CdTe solar cells. Master in Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali. Francesco Biccari

Size: px
Start display at page:

Download "CdTe solar cells. Master in Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali. Francesco Biccari biccari@gmail."

Transcription

1 CdTe solar cells Master in Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali Francesco Biccari

2 Cadmium telluride (CdTe) Chalcogenide semiconductor Zincblend structure Direct energy gap 1.44 ev Can be growth both p-type (V Cd acceptors) or n-type (Cd i donors) m e = 0.1 m 0 µ e = 1100 cm 2 /Vs in single crystals Difficult extrinsic doping η th = 31% Source: Wikipedia Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 2/39

3 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 3/39 CdTe solar cells. Brief history CdTe based solar cells are studied since pn-homounction, both poly- and single-crystal give poor efficiency (3%) 1960: n-cds/p-cdte, 1972: Bonnet and Rabenhorst obtain 6% efficiency 1981: Kodak introduces Close Spaced Sublimation method 1991: Ting L. Chu introduces a front window layer reducing the thickness of CdS 15% efficiency! Born of Solar Cell Incorporated (now First Solar) 2002: NREL obtains 16.5% efficiency (current world record) 2005: First Solar reaches 25 MWp/y of production 2009: EMPA Labs show 13.5% efficiency on flexible polyimide substrates 2010: First Solar production cost: 0.75 /Wp! Capacity 1.5 GWp/y!

4 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 4/39 CdTe solar cells. Superstrate The superstrate configuration is used in most CdTe solar cells This is due to the particular difficulty in making the rear contact (we will see why) The back contact is usually deposited at the end of the cell to have a better control Superstrate configuration!

5 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 5/39 TCO The free carrier absorption in the infrared is less important for CdTe because of its higher gap with respect to, for example, CIGSe or CISe. The window layer is usually divided in two layers: a highly conductive and thick TCO and a diffusion barrier between the first TCO and CdS. Record NREL cell: borosilicate glass/cd 2 SnO 4 /Zn 2 SnO 4 /CdS/CdTe/metal Typical cell: glass/ito/sno 2 /CdS/CdTe/metal or FTO instead of ITO In principle AZO is cheaper than ITO. But AZO degrades during the other steps (especially CdCl 2 ) giving a high series resistance

6 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 6/39 CdS CdS is a semiconductor with E g = 2.42 ev. It is yellow! It should be a window layer but it should be as thin as possible (we will see why) and it is called buffer layer. Deposition methods: Evaporation Sputtering Close Spaced Sublimation (CSS) Vapour Transient Deposition (VTD) Chemical Vapour Deposition (CVD) Chemical Bath Deposition (CBD) CdS Glass TCO CdTe Mo

7 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 7/39 CdS Compact to reduce shunts It can suffer from the subsequent processes (in superstrate configuration) Lattice mismatch with the absorber: defects Partecipation to carrier collection? Probably no High absorption in blue: usage of a TCO as window layer. CdS very thin! High resistance: usage of a TCO as window layer. CdS very thin! Poortmans

8 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 8/39 CdS deposited by CBD or VTD Chemical Bath deposition (CBD) is not used for CdTe Cd 2+ source (CdSO 4, CdI 2 ) + NH 3 + S 2- source (thiourea) + H 2 O T = 70 C, reaction of Cd 2+ with S 2- to form CdS First Solar uses Vapor Transport Deposition (VTD) where the CdS is evaporated in an inert atmosphere and carried toward the glass with an inert gas flux (The same technique is used for CdTe, see below)

9 CdS effects. CdS/CdTe interdiffusion CdS/CdTe: ~10% lattice mismatch and different crystal structures (wurtzite CdS vs zincblend CdTe) However the junction shows good electronic properties! The explanation is the possibility of CdTe and CdS to mix. A sulfur rich CdTe phase, CdTe 1 x S x, in the CdTe absorber, and a tellurium rich CdS phase, CdS 1 y Te y, in the CdS layer. The bandgap E g (x) of the mixed phases has a minimum value 1.40 ev at a composition of around 25% (atomic) CdS in CdTe. This effect shifts the QE of CdTe/CdS cells to longer wavelengths with a few tens of nm. Around λ = 520 nm, the CdS 1 y Te y in CdS enhances the absorption (this is a loss) Around λ = 860 nm, the CdTe 1 x S x in CdTe enhances the absorption (this is a gain) Normally, the gain in the infrared does not compensate for the loss in the green region Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 9/39

10 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 10/39 CdTe deposition techniques Close Spaced Sublimation (CSS). High temperatures, up to 650 C, give the best cells but borosilicate glass is needed. High cost. Commercial scale systems use soda lime glass (550 C). (Antec Solar, Mitsubishi). Vapor Transport Deposition (VTD). Low temperatures. Very fast. (First Solar) PVD, MOCVD, sputtering. Intermediate temperatures: 250 C to 350 C. Electrodeposition. At about 90 C. All of these methods have yielded cells with performance well above 10%. Why CdTe has this unparalleled flexibility? Great stability of the binary compound with a tendency to self compensate with intrinsic defects to form quite stable p-type CdTe. Use of post-deposition activation treatments which involves an anneal step at 400 C in the presence of some O 2 and Cl.

11 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 11/39 CdTe: Phase diagram CdTe(s)+Cd(s) CdTe(s)+Te(s) CdTe is the only stable compound in the phase diagram!

12 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 12/39 CdTe. Self stabilization Equilibrium vapor pressure of elemental Cd and Te is much higher than that of CdTe: therefore the pure phases tend to re-evaporate 2 CdTe (s) 2 Cd (g) + Te 2 (g) Log(p Te2 (atm))= /T Low temperature congruent sublimation. The composition is self stabilizing.

13 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 13/39 CdTe. Close Spaced Sublimation The driving force for the deposition is the temperature difference Substrates and sources are very close together. The film growth occurs close to equilibrium condition. This small difference in temperature limits the deposition rate In rough vacuum or in inert gas For CdTe and CdS (600 C) (700 C) Deposition rate: 1 µm/min!

14 CdTe. Vapor Transport Deposition Similar to CSS but the source and the substrate environments are decoupled: the temperature difference can be larger! Industrially simpler Deposition rate: Up to 1 µm/s! P 1 = P 2 + cost Φ He Limited by surface kinetics (sticking coefficient) Limited by dilution of the source Kestner (2004) Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 14/39

15 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 15/39 VTD. First Solar and NREL The key enabler for low-cost, high-throughput manufacture is rapid deposition of high-quality semiconductor films

16 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 16/39 CdTe. Intrinsic defects CdTe is a ionic material with a large interatomic distance and low cohesive strength. The vacancy formation energy is therefore low. Te = Te = Te = Te = Te = Te = Cd ++ Cd ++ Cd ++ Te = Te = Te = Te = Te = Cd ++ Te = Cd ++ Cd ++ Cd ++ Cd ++ Te = Te = Te = Te = Te = Te = Cd Vacancy (V Cd, acceptor) Cd Interstitial (Cd i, donor) For PV application p-type CdTe is preferred. The density of cadmium vacancies is in the range of to cm -3 for a typical PV material.

17 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 17/39 CdTe: intrinsic defects and dopants Copper in CdTe is an acceptor (it sits on a cadmium site: Cu Cd ) Poortmans (2006) Chlorine resides on a tellurium site (Cl Te ), acts as a shallow donor. It forms, however, a complex with a doubly negatively charged cadmium vacancy, and this negatively charged (Cl + Te V 2 Cd ) complex acts as a single acceptor.

18 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 18/39 CdTe. The magic CdCl 2 treatment CdCl 2 treatment of CdTe (called post-deposition treatment) is fundamental to obtain good solar cells. Presence of oxygen is beneficial. Increased grain size in CdTe and in CdS when the initial grains are small (not with CSS and VTD). Grain growth, which can occur during CdCl 2 treatment, introduces stress at the interface between the CdS and TCO layer, resulting in film blistering or peeling. (Cl solubility in CdTe is low: diffusion along the grain boundaries with the formation of CdO and TeCl 2 ) Subgrains disappear, grain-boundary passivation p-type doping Passivation of recombination defects: longer minority carriers lifetimes. Interaction with Cl, O and V Cd can however generate other deep defects Increased CdS/CdTe interface alloying: reduced lattice mismatch between the CdS and CdTe layers CdCl 2 overtreatment can result in adhesion loss problems, deep defects formation

19 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 19/39 CdTe. Post deposition treatment Solution of methanol and CdCl 2 sprayed on CdTe and subsequentely heated at 450 C for few minutes CdCl 2 thin film over CdTe applied by evaporation, CSS or VTD Other methods (gaseous CdCl 2 ) or other compound containing Cl (HCl, NaCl, ) are under study CdCl 2 is highly toxic and soluble in water and alcohol!

20 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 20/39 Back contact problems CdTe is a material with high electron affinity (χ = 4.28 ev) A metal with a high work function is needed (only noble metals! Φ Au = 5.4 ev and Φ Pt = 5.7 ev). Ideal theory! Fermi level pinning! Poortmans (2006)

21 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 21/39 Back contact problems The strategy is to form a highly doped p + region at the CdTe back contact in order to permit the tunnelling of the holes. But CdTe extrinsic doping is not simple (autocompensation). The p + region is obtained by etching (C 2 H 5 BrO, HNO 3 :H 3 PO 4, etc ) the back surface of CdTe leaving a Te-rich layer. Etching can introduce shunt paths due to preferential etching at grain boundaries Most commonly used back-contact materials are: Cu based: Cu:Au, ZnTe:Cu, Cu x Te:HgTe/graphite, Cu/graphite, HgTe:Cu/graphite paste/ag paste (record cell) Copper is used because of its acceptor character (when introduced in larger quantities, however, part of the copper will occupy an interstitial place, and this Cu i acts as a donor!) Moreover Cu decreases lifetime of minority carries Cu free: Ni-P, Sb 2 Te 3 /Mo, HgTe/graphite, Ni/Al, Sb/Mo

22 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 22/39 Effects of Cu from the back contact Unfortunately copper can diffuse D Cu in CdTe = 3.7 x 10-4 exp (-0.67 ev/kt) If Cu diffusion is insufficient, the entire CdTe layer is depleted if Cu diffusion is excessive: the depletion width can become too narrow Cu may segregate into the grain boundaries forming shunting paths Cu can arrive to CdS increasing its resistivity The Cu diffusion and therefore the degradation is accelerated by temperature and illumination Most contact processes used for CdS/CdTe devices are optimized (often unknowingly) to result in an optimal depletion width

23 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 23/39 CdTe modules Manufacturing Capacity in 2009: First Solar (USA): 1100 MW/yr Calyxo (Q-cells DEU): 25 MW/yr Antec Solar (DE): 10 MW/yr PrimeStar Solar Arendi (Italia) First Solar is the first company for production capacity in Roth& Rau has announced in February 2009 that it will be able, by the end of the year, to sell complete production lines for CdTe Modules. 12% efficiency

24 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 24/39 First Solar 40 MW solar field installed in Germany (First Solar). Completed in December Estimated total price 130 M (3.25 /W). It is one of the largest solar fields in the world and also one with a low price. First solar production lines: Malaysia (1.5 GWp) Germany (0.5 GWp) USA (0.25 GWp) France (0.1 GWp)

25 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 25/39 First Solar process (in 2000) Substrate cleaning APCVD SnO 2 undoped VTD CdS VTD CdTe (3 µm) CdCl 2 treatment Cu x Te formation Sputtering Back contact Laser scribing Laser scribing Laser scribing High throughput: 1 module 120 cm x 60 cm in 15 s, 17 kwp/h, 100 MWp/year for 3 shifts Doped SnO 2 (ITO) coated soda lime glass substrate Undoped SnO 2 deposition by APCVD and buffer layer (CdS) by VTD CdCl 2 aqueous solution is sprayed on the CdTe formed on the glass substrate, and subsequently treated in a belt furnace First Solar process to make the back ohmic contact while reducing the Cu available: A chemical etch of CdTe to create a Te-rich surface Deposition of only 2 nm of Cu Annealing to form the compound Cu x Te (a good p-type semiconductor) Sputtering of metal for the back contact

26 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 26/39 First Solar CdTe module stability Tucson Electric/First Solar 480 kw thin film CdTe solar field installed in 2003

27 First Solar. Module cost per Wp 2009 december. Manufacturing module cost 0.84 $/Wp 2012 december: target of 0.7 $/Wp! targer of BOS, 1 $/Wp! $/W Last update: 2011 Module cost (2002 $/Wp) 10 1 a-si modules CdTe modules FOSSIL FUEL COMPETITIVE LEVEL $/W 2005 c-si shortage c-si modules 81% learning curve Grid parity at our latitudes is near! 0.1 1E Cumulative production (GWp) Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 27/39

28 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 28/39 CdTe solar cells. Matsushita process Borosilicate glass is used as a substrate. Spray pyrolysis for SnO 2 :F film (500 nm, ρ sheet <10Ωsq). Spray pyrolysis for CdS (100 nm). Close Spaced sublimation for CdTe film (3 7 µm) 0.3M CdCl 2 aqueous solution is sprayed on the CdTe formed on the glass substrate, and subsequently treated in a belt furnace at 420 C for 30 min in air. After the heat treatment, the substrate is rinsed in de-ionized water, and dried in an N 2 atmosphere. Sandblast technique to pattern the CdTe film. Screen printing of Carbon paste (containing Cu and/or Pb) for the ohmic contact. Screen printing of Ag paint as a metal electrode.

29 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 29/39 Arendi. Italian CdTe solar modules Glass cleaning Front TCO Sputtering CdS sputtering With CHF 3 CSS CdTe (Ar+O 2 ) CHF 3 Cl treatment Sputtering As 2 Te 3 /Cu/Mo Laser scribing Laser scribing Laser scribing 400 ºC 250 ºC 500 ºC 400 ºC 300 ºC RT RT RT RT Improvements: 1.New deposition process for the CdS: sputtering in Ar + CHF 3 (better reproducibility) 2.Substitution of the CdCl 2 step by treating CdTe films at 400 C, for a few minutes in an atmosphere containing HCFCl 2, (a Freon which is non toxic and inert at room temperature): no risk of stocking CdCl 2, faster process 3.Elimination of the acid etch of the CdTe surface. 4. Back contact: deposition on top of a not etched surface of nm of As 2 Te 3 followed by the deposition of 10-20nm of Cu at C. A reaction between Cu and As 2 Te 3 happens forming a Cu x Te layer by a substitution reaction. This type of contact resulted to be stable and non rectifying.

30 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 30/39 CdTe modules. Roth&Rau turnkey line Roth & Rau has recently completed the development of the first CdTe turnkey production line. Nominal capacity: 80 MWp (glass-glass modules 1.2 m x 1.6 m) Targets: Conversion efficiency at 10%, production yield of 95%, production cost less than 1 /Wp

31 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 31/39 CdTe Roth & Rau turnkey line Production steps for CdTe modules 1. CdTe deposition 2. Activation 3. Back contact sputtering 4. Encapsulation

32 CdTe. Environmental issues Elemental cadmium is highly toxic. Detrimental effects on kidney and bone. Carcinogen for lungs. High energies of the CdTe and the CdS bonds, extremely low water solubility and the low vapor pressure of CdTe and CdS. CdTe and CdS are not so toxic! A 1 m 2 solar module contains about 6 g of Cd in CdTe and CdS. A typical AA Ni-Cd battery contains 4 g of metal Cd! Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 32/39

33 CdTe. Environmental issues Mining and production of CdTe and CdS Safe Production of solar modules Safe, deep studies from NREL, First Solar and Antec Active life of solar modules CdTe melts at 1041 C, CdS melts at 1750 C The modules are completely safe during normal operation and even during a fire the thin layers of CdTe and CdS would be encapsulated inside the molten glass, so any Cd vapor emissions are unlikely Dismantling, disposal and recycling of modules Even cracking a module does not produce any relevant Cd contamination. Specifically recycling programs from all companies Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 33/39

34 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 34/39 Temperature coefficient With the increasing temperature, j sc sligthly increases while V oc decreases V V oc oc ( T 0 + dt ) ( T0 + dt ) V ( T ) oc 0 V oc 1+ ( T 0 dt dvoc ( T ) ) + dt dt V oc 1 ( T 0 ) T 0 dvoc ( T ) dt T 0 1+ β ( E g ) dt V oc temperature coefficient β 1 T 0 E g C C with E g > C Try to demonstrate this expression valid for an ideal solar cell. Approx. E g >> kt 0, j sc >> j S The higher the band gap the lower the temperature coefficient First solar module: β = %/ C. Same percentage for efficiency. For c-si modules: β = - 0.5%/ C

35 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 35/39 Materials availability: a future problem? Indium requirement: 0.03 gr/wp: the price is still acceptable The entire In production would give a maximum of 10 GWp/yr PV production. J.J. Scragg et al, Phys. stat. sol. (b) 245, 1772 (2008)

36 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 36/39 Materials availability: a future problem? Modules (Eff 10%) Metal Required (g/m 2 ) Reserves 1998 (Gg) Production 1999 (Gg/yr) Limit power (TWp) 1999 limit annual prod (GWp/yr) 2020 limit annual prod (GWp/yr) CdTe (2 µm) Cd Te CIGS (2 µm) Se Ga In asige (0.2 µm) Ge Dye Ru Source: B. A. Andersson, Prog. Photovolt. Res. Appl. 8, 61 (2000) Total PV 2010 production 27 GWp (2 GWp due to CdTe and CIGS) No availability problems in the next 5-10 years On the long term availability problems for In and Te could arise. (10 5 TWh 2006 world consumption: 10 TWp of PV) 11 20

37 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 37/39 CdTe solar cells. Conclusions (1) High efficiency The polycrystalline nature of the thin film is not detrimental and poly thin film solar cells give higher efficiency compared to their single crystal counterparts Stability The polycrystalline nature tolerate quite high concentration of impurities Even if some problems could exist with the diffusion of Cu, First Solar modules show a very good stability Low cost Effective use of raw materials Small energy pay-back time (less than two years) No doping: the p-type conductivity due to intrinsic defects is used Adaptable to various applications

38 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 38/39 CdTe solar cells. Conclusions (2) CIGSe modules have reached 1.44 GWp of production in 2010! CdTe cost per Wp is similar or lower than a-si but CdTe efficiency is higher! At the moment the main product type is a glass monolithic module but probably a large production increase will derive from the introduction of flexible modules. Materials availability is not going to be a big problem in the next years and it will improve in response to demand and price increase. Environmental and safety problems are manageable in the production phase and almost irrelevant for the user.

39 Francesco Biccari Master Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali 39/39 Acknowledgments Thanks to Dr. Alberto Mittiga for providing several figures, numbers and slides of this presentation Thanks to Dr. Rosa Chierchia for useful discussions Thanks to Dr. Shenjiang Xia for pointing me out some mistakes

CuIn 1-x Ga x Se 2 solar cells

CuIn 1-x Ga x Se 2 solar cells CuIn 1-x Ga x Se 2 solar cells Master in Ingegneria del Fotovoltaico Corso di Tecnologie Fotovoltaiche Convenzionali Francesco Biccari biccari@gmail.com 2012-04-25 Francesco Biccari Master Ingegneria del

More information

The Status and Outlook for the Photovoltaics Industry. David E. Carlson March 14, 2006

The Status and Outlook for the Photovoltaics Industry. David E. Carlson March 14, 2006 The Status and Outlook for the Photovoltaics Industry David E. Carlson March 14, 2006 Outline of the Talk The PV Market The Major Players Different Types of Solar Cells Field Installations Performance

More information

Photovoltaics photo volt Photovoltaic Cells Crystalline Silicon Cells Photovoltaic Systems

Photovoltaics photo volt Photovoltaic Cells Crystalline Silicon Cells Photovoltaic Systems 1 Photovoltaics Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.

More information

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice. CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity

More information

Solar Photovoltaic (PV) Cells

Solar Photovoltaic (PV) Cells Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation

More information

SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS

SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS The United States generates over 4,110 TWh of electricity each year, costing $400 billion and emitting 2.5 billion metric tons of carbon dioxide (Yildiz,

More information

Nanoparticle Enhanced Thin Film Solar Cells

Nanoparticle Enhanced Thin Film Solar Cells Nanoparticle Enhanced Thin Film Solar Cells Solar Cells Solar cells convert visible light to electricity. It is one of the clean sources of energy. In theory a 100 square mile area covered with solar panels

More information

Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar

Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar Light management for photovoltaics Ando Kuypers, TNO Program manager Solar Global energy consumption: 500 ExaJoule/Year Solar irradiation on earth sphere: 5.000.000 ExaJoule/year 2 Capturing 0,01% covers

More information

Photovoltaic Power: Science and Technology Fundamentals

Photovoltaic Power: Science and Technology Fundamentals Photovoltaic Power: Science and Technology Fundamentals Bob Clark-Phelps, Ph.D. Evergreen Solar, Inc. Renewable Energy Seminar, Nov. 2, 2006 Photovoltaic Principle Energy Conduction Band electron Energy

More information

Thin Is In, But Not Too Thin!

Thin Is In, But Not Too Thin! Thin Is In, But Not Too Thin! K.V. Ravi Crystal Solar, Inc. Abstract The trade-off between thick (~170 microns) silicon-based PV and thin (a few microns) film non-silicon and amorphous silicon PV is addressed

More information

ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely

ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely ELG4126: Photovoltaic Materials Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely Introduction A material or device that is capable of converting the energy contained

More information

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

More information

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures ARGYRIOS C. VARONIDES Physics and EE Department University of Scranton 800 Linden Street, Scranton PA, 18510 United States Abstract:

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

Processing of Semiconducting Materials Prof. Pallab Banner Department of Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banner Department of Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banner Department of Material Science Indian Institute of Technology, Kharagpur Lecture - 40 Materials for Photovoltaics This is the last topic in this

More information

New materials for PV Mirjam Theelen

New materials for PV Mirjam Theelen New materials for Mirjam Theelen 2 A little bit about myself Born in Eindhoven 2001-2007 Study chemistry in Nijmegen Solid State Chemistry Physical Chemistry 2007-present Scientist at TNO (Eindhoven) Research

More information

Semiconductors, diodes, transistors

Semiconductors, diodes, transistors Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

More information

PELICULAS DELGADAS DE NUEVOS MATERIALES PARA CELDAS SOLARES CdTe/CdS. R. Castro-Rodríguez

PELICULAS DELGADAS DE NUEVOS MATERIALES PARA CELDAS SOLARES CdTe/CdS. R. Castro-Rodríguez PELICULAS DELGADAS DE NUEVOS MATERIALES PARA CELDAS SOLARES CdTe/CdS R. Castro-Rodríguez Departamento de Física Aplicada CINVESTAV IPN Unidad Mérida 1 1 Estructura de una Celda Solar CdS/CdTe The cell

More information

For Touch Panel and LCD Sputtering/PECVD/ Wet Processing

For Touch Panel and LCD Sputtering/PECVD/ Wet Processing production Systems For Touch Panel and LCD Sputtering/PECVD/ Wet Processing Pilot and Production Systems Process Solutions with over 20 Years of Know-how Process Technology at a Glance for Touch Panel,

More information

Wafer-based silicon PV technology Status, innovations and outlook

Wafer-based silicon PV technology Status, innovations and outlook Wafer-based silicon PV technology Status, innovations and outlook Wim Sinke ECN Solar Energy, Utrecht University & European PV Technology Platform www.ecn.nl Contents Wafer-based silicon photovoltaics

More information

The Current status of Korean silicon photovoltaic industry and market. 2011. 3.17 Sangwook Park LG Electronics Inc.

The Current status of Korean silicon photovoltaic industry and market. 2011. 3.17 Sangwook Park LG Electronics Inc. The Current status of Korean silicon photovoltaic industry and market 2011. 3.17 Sangwook Park LG Electronics Inc. contents 1.Introduction (World PV Market) 2.Korean PV market 3.Photovoltaics in LG Electronics

More information

Lecture 2 - Semiconductor Physics (I) September 13, 2005

Lecture 2 - Semiconductor Physics (I) September 13, 2005 6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 2-1 Lecture 2 - Semiconductor Physics (I) September 13, 2005 Contents: 1. Silicon bond model: electrons and holes 2. Generation and recombination

More information

Spring 2002 Dawn Hettelsater, Yan Zhang and Ali Shakouri, 05/09/2002

Spring 2002 Dawn Hettelsater, Yan Zhang and Ali Shakouri, 05/09/2002 University of California at Santa Cruz Jack Baskin School of Engineering Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 7: Solar Cells Spring 2002 Dawn Hettelsater, Yan

More information

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Types of Epitaxy. Homoepitaxy. Heteroepitaxy Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)

More information

Semiconductor doping. Si solar Cell

Semiconductor doping. Si solar Cell Semiconductor doping Si solar Cell Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion

More information

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure. Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

More information

Silicon Wafer Solar Cells

Silicon Wafer Solar Cells Silicon Wafer Solar Cells Armin Aberle Solar Energy Research Institute of Singapore (SERIS) National University of Singapore (NUS) April 2009 1 1. PV Some background Photovoltaics (PV): Direct conversion

More information

Materials and Technologies for Renewable Energy. ENEA R&D activities on PV. Anna De Lillo

Materials and Technologies for Renewable Energy. ENEA R&D activities on PV. Anna De Lillo Italian National Agency for New Technologies, Energy and Sustainable Economic Development Materials and Technologies for Renewable Energy ENEA R&D activities on PV Anna De Lillo ENEA UTT-RINN Castel Romano,

More information

h e l p s y o u C O N T R O L

h e l p s y o u C O N T R O L contamination analysis for compound semiconductors ANALYTICAL SERVICES B u r i e d d e f e c t s, E v a n s A n a l y t i c a l g r o u p h e l p s y o u C O N T R O L C O N T A M I N A T I O N Contamination

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy. Solar Energy The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

More information

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION Olivier Palais, Damien Barakel, David Maestre, Fabrice Gourbilleau and Marcel Pasquinelli 1 Outline Photovoltaic today

More information

Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield

Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield MTE 585 Oxidation of Materials Part 1 Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield Introduction To illustrate the case of high temperature oxidation, we will use Ni-base superalloys.

More information

Fundamentals of Photovoltaic Materials

Fundamentals of Photovoltaic Materials Fundamentals of Photovoltaic Materials National Solar Power Reasearch Institute, Inc. 12/21/98-1 - 12/21/98 Introduction Photovoltaics (PV) comprises the technology to convert sunlight directly into electricity.

More information

The impact of Se-content on the optical properties of CuInSe 2 by using transmittance and photoacoustic spectroscopies

The impact of Se-content on the optical properties of CuInSe 2 by using transmittance and photoacoustic spectroscopies The impact of Se-content on the optical properties of CuInSe 2 by using transmittance and photoacoustic spectroscopies * Fatima Zohra Satour and Ameur Zegadi LCCNS, Département d Electronique, Faculté

More information

MMIC Design and Technology. Fabrication of MMIC

MMIC Design and Technology. Fabrication of MMIC MMIC Design and Technology Fabrication of MMIC Instructor Dr. Ali Medi Substrate Process Choice Mobility & Peak Velocity: Frequency Response Band-Gap Energy: Breakdown Voltage (Power-Handling) Resistivity:

More information

What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun.

What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun. What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun. What is the solar industry? The solar industry is

More information

Lecture 6 PVD (Physical vapor deposition): Evaporation and Sputtering

Lecture 6 PVD (Physical vapor deposition): Evaporation and Sputtering F. G. Tseng Lec6, Fall/2001, p1 Lecture 6 PVD (Physical vapor deposition): Evaporation and Sputtering Vacuum evaporation 1. Fundamental of Evaporation: The material to be evaporated is heated in an evacuated

More information

Characteristic curves of a solar cell

Characteristic curves of a solar cell Related Topics Semi-conductor, p-n junction, energy-band diagram, Fermi characteristic energy level, diffusion potential, internal resistance, efficiency, photo-conductive effect, acceptors, donors, valence

More information

2. Deposition process

2. Deposition process Properties of optical thin films produced by reactive low voltage ion plating (RLVIP) Antje Hallbauer Thin Film Technology Institute of Ion Physics & Applied Physics University of Innsbruck Investigations

More information

From Nano-Electronics and Photonics to Renewable Energy

From Nano-Electronics and Photonics to Renewable Energy From Nano-Electronics and Photonics to Renewable Energy Tom Smy Department of Electronics, Carleton University Questions are welcome! OUTLINE Introduction: to EE and Engineering Physics Renewable Energy

More information

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation

More information

histaris Inline Sputtering Systems

histaris Inline Sputtering Systems vistaris histaris Inline Sputtering Systems Inline Sputtering Systems with Vertical Substrate Transport Modular System for Different Applications VISTARIS Sputtering Systems The system with the brand name

More information

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria Simple example, but still complicated... Photosynthesis is

More information

Impact of Materials Prices on Cost of PV Manufacture Part I (Crystalline Silicon)

Impact of Materials Prices on Cost of PV Manufacture Part I (Crystalline Silicon) Impact of Materials Prices on Cost of PV Manufacture Part I (Crystalline Silicon) Nigel Mason SMEET II Workshop, London 27 Feb 2013 content Brief introduction to Solar PV Technologies Part I - Crystalline

More information

Structure and properties of transparent conductive ZnO films grown by pulsed laser

Structure and properties of transparent conductive ZnO films grown by pulsed laser Structure and properties of transparent conductive ZnO films grown by pulsed laser deposition (PLD) by Yu Hsiu, Lin A dissertation submitted to the University of Birmingham for the degree of Master of

More information

Designing of Amorphous Silicon Solar Cells for Optimal Photovoltaic Performance

Designing of Amorphous Silicon Solar Cells for Optimal Photovoltaic Performance Designing of Amorphous Silicon Solar Cells for Optimal Photovoltaic Performance Latchiraju Pericherla A Thesis submitted in part fulfilment of the requirements for the degree of Master of Engineering School

More information

Project 2B Building a Solar Cell (2): Solar Cell Performance

Project 2B Building a Solar Cell (2): Solar Cell Performance April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

Optical Disc and Solar Annual Press/Analyst Conference - March 26, 2010

Optical Disc and Solar Annual Press/Analyst Conference - March 26, 2010 SMART SOLUTIONS TO DRIVE THE FUTURE Optical Disc and Solar Annual Press/Analyst Conference - Dr. - Ing. Stefan Rinck AG Optical Disc & Solar - 2 - Optical Disc - Blu-ray Excellent starting position for

More information

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting 3G Solar Technologies Multidisciplinary Workshop MRS Spring Meeting San Francisco, CA, 5 April 2010 Michael P.

More information

Searching New Materials for Energy Conversion and Energy Storage

Searching New Materials for Energy Conversion and Energy Storage Searching New Materials for Energy Conversion and Energy Storage ZÜRICH & COLLEGIU UM HELVE ETICUM R. NES SPER ETH 1. Renewable Energy 2. Solar Cells 3. Thermoelectricity 4. Fast High Energy Li-Ion Batteries

More information

Evaluation of combined EBIC/FIB methods for solar cell characterization

Evaluation of combined EBIC/FIB methods for solar cell characterization Evaluation of combined EBIC/FIB methods for solar cell characterization Frank Altmann*, Jan Schischka*, Vinh Van Ngo**, Laurens F. Tz. Kwakman**, Ralf Lehmann** *Fraunhofer Insitute for Mechanics of Materials

More information

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5 Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

More information

Solar Cell Parameters and Equivalent Circuit

Solar Cell Parameters and Equivalent Circuit 9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

More information

OPTIMIZE SOLAR CELL PERFORMANCE

OPTIMIZE SOLAR CELL PERFORMANCE OPTIMIZE SOLAR CELL PERFORMANCE D R A G I C A V A S I L E S K A MINIMIZE LOSSES IN SOLAR CELLS Optical loss Concentration of light Minimize Shadowing Trapping of light: AR coatings Mirrors ( metallization

More information

Graphene as a Long-term Metal Oxidation Barrier: Worse Than Nothing

Graphene as a Long-term Metal Oxidation Barrier: Worse Than Nothing Supporting Information for: Graphene as a Long-term Metal Oxidation Barrier: Worse Than Nothing Maria Schriver 1,2,3,, William Regan 1,3,, Will Gannett 1,3, Anna M. Zaniewski 1,3,4, Michael F. Crommie

More information

Technology Advantage

Technology Advantage Technology Advantage 2 FIRST SOLAR TECHNOLOGY ADVANTAGE 3 The Technology Advantage Cadmium Telluride (CdTe) photovoltaic (PV) technology continues to set performance records in both research and real-world

More information

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach) CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.

More information

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal?

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal? Crystal Growth How do single crystals differ from polycrystalline samples? Single crystal specimens maintain translational symmetry over macroscopic distances (crystal dimensions are typically 0.1 mm 10

More information

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Basic Properties and Application of Auto Enamels

Basic Properties and Application of Auto Enamels Basic Properties and Application of Auto Enamels Composition of Ceramic Automotive Glass Enamels Ceramic automotive glass colours are glass enamels that fire on to the glass during the bending process

More information

Chemical Vapor Deposition

Chemical Vapor Deposition Chemical Vapor Deposition Physical Vapor Deposition (PVD) So far we have seen deposition techniques that physically transport material from a condensed phase source to a substrate. The material to be deposited

More information

Lecture 2: Semiconductors: Introduction

Lecture 2: Semiconductors: Introduction Lecture 2: Semiconductors: Introduction Contents 1 Introduction 1 2 Band formation in semiconductors 2 3 Classification of semiconductors 5 4 Electron effective mass 10 1 Introduction Metals have electrical

More information

FUNDAMENTAL PROPERTIES OF SOLAR CELLS

FUNDAMENTAL PROPERTIES OF SOLAR CELLS FUNDAMENTAL PROPERTIES OF SOLAR CELLS January 31, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

SMA5111 - Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction

SMA5111 - Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction SMA5111 - Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction Structure - What are we talking about? Behaviors: Ohmic, rectifying, neither Band picture in thermal equilibrium

More information

Module 3 : Fabrication Process and Layout Design Rules Lecture 12 : CMOS Fabrication Technologies

Module 3 : Fabrication Process and Layout Design Rules Lecture 12 : CMOS Fabrication Technologies Module 3 : Fabrication Process and Layout Design Rules Lecture 12 : CMOS Fabrication Technologies Objectives In this course you will learn the following Introduction Twin Well/Tub Technology Silicon on

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

OLED display. Ying Cao

OLED display. Ying Cao OLED display Ying Cao Outline OLED basics OLED display A novel method of fabrication of flexible OLED display Potentials of OLED Suitable for thin, lightweight, printable displays Broad color range Good

More information

Arizona Institute for Renewable Energy & the Solar Power Laboratories

Arizona Institute for Renewable Energy & the Solar Power Laboratories Arizona Institute for Renewable Energy & the Solar Power Laboratories International Photovoltaic Reliability Workshop July 29-31, Tempe AZ Christiana Honsberg, Stephen Goodnick, Stuart Bowden Arizona State

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

Lezioni di Tecnologie e Materiali per l Elettronica

Lezioni di Tecnologie e Materiali per l Elettronica Lezioni di Tecnologie e Materiali per l Elettronica Danilo Manstretta danilo.manstretta@unipv.it microlab.unipv.it Outline Passive components Resistors Capacitors Inductors Printed circuits technologies

More information

Durability and Scale-Up of PerovskiteBased Mesoscopic Solar Cells

Durability and Scale-Up of PerovskiteBased Mesoscopic Solar Cells Durability and Scale-Up of PerovskiteBased Mesoscopic Solar Cells Adriana Paracchino, Nancy Jiang, Paul Murray, Timothy Lee, Celeste Choo, Kristen Tandy, Dongchuan Fu, Francis Au, Taro Sumitomo, Hans Desilvestro,

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

CVD SILICON CARBIDE. CVD SILICON CARBIDE s attributes include:

CVD SILICON CARBIDE. CVD SILICON CARBIDE s attributes include: CVD SILICON CARBIDE CVD SILICON CARBIDE is the ideal performance material for design engineers. It outperforms conventional forms of silicon carbide, as well as other ceramics, quartz, and metals in chemical

More information

NANOSTRUCTURED ZnO AND ZAO TRANSPARENT THIN FILMS BY SPUTTERING SURFACE CHARACTERIZATION

NANOSTRUCTURED ZnO AND ZAO TRANSPARENT THIN FILMS BY SPUTTERING SURFACE CHARACTERIZATION Rev.Adv.Mater.Sci. Nanostructured ZnO 10 and (2005) ZAO 335-340 transparent thin films by sputtering surface characterization 335 NANOSTRUCTURED ZnO AND ZAO TRANSPARENT THIN FILMS BY SPUTTERING SURFACE

More information

ENEE 313, Spr 09 Midterm II Solution

ENEE 313, Spr 09 Midterm II Solution ENEE 313, Spr 09 Midterm II Solution PART I DRIFT AND DIFFUSION, 30 pts 1. We have a silicon sample with non-uniform doping. The sample is 200 µm long: In the figure, L = 200 µm= 0.02 cm. At the x = 0

More information

MOS (metal-oxidesemiconductor) 李 2003/12/19

MOS (metal-oxidesemiconductor) 李 2003/12/19 MOS (metal-oxidesemiconductor) 李 2003/12/19 Outline Structure Ideal MOS The surface depletion region Ideal MOS curves The SiO 2 -Si MOS diode (real case) Structure A basic MOS consisting of three layers.

More information

Exercise 3 Physical Vapour Deposition

Exercise 3 Physical Vapour Deposition Exercise 3 Physical Vapour Deposition Physical Vapour Deposition (PVD) technology consist of the techniques of arc deposition, ion plating, resistance evaporation, electron beam evaporation, sputtering

More information

Figure 10.1. Process flow from starting material to polished wafer.

Figure 10.1. Process flow from starting material to polished wafer. Figure 10.1. Process flow from starting material to polished wafer. 1/11/003 Ettore Vittone- Fisica dei Semiconduttori - Lectio XI 1 Starting material: silicon dioxide (SiO ): pure form of sand (quartzite)

More information

Rosalinda Inguantaa*, Emanuele Scadutoa, Patrizia Livrerib, Salvatore Piazzaa, Carmelo Sunseria

Rosalinda Inguantaa*, Emanuele Scadutoa, Patrizia Livrerib, Salvatore Piazzaa, Carmelo Sunseria Nanostructured materials for solar cells: electrochemical fabrication and characterization Rosalinda Inguantaa*, Emanuele Scadutoa, Patrizia Livrerib, Salvatore Piazzaa, Carmelo Sunseria r.inguanta@unipa.it

More information

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob Chemical Sputtering von Kohlenstoff durch Wasserstoff W. Jacob Centre for Interdisciplinary Plasma Science Max-Planck-Institut für Plasmaphysik, 85748 Garching Content: Definitions: Chemical erosion, physical

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

L ENEA e la ricerca di sistema elettrico: il fotovoltaico innovativo. Sviluppo di ossidi trasparenti e conduttivi mediante processo Sol-Gel

L ENEA e la ricerca di sistema elettrico: il fotovoltaico innovativo. Sviluppo di ossidi trasparenti e conduttivi mediante processo Sol-Gel L ENEA e la ricerca di sistema elettrico: il fotovoltaico innovativo UNIVERSITA NAPOLI FEDERICO II Dipartimento di Ingegneria dei Materiali e della Produzione Sviluppo di ossidi trasparenti e conduttivi

More information

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008 Felix Buth Joint Advanced Student School 2008 Outline 1 Introduction Difference organic/inorganic semiconductors From molecular orbitals to the molecular crystal 2 Organic Light Emitting Diodes Basic Principals

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

E F G. Overview of the activities. SAPIE ZA Università di Roma - Laboratorio di Fotonica Molecolare

E F G. Overview of the activities. SAPIE ZA Università di Roma - Laboratorio di Fotonica Molecolare SAPIE ZA Università di Roma Dipartimento di Energetica Laboratorio di Fotonica Molecolare Francesco Michelotti E-Mail: francesco.michelotti@uniroma1.it Tel: +39 06-49.91.65.62 Workshop Future Trends in

More information

14:635:407:02 Homework III Solutions

14:635:407:02 Homework III Solutions 14:635:407:0 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 37 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.

More information

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review

More information

The study of deep-level emission center in ZnO films grown on c-al 2 O 3 substrates

The study of deep-level emission center in ZnO films grown on c-al 2 O 3 substrates The study of deep-level emission center in ZnO films grown on c-al 2 O 3 substrates Guotong Du Yuantao Zhang, Jinzhong Wang, Yongguo Cui (College of Electronic Science and Engineering, State Key Laboratory

More information

Clean, Sustainable Energy from the Sun Now, and for Our Children s Future

Clean, Sustainable Energy from the Sun Now, and for Our Children s Future Clean, Sustainable Energy from the Sun Now, and for Our Children s Future An Industry Leader NovaSolar is an industry leader in manufacturing thin-film silicon based solar panels and constructing large

More information

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4 Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium

More information

OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS

OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS Vojtěch SVATOŠ 1, Jana DRBOHLAVOVÁ 1, Marian MÁRIK 1, Jan PEKÁREK 1, Jana CHOMOCKÁ 1,

More information

Inorganic photovoltaics: research and perspectives

Inorganic photovoltaics: research and perspectives Inorganic photovoltaics: research and perspectives Alessia Le Donne, M. Acciarri and S. Binetti MILANO-BICOCCA SOLAR ENERGY RESEARCH CENTER CNISM and Department of Materials Science University of Milano-Bicocca

More information

III. Wet and Dry Etching

III. Wet and Dry Etching III. Wet and Dry Etching Method Environment and Equipment Advantage Disadvantage Directionality Wet Chemical Solutions Atmosphere, Bath 1) Low cost, easy to implement 2) High etching rate 3) Good selectivity

More information

Spectral Characterisation of Photovoltaic Devices Technical Note

Spectral Characterisation of Photovoltaic Devices Technical Note Spectral Characterisation of Photovoltaic Devices Technical Note Introduction to PV This technical note provides an overview of the photovoltaic (PV) devices of today, and the spectral characterisation

More information

Solar Energy. Solar Energy range. NSG TEC Pilkington Microwhite Pilkington Optiwhite Pilkington Sunplus

Solar Energy. Solar Energy range. NSG TEC Pilkington Microwhite Pilkington Optiwhite Pilkington Sunplus Solar Energy Solar Energy range NSG TEC Pilkington Microwhite Pilkington Optiwhite Pilkington Sunplus Moving from hydrocarbon dependency to renewable energy The use of solar energy glass and the NSG Group

More information

A metal-free polymeric photocatalyst for hydrogen production from water under visible light

A metal-free polymeric photocatalyst for hydrogen production from water under visible light A metal-free polymeric photocatalyst for hydrogen production from water under visible light Xinchen Wang, Kazuhiko Maeda, Arne Thomas, Kazuhiro Takanabe, Gang Xin, Johan M. Carlsson, Kazunari Domen, Markus

More information