutes instead of hours) ** Currently under development. Courtesy of AeroVironment

63 Energy Mix and PHEV Emissions CO 2 Emissions from PHEVs (gasoline + electricity) for different countries (generation mix). Conventional Vehicle The benefits of Plug-In Electric Vehicles with respect to the Conventional Vehicle in terms of CO2 critically depend on the generation mix. Increased emissions of NOx/SO2 could also result (coal based plants).

64 Plug-In Vehicles: local distribution The aspects related to local distribution must be considered too. Highly clustered PHEVs/EVs users in the same neighborhood could cause stress on transmission and distribution systems locally Power from Grid Neighborhood Transformer with Limited Capacity

65 PV assisted vehicles and grid Benefits related to PV panels for a grid connected vehicle: Reduction of recharging time and stress on local distribution network, two critical issues for Plug-In vehicles. Added value for Vehicle to Grid connections.

66 Vehicle to Grid (V2G) The power capacity of the automotive fleet is about 10 times greater than the electrical generating plants (in US) and is idle over the 95%. V2G concept: to connect parked electric driven vehicles (electric, hybrid, hybrid solar, fuel-cell) to the grid by a two-way computer controlled hook up. Advantages: Reduction of costs for peak power production. Toward the distributed generation, with reduction of Transmission and Distribution (T&D) costs. Facilitate integration of intermittent renewable resources. The value of the utility exceeds the costs for the two-way hook up and for the reduced vehicle battery life.

67 V2G: Recent News

68 V2G: Additional advantages for HSV Possibility to transfer renewable energy to the grid. Prevent from energy waste in case that battery is full.

69 Solar Roadways Coming? The idea: replacing asphalt and concrete surfaces with solar panels that could be driven upon. LEDs can be used to "paint" the road lines, and heating elements to prevent snow/ice accumulation. The top layer should be textured to provide traction features similar to current asphalt roads, even in the rain. Studies are in course to investigate ways to use mutual induction to charge EVs while they are driving down the Solar Roadway.

70 HOW COULD SOLAR ENERGY BE USED IN A CONVENTIONAL CAR?

71 Crisis effects World map showing the CIA estimate of GDP growth rates for 2009 (Wikipedia) Extensive fleet reconversion is unlikely in a short term scenario, due to world economic crisis. Most of current fleet is composed of conventional vehicles. A reasonable short term goal would be the reconversion of conventional vehicles to (Mild) Hybrid Solar Vehicles.

72 A proposal for Mild Solar Hybridization A mild parallel hybrid structure is obtained by substituting the rear wheels with in-wheel motors. In that way, the vehicle can operate in pure electric mode or in hybrid mode. The VMU implements control logics compatible with typical driving of conventional-car users, receives the data from OBD gate, from battery and drives inwheel motors. The battery can be recharged both by rear wheels, when operating in generation mode, and by photovoltaic panels. Patented by the The hybridizing equipment is installed on a conventional front-wheel drive car. The vehicle is also equipped with a OBD gate, which allows accessing vehicle data.

73 IN CONCLUSION?

74 Conclusions 1/2 PV assisted cars: ripe for passing from prototypical applications to commercial products. Integration more feasible, due to: increasing fleet electrification, increase in fuel costs, advances in PV panel technology, reduction in PV cost. Hybrid Solar Vehicles: a valuable solution to face energy saving and environmental issues. reduction of battery recharging time for PHEV, and best value for Vehicle to Grid applications. not a universal solution: best balance between benefits and costs for typical use in urban conditions during working days. In order to maximize their benefits, it would be required: re-design and optimization of the whole vehicle-powertrain system; advanced solutions for panel control (MPPT) and power electronics; specific solutions for energy management and control; more advanced look-ahead capabilities.

75 Conclusions 2/2 Adoption of moving roofs and use of solar panels on windows and lateral sides would enhance solar contribution, extending the potential market of these vehicles at higher latitudes. Integration with Grid (V2G) will enhance the potentialities of Hybrid Vehicles, particularly for PV assisted cars. Interesting opportunities related to reconversion of conventional vehicles to Mild Hybrid Solar Vehicles. The advantages of photovoltaic are additive respect to many other solutions. Full economic feasibility not immediate: financial support from governments appropriate. Encouraging perspectives about users willingness to spend some more money for a more sustainable mobility.

76 THANK YOU FOR YOUR KIND ATTENTION

77 ANY QUESTIONS?

78 EXTRA SLIDES

79 WHERE ARE YOU FROM?

80 Where we are Where we are 80

81 The eprolab is located at Faculty of Engineering of the. The Campus in Fisciano is one of the biggest in Italy, with 10 Faculties and almost students The origins of the University of Salerno date back to 1000 s, when the Schola Medica Salernitana was the first school of medicine in Western countries. 81

82 The surroundings Salerno by night The is located in the heart of Campania, a region of South Italy with many cultural, artistic and natural treasures. Picture Gallery from Campania

83 Automotive industry and research The is located in an area with a significant concentration of automotive plants and research centers. 83

84

85 Fiat SI engine 4 cyl liters Borghi & Saveri eddy currents dynamometer AVL Test Bench Automation System Puma Engine Test Bench dspace Microautobox for engine control prototyping dspace Simulator for HIL prototyping AVL Fuel flow meter ABB Air flow meter ETAS Lambda meter with Bosch UEGO sensors AVL indicating equipment for in-cylinder pressure ABB FID analyzer for HC emissions, NDIR analyzer for CO and CO2, Chemilum. analyzer for NOx Cambustion CLD 500 fast NOx analyzer SMPS system for nano-particulate matter

86 Hybrid Solar Vehicle: the prototype A prototype of Hybrid Solar Vehicle with series structure has been developed within the EU Leonardo Program Energy Conversion Systems and Their Environmental Impact (www.dimec.unisa.it/leonardo) and a PRIN Project (www.dimec.unisa.it/prin) Vehicle Length Width Height Piaggio Porter m m m Drive ratio 1:4.875 Electric Motor Continuous Power Peak Power Batteries Mass Capacity Photovoltaic Panels BRUSA MV V 9 KW 15 KW 16 6V Modules Pb-Gel 520 Kg 180 Ah Polycrystalline Surface 1.44 m 2 Weight 60 kg Efficiency 0.13 Electric Generator Diesel Yanmar S 6000 Power COP/LTP Specific fuel cons. Weight Overall weight (with driver) Weight 5.67/6.92 kva 272 g/kwh 120 kg 1950 kg

87 Fuel Cell Test Benches Nuvera 5 kw PowerFlow Module Studies on APU systems (Train, Ship, Series hybrid). Stationary energy production (In-house). Optimal management of grid connect/multi-source energy systems. Nuvera 5 kw automotive stack (1-4 bar) FC modeling. Auxiliaries modeling and control. Hybrid vehicle application. Custom PEM cell New Gas Diffusion Layer (GDL) and Membranes (DICA & DICHIM). Thermo-Fluid Dynamics analysis. Water management and modeling. 87 UNISA FC

88 Staff Ivan Arsie Assistant Professor Cesare Pianese Full Professor Gianfranco Rizzo Full Professor Secretary and Administrative Assistance Gina Scorziello Gianpaolo Noschese Technical Assistant Marco Sorrentino Research Assistant

89 PhD Students Ivan Criscuolo Gaetano Coraggio Cecilia Pisanti Silvana Di Iorio Raffaele Di Martino Angelo Esposito Dario Marra

90 Research Fields Automotive engines Alternative propulsion systems Fuel Cells Power Plants Energy Systems Modeling and optimization of bio-economics systems 90

91 Solar Energy km Nuclear fusion into the sun produces an enormous amount of energy, irradiated into the space. Solar energy is partly reflected to the space (15%), partly used to evaporate water (30%) and partly absorbed by plants, oceans and land, and for men use (55%). A very small part of the energy radiated by sun strikes the Earth (a part over two billions). 55% 15% 30%

92 10 HSV: Experimental Results Power [kw]; blue=b; green=em; red=eg [kw] (a) Acc. Pedal Position [/] (d) SOC [/] (b) 200 EM shaft torque [Nm] (e) Battery voltage [V] (c) 40 HSV speed [km/h] (f) Time [s] Time [s] Sets of experimental data for model validation and for prototype testing. 92

93 Energy management strategy In case of ICE intermittent use, energy management for HSV can be addressed via constrained optimization. min X m f, HSV X dt final initial Day through charge sustaining. SOC day SOC f SOC0 SOC p 0 estimated increment in next parking period SOC limits, for battery durability ( , lead acid battery). SOC SOC min SOC SOC max

94 Recharging time A critical aspect for electric and plug-in hybrid is recharging time. Integration of electric and plug-in hybrid vehicles with solar panels helps in reducing recharging time.

95 Well to Wheel H 2

96 Further details at Adinolfi G., Arsie I., Di Martino R., Giustiniani A., Petrone G., Rizzo G., Sorrentino M., (2008), A Prototype of Hybrid Solar Vehicle: Simulations and On-Board Measurements, Proc.of Advanced Vehicle Control Symposium AVEC 2008, October 6-9, 2008, Kobe (Japan) Society of Automotive Engineers of Japan - ISBN: Arsie I., Cacciato M., Consoli A., Petrone G., Rizzo G., Sorrentino M., Spagnuolo G., (2006), Hybrid Vehicles and Solar Energy: a Possible Marriage?, International Conference on Automotive Technologies ICAT 2006, November 17-18, 2006, Istanbul. Arsie I., Rizzo G., Sorrentino M. (2007), Optimal Design and Dynamic Simulation of a Hybrid Solar Vehicle, SAE TRANSACTIONS - Journal of Engines, Vol (2007), pp Arsie I., Rizzo G., Sorrentino M. (2008), A Model for the Optimal Design of a Hybrid Solar Vehicle, Review of Automotive Engineering, Society of Automotive Engineers of Japan (JSAE), 2008, ISSN : Preitl Z., Bauer P., Kulcsar B., Rizzo G., Bokor J. (2007) Control Solutions for Hybrid Solar Vehicle Fuel Consumption Minimization In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, June 13-15, Sorrentino M., Rizzo G., Arsie I. (2009), Analysis of a Rule-Based Control Strategy for On-Board Energy Management of Hybrid Solar Vehicles, ECosm'09 - IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, Nov.30-Dec.2, 2009, IFP, Rueil-Malmaison, France I Arsie, G Rizzo, M Sorrentino (2010) Effects of Engine Thermal Transients on Energy Management of Series Hybrid Solar Vehicles Control Engineering Practice G Rizzo, M Sorrentino, I Arsie (2010) Rule-Based Optimization of Intermittent ICE Scheduling on a Hybrid Solar Vehicle SAE International Journal of Engines March G Rizzo (2010) Automotive Applications of Solar Energy In: 6th IFAC Symposium "Advances in Automotive Control", AAC10, July 11-14, 2010, Munich (Germany) Edited by:elsevier. G Coraggio, C Pisanti, G Rizzo, A Senatore (2010) A Moving Solar Roof for a Hybrid Solar Vehicle In: 6th IFAC Symposium "Advances in Automotive Control", AAC10, July 11-14, 2010, Munich (Germany) G Rizzo, M Sorrentino (2010) Introducing Sunshine Forecast to Improve On-Board Energy Management of Hybrid Solar Vehicles In: 6th IFAC Symposium "Advances in Automotive Control", AAC10, July 11-14, 2010, Munich (Germany) Most of them can be downloaded at

Model Based Control of a Moving Solar Roof for a Solar Vehicle

Model Based Control of a Moving Solar Roof for a Solar Vehicle Model Based Control of a Moving Solar Roof for a Solar Vehicle G.Coraggio*, C.Pisanti*, G.Rizzo*, A.Senatore* *Dept. Of Mechanical Engineering, University of Salerno, 8484 Fisciano (SA), Italy Email: gcoraggio

More information

ELECTRIFICATION OF VEHICLE DRIVE TRAIN THE DIVERSITY OF ENGINEERING CHALLENGES

ELECTRIFICATION OF VEHICLE DRIVE TRAIN THE DIVERSITY OF ENGINEERING CHALLENGES ELECTRIFICATION OF VEHICLE DRIVE TRAIN THE DIVERSITY OF ENGINEERING CHALLENGES A3PS Conference, Vienna Dr. Frank Beste AVL List GmbH 1 Motivation for Powertrain Electrification Global Megatrends: Urbanization

More information

ON THE USE OF GENETIC ALGORITHM TO OPTIMIZE THE ON- BOARD ENERGY MANAGEMENT OF A HYBRID SOLAR VEHICLE

ON THE USE OF GENETIC ALGORITHM TO OPTIMIZE THE ON- BOARD ENERGY MANAGEMENT OF A HYBRID SOLAR VEHICLE Copyright 28, IFP ON THE USE OF GENETIC ALGORITHM TO OPTIMIZE THE ON- BOARD ENERGY MANAGEMENT OF A HYBRID SOLAR VEHICLE Ivan Arsie, Raffaele Di Martino, Gianfranco Rizzo, Marco Sorrentino* Department of

More information

A Moving Solar Roof for a Hybrid Solar Vehicle

A Moving Solar Roof for a Hybrid Solar Vehicle A Moving Solar Roof for a Hybrid Solar Vehicle G.Coraggio*, C.Pisanti*, G.Rizzo*, A.Senatore* *Dept. of Mechanical Engineering, University of Salerno, 884 Fisciano (SA), Italy Email: gcoraggio - cpisanti

More information

Engineering at Illinois

Engineering at Illinois Emerging Hybrid and Electric Vehicles and Their Impact on Energy and Emissions P. T. Krein Director, Grainger Center for Electric Machinery and Electromechanics Department of Electrical and Computer Engineering

More information

The Road to Electrical Vehicle and Hybrid Evolution in Turkey

The Road to Electrical Vehicle and Hybrid Evolution in Turkey The Road to Electrical Vehicle and Hybrid Evolution in Turkey Prof. Dr. R. Nejat TUNCAY OKAN University & MEKATRO R&D Company Istanbul, Turkey November 18, 2015 Why What Happened between 1890 and 1920?

More information

Contactless Power Transfer : Inductive charging of EV

Contactless Power Transfer : Inductive charging of EV Contactless Power Transfer : Inductive charging of EV 7-12-2010 P.Bauer Delft University of Technology Challenge the future EV have to be charged December 7, 2010 2 2 Chicken and egg problem December 7,

More information

Volvo Cars, Plug-In Hybrid Concept Development

Volvo Cars, Plug-In Hybrid Concept Development Volvo Cars, Plug-In Hybrid Concept Development The background of V60 Plug-In Hybrid Concept as presented internally at Volvo Car Corporation in May 2008 Klas Niste Project leader for Advanced Project for

More information

Electricity from PV systems how does it work?

Electricity from PV systems how does it work? Electricity from photovoltaic systems Bosch Solar Energy 2 Electricity from PV systems Electricity from PV systems how does it work? Photovoltaics: This is the name given to direct conversion of radiant

More information

48V eco-hybrid Systems

48V eco-hybrid Systems 48V eco-hybrid Systems Jean-Luc MATE Vice President Continental Engineering Services France President Automotech cluster www.continental-corporation.com Division Naming European Conference on Nanoelectronics

More information

Fuel Cell solutions for maritime and harbour applications Proton Motor Fuel Cell GmbH. Sebastian Dirk Venice, 14th of June

Fuel Cell solutions for maritime and harbour applications Proton Motor Fuel Cell GmbH. Sebastian Dirk Venice, 14th of June Fuel Cell solutions for maritime and harbour applications Proton Motor Fuel Cell GmbH Sebastian Dirk Venice, 14th of June The Company Proton Motor Proton Motor Fuel Cell GmbH is a leading manufacturer

More information

Elektrofahrzeug mit Range Extender die Entwicklungsherausforderung Electric Vehicle with Range Extender. The developement challenge

Elektrofahrzeug mit Range Extender die Entwicklungsherausforderung Electric Vehicle with Range Extender. The developement challenge Elektrofahrzeug mit Range Extender die Entwicklungsherausforderung Electric Vehicle with Range Extender Dr. M. Korman AVL-List GmbH The developement challenge Stärkung regionaler Kooperationen in der Elektromobilität

More information

Solar power Availability of solar energy

Solar power Availability of solar energy Solar Energy Solar Energy is radiant energy produced in the sun as a result of nuclear fusion reactions. It is transmitted to the earth through space by electromagnetic radiation in quanta of energy called

More information

PV Meets EV. David Katz AEE SOLAR FOUNDER AND CTO

PV Meets EV. David Katz AEE SOLAR FOUNDER AND CTO David Katz AEE SOLAR FOUNDER AND CTO TYPES OF ELECTRIC VEHICLES Hybrid Electric Vehicles HEV s HEV s have been on the market for over 10 years. They have a battery powered electric motor coupled with a

More information

Platform Engineering Applied to Plug-In Hybrid Electric Vehicles

Platform Engineering Applied to Plug-In Hybrid Electric Vehicles NREL/CP-540-41034. Posted with permission. Presented at the 2007 SAE World Congress April 16-19, 2007, Detroit, Michigan 2007-01-0292 Platform Engineering Applied to Plug-In Hybrid Electric Vehicles Tony

More information

Solar Power at Vernier Software & Technology

Solar Power at Vernier Software & Technology Solar Power at Vernier Software & Technology Having an eco-friendly business is important to Vernier. Towards that end, we have recently completed a two-phase project to add solar panels to our building

More information

Cost-Benefit Analysis of Plug-In Hybrid- Electric Vehicle Technology

Cost-Benefit Analysis of Plug-In Hybrid- Electric Vehicle Technology NREL/PR-540-40847 Cost-Benefit Analysis of Plug-In Hybrid- Electric Vehicle Technology 22 nd International Electric Vehicle Symposium Yokohama, Japan October 25-28, 2006 Ahmad Pesaran for Andrew Simpson

More information

Solar Energy Systems. Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University

Solar Energy Systems. Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University Solar Energy Solar Energy Systems Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University 1 SOLAR ENERGY OVERVIEW 1) Types of Solar Power Plants 2) Describing the Solar

More information

Stand Alone PV System Sizing Worksheet (example)

Stand Alone PV System Sizing Worksheet (example) Stand Alone PV System Sizing Worksheet (example) Application: Stand alone camp system 7 miles off grid Location: Baton Rouge, La Latitude: 31.53 N A. Loads A1 Inverter efficiency 85 A2 Battery Bus voltage

More information

Impact of Reflectors on Solar Energy Systems

Impact of Reflectors on Solar Energy Systems Impact of Reflectors on Solar Energy Systems J. Rizk, and M. H. Nagrial Abstract The paper aims to show that implementing different types of reflectors in solar energy systems, will dramatically improve

More information

Implementation of the Movable Photovoltaic Array to Increase Output Power of the Solar Cells

Implementation of the Movable Photovoltaic Array to Increase Output Power of the Solar Cells Implementation of the Movable Photovoltaic Array to Increase Output Power of the Solar Cells Hassan Moghbelli *, Robert Vartanian ** * Texas A&M University, Dept. of Mathematics **Iranian Solar Energy

More information

Storage Battery System Using Lithium ion Batteries

Storage Battery System Using Lithium ion Batteries Offices and schools Utilities / Renewable energy Storage Battery System Using Lithium ion Batteries Worldwide Expansion of Storage Battery System s Commercial Buildings Residential The Smart Energy System

More information

Commercial Outlook for Solar Power Generation

Commercial Outlook for Solar Power Generation Commercial Outlook for Solar Power Generation International Conference on Alternative Energy 2010 March 27, 2010 Karachi Expo Center Nadeem Haque Nadeem Haque Energy Potential Inc. Topics 1. Market Scenario

More information

Drive Electric Northern Colorado. Creating a Model Deployment Community

Drive Electric Northern Colorado. Creating a Model Deployment Community Drive Electric Northern Colorado Creating a Model Deployment Community The Deployment Community Concept: To facilitate nationwide commercialization of plug-in electric vehicle (PEV) technology, the engagement

More information

An Analysis of Regenerative Braking and Energy Saving for Electric Vehicle with In-Wheel Motors

An Analysis of Regenerative Braking and Energy Saving for Electric Vehicle with In-Wheel Motors , pp. 219-23 http://dx.doi.org/1.14257/ijca.214.7.12.2 An Analysis of Regenerative Braking and Energy Saving for Electric Vehicle with In-Wheel Motors 1 Li-qiang Jin, 2 Peng-fei Chen and 3 *Yue Liu State

More information

Training Systems for Renewable Energies. Acquiring Practical Skills and Project-oriented Expertise

Training Systems for Renewable Energies. Acquiring Practical Skills and Project-oriented Expertise Training Systems for Renewable Energies Acquiring Practical Skills and Project-oriented Expertise Qualifications through Quality Inexhaustible, sustainable, real the future is green The move away from

More information

An Approach for Designing Thermal Management Systems for EV and HEV Battery Packs

An Approach for Designing Thermal Management Systems for EV and HEV Battery Packs An Approach for Designing Thermal Management Systems for EV and HEV Battery Packs 4th Vehicle Thermal Management Systems Conference London, UK May 24-27, 1999 Ahmad A. Pesaran, Ph.D. Steven D. Burch Matthew

More information

hybrid fuel cell bus

hybrid fuel cell bus hybrid fuel cell bus PURE EMOTION PURE capacity The full passenger capacity of a standard diesel bus seats 34 standees 70 (7 passengers per sqm) total 104 Thanks to the three axles of the Van Hool A330

More information

Gasoline engines. Diesel engines. Hybrid fuel cell vehicles. Model Predictive Control in automotive systems R. Scattolini, A.

Gasoline engines. Diesel engines. Hybrid fuel cell vehicles. Model Predictive Control in automotive systems R. Scattolini, A. Model Predictive Control in automotive systems R. Scattolini, A. Miotti Dipartimento di Elettronica e Informazione Outline Gasoline engines Diesel engines Hybrid fuel cell vehicles Gasoline engines 3 System

More information

Alternative Drivetrains Volkswagen Group s Solutions for Sustainable Mobility

Alternative Drivetrains Volkswagen Group s Solutions for Sustainable Mobility Alternative Drivetrains Volkswagen Group s Solutions for Sustainable Mobility Prof. Dr. Wolfgang Steiger Group External Relations Future Technologies 2013-10-02 E-mobil BW Technologietag Stuttgart, Germany

More information

Running the Electric Meter Backwards: Real-Life Experience with a Residential Solar Power System

Running the Electric Meter Backwards: Real-Life Experience with a Residential Solar Power System Running the Electric Meter Backwards: Real-Life Experience with a Residential Solar Power System Brooks Martner Lafayette, Colorado University of Toledo Spring 2015 PHYS 4400 - Principles and Varieties

More information

Design of Grid Connect PV systems. Palau Workshop 8 th -12 th April

Design of Grid Connect PV systems. Palau Workshop 8 th -12 th April Design of Grid Connect PV systems Palau Workshop 8 th -12 th April INTRODUCTION The document provides the minimum knowledge required when designing a PV Grid connect system. The actual design criteria

More information

Solar Cars. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Energy Law Natalie Boulahanis nboulahanis@kentlaw.

Solar Cars. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Energy Law Natalie Boulahanis nboulahanis@kentlaw. Solar Cars TIFF (Uncompressed) decompressor Energy Law Natalie Boulahanis nboulahanis@kentlaw.edu What are Solar Cars? TIFF (Uncompressed) decompressor What are Solar Cars? Solar cars are cars powered

More information

Energy efficiency and fuel consumption of fuel cells powered test railway vehicle

Energy efficiency and fuel consumption of fuel cells powered test railway vehicle Energy efficiency and fuel consumption of fuel cells powered test railway vehicle K.Ogawa, T.Yamamoto, T.Yoneyama Railway Technical Research Institute, TOKYO, JAPAN 1. Abstract For the purpose of an environmental

More information

Sustainable mobility: the Italian technological challenge

Sustainable mobility: the Italian technological challenge Sustainable mobility: the Italian technological challenge an innovative paradigm for a new vehicles' generation ANFIA-ANIE ANIE WORKSHOP Hannover Messe 2010, April 19th Ing. Pier Luigi Farina DUCATI energia:

More information

Ozone Precursor and GHG Emissions from Light Duty Vehicles Comparing Electricity and Natural Gas as Transportation Fuels

Ozone Precursor and GHG Emissions from Light Duty Vehicles Comparing Electricity and Natural Gas as Transportation Fuels Ozone Precursor and GHG Emissions from Light Duty s Comparing Electricity and Natural Gas as Transportation Fuels Robert E. Yuhnke Director, Transportation Program and Mike Salisbury Energy Analyst and

More information

ENERGY PRODUCING SYSTEMS

ENERGY PRODUCING SYSTEMS ENERGY PRODUCING SYSTEMS SOLAR POWER INTRODUCTION Energy from the sun falls on our planet on a daily basis. The warmth of the sun creates conditions on earth conducive to life. The weather patterns that

More information

Electric Vehicles in Oregon Plug-in Electric Vehicle Adoption. John Gartner Research Director

Electric Vehicles in Oregon Plug-in Electric Vehicle Adoption. John Gartner Research Director Electric Vehicles in Oregon Plug-in Electric Vehicle Adoption John Gartner Research Director Introduction Pike Research is a market research and consulting firm that provides in-depth analysis of global

More information

Drive Towards Zero, Volvo Cars Manufacturing Engineering, Luc Semeese Issue date: 2010-04-20, Security Class: Propriety Page 1

Drive Towards Zero, Volvo Cars Manufacturing Engineering, Luc Semeese Issue date: 2010-04-20, Security Class: Propriety Page 1 Page 1 Volvo Cars Electrification Strategy DRIVe Towards Zero Brussels April 20th 2010 Luc Semeese Director - Volvo Cars Manufacturing Engineering Page 2 Company philosophy : DRIVe towards Zero! Zero accidents

More information

Fuel cells for long distance emobility: Content

Fuel cells for long distance emobility: Content Zentrum für BrennstoffzellenTechnik GmbH Fuel cells for long distance emobility Development status and powertrain concepts Dr.-Ing. Jörg Karstedt, Coordinator Emobility Hydrogen & Fuel Cells Energy Summit

More information

Analysis of fuel cell

Analysis of fuel cell Analysis of fuel cell commuter rail vehicles Stuart Hillmansen*1 1, D Meegahawatte1, C Roberts, P Jennings2, A McGordon2; 1University of Birmingham, United Kingdom, 2University of Warwick, United Kingdom

More information

Physics and Economy of Energy Storage

Physics and Economy of Energy Storage International Conference Energy Autonomy through Storage of Renewable Energies by EUROSOLAR and WCRE October 30 and 31, 2006 Gelsenkirchen / Germany Physics and Economy of Energy Storage Ulf Bossel European

More information

Modelling and optimization of renewable energy supply for electrified vehicle fleet

Modelling and optimization of renewable energy supply for electrified vehicle fleet Modelling and optimization of renewable energy supply for electrified vehicle fleet Dipl. Ing. Torsten Schwan Dipl. Ing. René Unger EA Systems Dresden GmbH Prof. Dr. Ing. Bernard Bäker Institute of Automotive

More information

The Future of Energy. Prof. Wesley Henderson Dept. Chemical & Biomolecular Engineering NC State University. Seminar 2

The Future of Energy. Prof. Wesley Henderson Dept. Chemical & Biomolecular Engineering NC State University. Seminar 2 The Future of Energy Prof. Wesley Henderson Dept. Chemical & Biomolecular Engineering NC State University Seminar 2 Outline of Lectures Seminar 1: Energy & Electricity Use in the U.S. Peak Oil? Clean Coal

More information

Engine Optimization Concepts for CVT-Hybrid Systems to Obtain the Best Performance and Fuel Efficiency. Professor Andrew A. Frank Univ.

Engine Optimization Concepts for CVT-Hybrid Systems to Obtain the Best Performance and Fuel Efficiency. Professor Andrew A. Frank Univ. Engine Optimization Concepts for CVT-Hybrid Systems to Obtain the Best Performance and Fuel Efficiency Professor Andrew A. Frank Univ. of CA-Davis Abstract: The objective of the advanced transmission system

More information

William Haman, P.E. IAMU Energy 2013 Conference, Ankeny, IA October 1, 2013

William Haman, P.E. IAMU Energy 2013 Conference, Ankeny, IA October 1, 2013 Iowa s Solar Energy Potential, The Basics William Haman, P.E. IAMU Energy 2013 Conference, Ankeny, IA October 1, 2013 Who is the Iowa Energy Center? A Little History Created by the 1990 Iowa Energy Efficiency

More information

HOMER Software Training Guide for Renewable Energy Base Station Design. Areef Kassam Field Implementation Manager

HOMER Software Training Guide for Renewable Energy Base Station Design. Areef Kassam Field Implementation Manager HOMER Training Guide for Renewable Energy Base Station Design Areef Kassam Field Implementation Manager Solar Table of Contents Introduction Step Step Step Step Solar Step Step Step Step Solar Introduction

More information

Powerplaza EV Technology & Global EV Mainstream Analysis

Powerplaza EV Technology & Global EV Mainstream Analysis Powerplaza EV Technology & Global EV Mainstream Analysis Global Business Development / General Manager, Powerplaza Co., Ltd. Soo-Hyun Kwon Powerplaza EV Technology POWER PLAZA CO., LTD. Think Green Technology,

More information

SOLAR ENERGY OVERVIEW WHAT S S NEW WHAT S S NEXT WHAT S S NEEDED

SOLAR ENERGY OVERVIEW WHAT S S NEW WHAT S S NEXT WHAT S S NEEDED SOLAR ENERGY OVERVIEW WHAT S S NEW WHAT S S NEXT WHAT S S NEEDED PHOTOVOLTAICS NEW: CONCENTRATOR PV NEXT: MULTIPLE JUNCTION 2 PV Deployment & Cost Extrapolation MW PV Installed Per Year 40000 35000 30000

More information

SOLAR TECHNOLOGY CHRIS PRICE TECHNICAL SERVICES OFFICER BIMOSE TRIBAL COUNCIL

SOLAR TECHNOLOGY CHRIS PRICE TECHNICAL SERVICES OFFICER BIMOSE TRIBAL COUNCIL SOLAR TECHNOLOGY CHRIS PRICE TECHNICAL SERVICES OFFICER BIMOSE TRIBAL COUNCIL SOLAR TECHNOLOGY Photovoltaics Funding Options Solar Thermal Photovoltaics 1. What are they and how do they work? 2. The Solar

More information

EPoSS Strategy Paper Smart Systems for the Full Electric Vehicle

EPoSS Strategy Paper Smart Systems for the Full Electric Vehicle Joint EC/EPoSS Expert Workshop Smart Systems for the Full Electric Vehicle Brussels 25-26 June 2008 EPoSS Strategy Paper Smart Systems for the Full Electric Vehicle August 2008 1. Introduction Growing

More information

Ubiquitous Computing in Business Processes Part V

Ubiquitous Computing in Business Processes Part V Ubiquitous Computing in Business Processes Part V Prof. Dr. Lutz Heuser AGT Germany Prof. Dr. Zoltán Nochta SAP AG Darmstadt January 16, 2015 Outline 1. Smart Grids and Energy Management Overview Common

More information

Electric Vehicles: Driving EVolution

Electric Vehicles: Driving EVolution Electric Vehicles: Driving EVolution November 2014 Executive Summary Electric Vehicles (EVs) have the potential to provide a significant benefit to consumers and utilities, however as demonstrated in Ergon

More information

16. Aachener Kolloquium Fahrzeug- und Motorentechnik 2007 1

16. Aachener Kolloquium Fahrzeug- und Motorentechnik 2007 1 16. Aachener Kolloquium Fahrzeug- und Motorentechnik 2007 1 Notwendige Fortschritte in der Antriebsstrangentwicklung zur nachhaltigen Mobilität mit Hybridtechnologie Powertrain Approach for Sustainable

More information

Hybrid Micro-Power Energy Station; Design and Optimization by Using HOMER Modeling Software

Hybrid Micro-Power Energy Station; Design and Optimization by Using HOMER Modeling Software Hybrid Micro-Power Energy Station; Design and Optimization by Using HOMER Modeling Software Iyad. M. Muslih 1, Yehya Abdellatif 2 1 Department of Mechanical and Industrial Engineering, Applied Science

More information

THE TECHNOLOGY TO REACH 60 MPG BY 2025

THE TECHNOLOGY TO REACH 60 MPG BY 2025 THE TECHNOLOGY TO REACH 60 MPG BY 2025 Putting Fuel-Saving Technology to Work to Save Oil and Cut Pollution Increasing the fuel efficiency of new cars and trucks is a critical step towards cutting America

More information

SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM

SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM J.Godson 1,M.Karthick 2,T.Muthukrishnan 3,M.S.Sivagamasundari 4 Final year UG students, Department of EEE,V V College of Engineering,Tisaiyanvilai, Tirunelveli,

More information

K.Vijaya Bhaskar,Asst. Professor Dept. of Electrical & Electronics Engineering

K.Vijaya Bhaskar,Asst. Professor Dept. of Electrical & Electronics Engineering Incremental Conductance Based Maximum Power Point Tracking (MPPT) for Photovoltaic System M.Lokanadham,PG Student Dept. of Electrical & Electronics Engineering Sri Venkatesa Perumal College of Engg & Tech

More information

Fuel Economy Sensitivity to Vehicle Mass for Advanced Vehicle Powertrains

Fuel Economy Sensitivity to Vehicle Mass for Advanced Vehicle Powertrains 26-1-665 Sensitivity to Vehicle Mass for Advanced Vehicle Powertrains Copyright 26 Society of Automotive Engineers, Inc S. Pagerit, P. Sharer, A. Rousseau Argonne National Laboratory ABSTRACT In 22, the

More information

Solar energy is available as long as the sun shines, but its intensity depends on weather conditions and geographic

Solar energy is available as long as the sun shines, but its intensity depends on weather conditions and geographic Solar Energy What is Solar Energy? The radiation from the sun gives our planet heat and light. All living things need energy from the sun to survive. More energy from sunlight strikes the earth in one

More information

«EMR and energy management of a Hybrid ESS of an Electric Vehicle»

«EMR and energy management of a Hybrid ESS of an Electric Vehicle» EMR 14 Coimbra June 2014 Summer School EMR 14 Energetic Macroscopic Representation «EMR and energy management of a Hybrid ESS of an Electric Vehicle» Dr. J. Trovão, F. Machado, Prof. A. Bouscayrol, Dr.

More information

VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001. Solar Power Photovoltaics or Solar Thermal Power Plants?

VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001. Solar Power Photovoltaics or Solar Thermal Power Plants? VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001 Solar Power Photovoltaics or Solar Thermal Power Plants? Volker Quaschning 1), Manuel Blanco Muriel 2) 1) DLR, Plataforma Solar de Almería,

More information

HBOX SOLAR 3A SOLAR POWERED ELECTROLYSER CASE STUDY 03

HBOX SOLAR 3A SOLAR POWERED ELECTROLYSER CASE STUDY 03 HBOX SOLAR 3A SOLAR POWERED ELECTROLYSER CASE STUDY 03 Case Study 03 HBox Solar: A Solar-Powered Electrolyser Background ITM Power is a developer of hydrogen energy systems based on electrolysis. There

More information

Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy. Solar Power. Courseware Sample 86352-F0 Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

More information

SOLAR COOLING WITH ICE STORAGE

SOLAR COOLING WITH ICE STORAGE SOLAR COOLING WITH ICE STORAGE Beth Magerman Patrick Phelan Arizona State University 95 N. College Ave Tempe, Arizona, 8581 bmagerma@asu.edu phelan@asu.edu ABSTRACT An investigation is undertaken of a

More information

Vehicle to Grid Power

Vehicle to Grid Power Vehicle to Grid Power Workshop at IEEE Conference Plug-In Hybrids: Accelerating Progress Washington, DC, September 19, 2007 Willett Kempton College of Marine and Earth Studies University of Delaware Four

More information

Plug-in Hybrid & Battery Electric Vehicles for Grid Integration of Renewables

Plug-in Hybrid & Battery Electric Vehicles for Grid Integration of Renewables Plug-in Hybrid & Battery Electric Vehicles for Grid Integration of Renewables Presented at Utility Wind Integration Group Radisson Hotel Reagan National Airport, Arlington, VA April 5-7, 2006 17 March

More information

Additional Solar System Information and Resources

Additional Solar System Information and Resources Additional Solar System Information and Resources Background information a. Roughly 400 schools in NJ already have solar systems, producing more than 91 MW, out of approximately 2500 K- 12 schools in NJ.

More information

Replacing Fuel With Solar Energy

Replacing Fuel With Solar Energy Replacing Fuel With Solar Energy Analysis by Michael Hauke, RSA Engineering January 22, 2009 The Right Place for Solar Energy Harvesting solar energy at South Pole can reduce the fuel consumption needed

More information

A Guide to Electric Vehicles

A Guide to Electric Vehicles A Guide to Electric Vehicles For commercial fleets, electric and hybrid electric vehicles offer reduced fuel, emission and operating costs. This guide provides a summary for Fleet Owners and Operators

More information

Photovoltaic System Technology

Photovoltaic System Technology Photovoltaic System Technology Photovoltaic Cells What Does Photovoltaic Mean? Solar electricity is created using photovoltaic cells (or PV cells). The word photovoltaic is made up of two words: photo

More information

Doctoral School on Engineering Sciences Università Politecnica delle Marche

Doctoral School on Engineering Sciences Università Politecnica delle Marche Doctoral School on Engineering Sciences Università Politecnica delle Marche Extended summary Knowledge-based approaches to support the design and development of the electrochemical storage Scuola di Dottorato

More information

SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS

SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS The United States generates over 4,110 TWh of electricity each year, costing $400 billion and emitting 2.5 billion metric tons of carbon dioxide (Yildiz,

More information

Comparison Control Strategies for ISG hybrid electric vehicle. Hailu Tang 1, a

Comparison Control Strategies for ISG hybrid electric vehicle. Hailu Tang 1, a 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2015) Comparison Control Strategies for ISG hybrid electric vehicle Hailu Tang 1, a School of Automotive Engineering,Wuhan University

More information

TIME IS RIGHT FOR SOLAR PANELS

TIME IS RIGHT FOR SOLAR PANELS TIME IS RIGHT FOR SOLAR PANELS Cut your home electric blls! The sun floods the earth with energy. Solar panels generate electricity that is free of emissions that harm our atmosphere and costs nothing.

More information

Battery Energy Storage

Battery Energy Storage CIGRE TNC Technical Seminar Future Renewable Energy and Smart Grid Technologies Battery Energy Storage 6/20/2014 Kenji Takeda Hitachi Research Laboratory, Battery Research Div., Hitachi, Ltd. Presentation

More information

The Quest for Energy Efficiency. A White Paper from the experts in Business-Critical Continuity

The Quest for Energy Efficiency. A White Paper from the experts in Business-Critical Continuity The Quest for Energy Efficiency A White Paper from the experts in Business-Critical Continuity Abstract One of the most widely discussed issues throughout the world today is the rapidly increasing price

More information

SOLAR ENERGY: SOLUTION TO FUEL DILEMMA

SOLAR ENERGY: SOLUTION TO FUEL DILEMMA IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 8, Aug 2014, 99-108 Impact Journals SOLAR ENERGY: SOLUTION TO

More information

The Volkswagen Hybrid Strategy

The Volkswagen Hybrid Strategy The Volkswagen Hybrid Strategy - Hybrid Tour with MainFirst Bank 28 th March 2006 Dr. Tobias Böhm Volkswagen AG Sustainability Based Aspects in Mobility Energy Greenhouse Gases CO 2 Exhaust Emissions CO,NOx,HC,PM

More information

SOLAR POWERED WATER PUMPING SYSTEMS

SOLAR POWERED WATER PUMPING SYSTEMS Trakia Journal of Sciences, Vol. 3, No. 7, pp 7-11, 2005 Copyright 2005 Trakia University Available online at: http://www.uni-sz.bg ISSN 1312-1723 Feature Article SOLAR POWERED WATER PUMPING SYSTEMS B.

More information

Electric Plug-In Versus Electric Hybrid Comparison Google Fleet Study

Electric Plug-In Versus Electric Hybrid Comparison Google Fleet Study Georgia Institute of Technology Milwaukee School of Engineering North Carolina A&T State University Purdue University University of Illinois, Urbana-Champaign University of Minnesota Vanderbilt University

More information

Photo Kirklees IS SOLAR ENERGY FOR ME? A guide to going solar

Photo Kirklees IS SOLAR ENERGY FOR ME? A guide to going solar Photo Kirklees IS SOLAR ENERGY FOR ME? A guide to going solar WHY SOLAR? Economics Solar energy can reduce bills, earn you money and protect you from rising energy prices. Solar is a free source of energy

More information

Hybrid heat pumps. saving energy and reducing carbon emissions

Hybrid heat pumps. saving energy and reducing carbon emissions Hybrid heat pumps saving energy and reducing carbon emissions Bart Aspeslagh Product planning and new technology manager, Daikin Europe NV. aspeslagh.b@daikineurope.com Stefanie Debaets Design engineer,

More information

Operational experienced of an 8.64 kwp grid-connected PV array

Operational experienced of an 8.64 kwp grid-connected PV array Hungarian Association of Agricultural Informatics European Federation for Information Technology in Agriculture, Food and the Environment Journal of Agricultural Informatics. 2013 Vol. 4, No. 2 Operational

More information

Enough Solar Energy falls on New York in ONE DAY to power the state for ONE YEAR

Enough Solar Energy falls on New York in ONE DAY to power the state for ONE YEAR Enough Solar Energy falls on New York in ONE DAY to power the state for ONE YEAR Dr., physicist 1/19/2006 Solar Power to the People 1 3% of the State of New York s land area is covered with buildings and

More information

Sustainable Living Student Worksheets

Sustainable Living Student Worksheets Sustainable Living Student Worksheets Stage 4 Design & Technology FW4DT1 Name: Introduction Renewable Versus Non-renewable Energy The Sun is a Primary Source of Energy Almost all the energy needed to keep

More information

Volkswagen and photovoltaics

Volkswagen and photovoltaics Volkswagen and photovoltaics Taking responsibility. Our commitment to renewable energies. Energy from sunlight! At the Volkswagen conference entitled»photovoltaics how to harness the sun«, held on 2o June

More information

Fuel Infrastructure Costs: electricity vs. hydrogen

Fuel Infrastructure Costs: electricity vs. hydrogen Electricity outlet fuel infrastructure. Type I 120 V conventional home outlets would not be sufficient to charge most BEVs or PHEVs. As summarized in Table 1, it will take between 10 to 28 hours 1 to charge

More information

Photovoltaic Solar Energy Unit EESFB

Photovoltaic Solar Energy Unit EESFB Technical Teaching Equipment Photovoltaic Solar Energy Unit EESFB Products Products range Units 5.-Energy Electronic console PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION Worlddidac Member ISO 9000: Quality

More information

Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System

Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System Thatipamula Venkatesh M.Tech, Power System Control and Automation, Department of Electrical & Electronics Engineering,

More information

The different type of photovoltaic systems and their applications

The different type of photovoltaic systems and their applications The different type of photovoltaic systems and their applications Solar radiation Solar radiation: electromagnetic energy emitted by the fusion of hydrogen content in the sun. - On the solar surface to

More information

Advanced In-Wheel Electric Propulsion Technology

Advanced In-Wheel Electric Propulsion Technology Advanced In-Wheel Electric Propulsion Technology April 2011 Introduction 2 Protean Electric: Company Overview Protean Electric: Clean technology company Leading global supplier of in-wheel electric motor

More information

Energy Strategic Plan Los Angeles Community College District Community College League Conference

Energy Strategic Plan Los Angeles Community College District Community College League Conference Energy Strategic Plan Los Angeles Community College District Community College League Conference Larry Eisenberg Executive Director, Facilities Planning and Development November 16,2006 West Los Angeles

More information

Automotive Lithium-ion Batteries

Automotive Lithium-ion Batteries Automotive Lithium-ion Batteries 330 Automotive Lithium-ion Batteries Akihiko Maruyama Ryuji Kono Yutaka Sato Takenori Ishizu Mitsuru Koseki Yasushi Muranaka, Dr. Eng. OVERVIEW: A new of high-power lithium-ion

More information

The days of cheap abundant electricity are over! This article forms part

The days of cheap abundant electricity are over! This article forms part Solar Power for Metal Finishers By Helmut Hertzog of Atlantic Solar The days of cheap abundant electricity are over! This article forms part of a series of articles where we will explore the possibility

More information

The Potential for Battery Electric Vehicles in New Zealand

The Potential for Battery Electric Vehicles in New Zealand The Potential for Battery Electric Vehicles in New Zealand Dr Mike Duke 1, Timothy Anderson 2 1,2 Department of Engineering, The University of Waikato Keywords: Battery electric vehicles, New Zealand Abstract

More information

Hybrid Electric Powertrain Fuel Consumption Reduction Cost Effectiveness Trade-Offs

Hybrid Electric Powertrain Fuel Consumption Reduction Cost Effectiveness Trade-Offs Hybrid Electric Powertrain Fuel Consumption Reduction Cost Effectiveness Trade-Offs Presentation at the 24 th USAEE/IAEE North American Conference Energy, Environment and Economics in a New Era July 8-10,

More information

POWERWALL AND POWERPACK TESLA BATTERIES

POWERWALL AND POWERPACK TESLA BATTERIES POWERWALL AND POWERPACK TESLA BATTERIES M. Ragheb 5/12/2015 INTRODUCTION It is waiting that helps you as an investor, and a lot of people just cannot stand to wait. Charles Munger It is interesting to

More information

A Cost Comparison of Fuel-Cell and Battery Electric Vehicles

A Cost Comparison of Fuel-Cell and Battery Electric Vehicles A Cost Comparison of Fuel-Cell and Battery Electric Vehicles Abstract Stephen Eaves *, James Eaves Eaves Devices, Charlestown, RI, Arizona State University-East, Mesa, AZ This paper compares the manufacturing

More information

Well-to-Wheels analysis of future fuels and associated automotive powertrains in the European context. Preliminary Results for Hydrogen

Well-to-Wheels analysis of future fuels and associated automotive powertrains in the European context. Preliminary Results for Hydrogen Well-to-Wheels analysis of future fuels and associated automotive powertrains in the European context A joint initiative of /JRC/CONCAWE ry Results for Hydrogen Summary of Material Presented to the EC

More information