Bacterial Transformation and Plasmid Purification. Chapter 5: Background

Size: px
Start display at page:

Download "Bacterial Transformation and Plasmid Purification. Chapter 5: Background"

Transcription

1 Bacterial Transformation and Plasmid Purification Chapter 5: Background

2 History of Transformation and Plasmids Bacterial methods of DNA transfer Transformation: when bacteria take up DNA from their environment Conjugation: process of transferring DNA by a pilus (bridge) from one bacteria to another Transduction: when bacterial DNA is transferred from one bacteria to another by viruses 2

3 Origin of Plasmids Joshua Lederberg and William Hayes independently discovered plasmids while studying conjugation 1952 Lederberg proposed the name plasmid 1961 Tsutomu Watanabe and Toshio Fukasawa found that some plasmids carried antibiotic resistance genes 1962 Allan Campbell determined that plasmids were circular 1973 Peter Lobban proposed using restriction enzymes to help recombine DNA 1973 Stanley Cohen, Annie Chang, Herbert Boyer, and Robert Helling published a paper describing how to construct a functional plasmid 1976 Herbert Boyer and Robert Swanson founded Genentech using plasmids to manufacture insulin 2009 Genentech was sold to Roche for $46 billion 3

4 Plasmids: Structure and Function Most are extrachromosomal loops of DNA that can self-replicate in the cytosol of bacteria They have an origin of replication (ori on the map) Are designated with a p in the name Have genes that code for proteins. They are symbolized by an arrow in the direction of transcription Genes are preceded by a promoter The location for RNA polymerase to bind They are followed by a terminator The location that causes the polymerase to stop transcribing Number of plasmids ranges from 5 to 1,000 per bacterial cell Low copy number plasmids High copy number plasmids 4

5 Plasmid Uses Two main uses To express recombinant proteins To house genes that have been cloned These can then be placed into other organisms (e.g. corn) 5

6 Modern Plasmids Plasmids are constructed to make cloning easy. They have an area called a multiple cloning site (MCS) that has a series of unique restriction enzyme recognition sites This MCS is used to open up the plasmid to receive the gene of interest Plasmid with a gene (red) inserted into the MCS (green) 6

7 Recombinant DNA Using Plasmids Steps Extract and purify plasmid and DNA of interest Digest plasmid and DNA of interest with restriction enzymes PCR can be used to amplify gene of interest Mix the two different DNA fragments together and add DNA ligase Transform plasmid into host cell Grow and select for cells that have insert 7

8 Transcriptional Regulation of Plasmids How operons work Jacob and Monod in 1961 discovered how the lac operon work in bacteria 8

9 Transcriptional Regulation of Plasmids How pbad operon works An operon in which arabinose is the inducer instead of lactose Different operons have different inducers 9

10 Transcriptional Regulation of Plasmids If the three genes BAD are cut out by restriction enzymes and GFP is ligated in their place, a recombinant operon is produced that expresses GFP 10

11 Other Types of Plasmids Shuttle plasmids Plasmids that can be inserted into bacteria initially to be cloned, then transformed into eukaryotic cells once duplicated and isolated Ti plasmid For example, to grow in E. coli, a plasmid needs a prokaryotic origin of replication and an antibiotic-resistant gene To grow in a eukaryote, it would need a eukaryotic origin of replication, a sequence for a poly A tail, a promoter, and a terminator sequence that would function in a eukaryotic cell Found naturally in Agrobacterium tumefaciens Causes crown gall disease in plants Can be modified to carry genes of interest into plants 11

12 Transforming Cells Two major methods of transformation Calcium chloride Electroporation 12

13 Calcium Chloride Transformation Steps Suspend bacterial colonies in 50 mm (0.05 M) calcium chloride Add plasmid DNA Place tubes on ice Heat shock at 42ºC and place on ice Incubate with nutrient broth Streak plates 13

14 Transformation of Bacteria Play video: Bacterial Transformation 14

15 How the Calcium Chloride Method Works In the presence of calcium chloride, plasmids are mixed with bacteria and heat shocked Plasmids move into the bacteria GFP Beta-lactamase Ampicillin Resistance 15

16 Why Calcium Chloride? Helps to neutralize the charge on DNA molecule, increasing probability of that molecule moving into the cell Ca ++ Ca ++ Ca ++ O O P O O CH 2 O Base Sugar O O P O Base O CH 2 O Sugar OH 16

17 What Happens in Each Step? Incubate on ice Slows fluid cell membrane Heat shock Increases permeability of membranes Nutrient broth incubation Allows beta-lactamase expression 17

18 Electroporation Electroporation works by Using electricity to disrupt the bacterial wall and membranes Plasmids move in during disruption 18

19 Other Methods of Moving DNA into Cells Biolistics Using microparticles to shoot or blast small particles coated with DNA into cells Plants have a cell wall that is difficult to disrupt to move DNA into cells Transfection Plasmids are placed into lipid vesicles The vesicles merge with cell membranes and deliver DNA into the cells 19

20 Methods to Select Transformed Cells Antibiotic selection When bacteria are plated onto agar that contains antibiotic Bacteria that successfully incorporate a plasmid can grow in the presence of antibiotics due to the new enzyme on the plasmid 20

21 Selection of Transformed Cells Blue-white screening The β-galactosidase enzyme cleaves X-gal converting the X-gal into a blue color If a gene is successfully inserted into the MCS (shown in green), then it disrupts the cleavage of X- gal and will be white in color Antibiotic selection is also used to ensure that the bacteria were successfully transformed initially 21

22 Selection of Transformed Cells with an Insert pjet1.2 plasmid The plasmid contains the Eco47IR gene, which codes for a restriction enzyme that is toxic to E. coli If an insert is successfully inserted, then the Eco47IR gene is disrupted and the bacteria survive Antibiotic selection is still part of the plasmid 22

23 Transformation Efficiency Measurement of the number of transformed cells per microgram of plasmid DNA utilized Electroporation is the most efficient method Transformation with plasmid DNA is more efficient than with plasmid that has been ligated Transformation with ligated DNA requires cells with very high transformation efficiency (>10 6 CFU/µg of DNA) 23

24 Calculating Transformation Efficiency Example: 50 ng of plasmid DNA is transformed into a final transformation volume of 500 μl, and 10 μl of this volume is spread on an agar plate. Assume that 60 CFU are observed on the agar plate Note: 1 μg is 1,000 ng, so 50 ng = 0.05 μg of DNA 24

25 Calculating Transformation Efficiency Steps: First, count the number of colonies growing on the LB/ampicillin (LB/amp) agar plate. In this case, the CFU is 60 Next, determine the amount of plasmid DNA (in μg) spread on the LB/amp agar plate. In this example, only 10 μl of a 500 μl transformation was spread on the plate 25

26 Calculating Transformation Efficiency Steps: Next, calculate transformation efficiency by dividing the CFU by the amount of DNA spread on plate 26

27 Maximizing Transformation Efficiency E. coli divides once every 17 minutes Cells for purification of plasmids are typically harvested late in growth phase E. coli is optimally grown for hours at 37ºC with shaking 27

28 Purification of Plasmids Alkaline lysis method Uses detergent to lyse cells, releasing the DNA into solution Alkaline environment makes DNA single-stranded (plasmid and genomic) Acid allows the smaller plasmids to re-anneal; the longer genomic DNA strands only partially re-anneal Centrifuging pulls cell debris and genomic DNA to the bottom of the cell Plasmids are in the supernatant (liquid on top) 28

29 Purification of Plasmids 29

30 Purifying Plasmid Play video: Alkaline Lysis Miniprep 30

31 DNA Quantitation Gel quantitation Matching the intensity of bands on a gel with a band on the same gel that has a known quantity Unknown DNA band to quantify Known bands to compare 31

32 DNA Quantitation Spectrophotometric quantitation DNA absorbs UV light at 260 nm An absorbance of 1 at 260 (A 260 ) is equivalent to 50 µg/ml of doublestranded DNA So an absorbance of 0.5 would be equivalent to 25 µg/ml Single-stranded DNA with an absorbance of 1 is 33 µg/ml Single-stranded RNA with an absorbance of 1 is 40 µg/ml Often DNA is diluted before it is quantified, because it is very precious and one would not want to use it up to quantify it. It is often diluted from tenfold to 100-fold If the DNA is diluted, the dilution must be accounted for in the final concentration 32

33 DNA Quantitation 33

34 Determining the Concentration of DNA Play video: DNA Quantitation Using a Spectrophotometer 34

35 DNA Purity Spectrophotometer can be used to test DNA purity Often DNA is contaminated with protein. Proteins absorb UV at 280 nm This is tested by taking the absorbance at 260 nm and 280 nm A 260 :A 280 Pure DNA is >1.8 Pure RNA is >2.0 35

36 DNA Quantitation Fluorometer DNA is bound to a dye that fluoresces at a particular wavelength The fluorometer excites the sample at a particular wavelength and then measures emitted wavelengths Can measure samples at a much lower concentration than a spectrophotometer >1µg for a spectrophotometer nanograms for a fluorometer 36

37 Chapter 5 Summary Background History of Plasmids Plasmid Structure and Function Uses of Plasmids Recombinant Plasmids Transcriptional Regulation Transformation Transformation Selection Efficiency Purification of Plasmids DNA Quantitation Spectrophotometer Purity Fluorometer 37

Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity

Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity Today you analyze the results of your bacterial transformation from last week and determine the efficiency

More information

DNA For those that downloaded the notes a reward! Paste the flowchart in your notebook. However, please read, study and understand the procedure.

DNA For those that downloaded the notes a reward! Paste the flowchart in your notebook. However, please read, study and understand the procedure. DNA For those that downloaded the notes a reward! Paste the flowchart in your notebook. However, please read, study and understand the procedure. Genetic Engineering Lecture Notes Bacteria contain genes

More information

Lab Exercise: Transformation

Lab Exercise: Transformation Lab Exercise: Transformation Background Genetic transformation is used in many areas of biotechnology, and, at its heart, requires two things: Donor DNA and recipient cells. Cells which receive the donor

More information

Genetic transformation literally means change caused by genes.

Genetic transformation literally means change caused by genes. pglo Bacterial Transformation Practical What is transformation? Genetic transformation literally means change caused by genes. It occurs when a cell takes up (takes inside) and expresses a new piece of

More information

Lecture 36: Basics of DNA Cloning-II

Lecture 36: Basics of DNA Cloning-II Lecture 36: Basics of DNA Cloning-II Note: Before starting this lecture students should have completed Lecture 35 Sequential steps involved in DNA cloning using plasmid DNA as vector: Molecular cloning

More information

*Adapted from Biotechnology: Science for the New Millennium by Ellyn Daugherty.

*Adapted from Biotechnology: Science for the New Millennium by Ellyn Daugherty. Genetic engineering involves the manipulation of genetic information modifying a single nucleotide in DNA or large sections of chromosomes. Even a single nucleotide change can cause drastic changes in

More information

Plasmid Isolation. Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250

Plasmid Isolation. Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250 Plasmid Isolation Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250 Plasmid Plasmids are small, double strand, closed circular DNA molecules. Isolated from bacterial cells. Replicate independently

More information

Many cells will not take up plasmid during transformation Cells with plasmid can be identified because original plasmid contained gene for antibiotic

Many cells will not take up plasmid during transformation Cells with plasmid can be identified because original plasmid contained gene for antibiotic Many cells will not take up plasmid during transformation Cells with plasmid can be identified because original plasmid contained gene for antibiotic resistance (ampicillin) Use medium with ampicillin

More information

Bacterial Transformation with Green Fluorescent Protein. Table of Contents Fall 2012

Bacterial Transformation with Green Fluorescent Protein. Table of Contents Fall 2012 Bacterial Transformation with Green Fluorescent Protein pglo Version Table of Contents Bacterial Transformation Introduction..1 Laboratory Exercise...3 Important Laboratory Practices 3 Protocol...... 4

More information

Chapter 12 - DNA Technology

Chapter 12 - DNA Technology Bio 100 DNA Technology 1 Chapter 12 - DNA Technology Among bacteria, there are 3 mechanisms for transferring genes from one cell to another cell: transformation, transduction, and conjugation 1. Transformation

More information

Lab 9: Bacterial Transformation & Spectrophotometry, Part 1

Lab 9: Bacterial Transformation & Spectrophotometry, Part 1 Lab 9: Bacterial Transformation & Spectrophotometry, Part 1 Activity 9a Bacterial Transformation, Part 1 Purpose and Background In this lab, you will perform a procedure known as genetic transformation.

More information

Plasmid showing the operon for ampicilin resistance (ori) and the gene for ampicillin resistance (amp R )

Plasmid showing the operon for ampicilin resistance (ori) and the gene for ampicillin resistance (amp R ) AP Biology Name AP Lab 8: Biotechnology (Bacterial Transformation) The bacterium Escherichia coli (E. coli) is a common inhabitant of the human colon and can be easily grown in inexpensive suspension culture.

More information

Isolation and Electrophoresis of Plasmid DNA

Isolation and Electrophoresis of Plasmid DNA Name Date Isolation and Electrophoresis of Plasmid DNA Prior to lab you should be able to: o Explain what cloning a gene accomplishes for a geneticist. o Describe what a plasmid is. o Describe the function

More information

pglo Bacterial Transformation

pglo Bacterial Transformation Introduction pglo Bacterial Transformation Biotechnology refers to technology used to manipulate DNA. The procedures are often referred to as genetic engineering. DNA is the genetic material of all living

More information

Transformation. Making Change Happen

Transformation. Making Change Happen Transformation Making Change Happen Genetic Engineering Definition: The alteration of an organism s genetic, or hereditary, material to eliminate undesirable characteristics or to produce desirable new

More information

HCS604.03 Exercise 1 Dr. Jones Spring 2005. Recombinant DNA (Molecular Cloning) exercise:

HCS604.03 Exercise 1 Dr. Jones Spring 2005. Recombinant DNA (Molecular Cloning) exercise: HCS604.03 Exercise 1 Dr. Jones Spring 2005 Recombinant DNA (Molecular Cloning) exercise: The purpose of this exercise is to learn techniques used to create recombinant DNA or clone genes. You will clone

More information

I. General Laboratory Skills

I. General Laboratory Skills BIO208: GENETICS Bacterial Transformation with pglo plasmid: Cloning of GFP gene Objectives: Complete the pre-lab assignment due before the laboratory Record title purpose, steps, observations, and data

More information

Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein

Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein INTRODUCTION Green Fluorescent Protein (GFP) is a novel protein produced by the bioluminescent

More information

The Effects of Plasmid on Genotype and Phenotype (Revised 1/31/96) Introduction

The Effects of Plasmid on Genotype and Phenotype (Revised 1/31/96) Introduction The Effects of Plasmid on Genotype and Phenotype (Revised 1/31/96) Introduction Plasmids are small circular DNA molecules that often found in bacteria in addition to the large circular DNA molecule of

More information

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Source for figures and content: Eastern Campus Tortora, G.J. Microbiology

More information

Lecture 13. Molecular Cloning

Lecture 13. Molecular Cloning Lecture 13 Molecular Cloning Recombinant DNA technology depends on the ability to produce large numbers of identical DNA molecules (clones). Clones are typically generated by placing a DNA fragment of

More information

MOLECULAR GENETICS GENETIC ENGINEERING RECOMBINANT DNA. Molecular Genetics Activity #6 page 1

MOLECULAR GENETICS GENETIC ENGINEERING RECOMBINANT DNA. Molecular Genetics Activity #6 page 1 AP BIOLOGY MOLECULAR GENETICS ACTIVITY #6 NAME DATE HOUR RECOMBINANT DNA GENETIC ENGINEERING Molecular Genetics Activity #6 page 1 GENETIC ENGINEERING Molecular Genetics Activity #6 page 2 PART I: PRODUCING

More information

Bacterial Transformation with Green Fluorescent Protein. pgfp Version. Table of Contents Fall 2012

Bacterial Transformation with Green Fluorescent Protein. pgfp Version. Table of Contents Fall 2012 Bacterial Transformation with Green Fluorescent Protein pgfp Version Table of Contents Bacterial Transformation Introduction..1 Laboratory Exercise...3 Important Laboratory Practices 3 Protocol...... 4

More information

Chapter 20: Biotechnology: DNA Technology & Genomics

Chapter 20: Biotechnology: DNA Technology & Genomics Biotechnology Chapter 20: Biotechnology: DNA Technology & Genomics The BIG Questions How can we use our knowledge of DNA to: o Diagnose disease or defect? o Cure disease or defect? o Change/improve organisms?

More information

Recombinant DNA Technology

Recombinant DNA Technology Recombinant DNA Technology Dates in the Development of Gene Cloning: 1965 - plasmids 1967 - ligase 1970 - restriction endonucleases 1972 - first experiments in gene splicing 1974 - worldwide moratorium

More information

GENETIC TRANSFORMATION OF BACTERIA WITH THE GENE FOR GREEN FLUORESCENT PROTEIN (GFP)

GENETIC TRANSFORMATION OF BACTERIA WITH THE GENE FOR GREEN FLUORESCENT PROTEIN (GFP) GENETIC TRANSFORMATION OF BACTERIA WITH THE GENE FOR GREEN FLUORESCENT PROTEIN (GFP) LAB BAC3 Adapted from "Biotechnology Explorer pglo Bacterial Transformation Kit Instruction Manual". (Catalog No. 166-0003-EDU)

More information

Transformation 1. Introduction: 221 Lab Manual.KCBurke

Transformation 1. Introduction: 221 Lab Manual.KCBurke Transformation 1 http://www.cdc.gov/drugresistance/about.html Antibiotic resistance is a critical problem in healthcare today. How do bacteria become resistant to antibiotics? In this lab we will focus

More information

The Chemical Structure of Ampicillin

The Chemical Structure of Ampicillin Bio 210A Bacterial Transformation-Gene Cloning Purpose To understand the relevance of gene cloning to the biotechnology industry. To understand the definition of transformation, clone, and cloning vector.

More information

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Chapter 9 Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Q&A Interferons are species specific, so that interferons to be used in humans must be produced in human cells. Can you think

More information

AP BIOLOGY 2009 SCORING GUIDELINES (Form B)

AP BIOLOGY 2009 SCORING GUIDELINES (Form B) AP BIOLOGY 2009 SCORING GUIDELINES (Form B) Question 1 Describe how a plasmid can be genetically modified to include a piece of foreign DNA that alters the phenotype of bacterial cells transformed with

More information

Transformation of the bacterium E. coli. using a gene for Green Fluorescent Protein

Transformation of the bacterium E. coli. using a gene for Green Fluorescent Protein Transformation of the bacterium E. coli using a gene for Green Fluorescent Protein Background In molecular biology, transformation refers to a form of genetic exchange in which the genetic material carried

More information

Biotechnology and Recombinant DNA

Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Recombinant DNA procedures - an overview Biotechnology: The use of microorganisms, cells, or cell components to make a product. Foods, antibiotics, vitamins, enzymes Recombinant

More information

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites.

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites. 1. A recombinant DNA molecules is one that is a. produced through the process of crossing over that occurs in meiosis b. constructed from DNA from different sources c. constructed from novel combinations

More information

Lab 9: Bacterial Transformation with pglo

Lab 9: Bacterial Transformation with pglo Name: Lab 9: Bacterial Transformation with pglo OBJECTIVES: ο Practice formulating hypotheses, predictions, and experimental design. ο Describe the principles of bacterial transformation. ο Explain the

More information

Recombinant DNA Technology

Recombinant DNA Technology PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 8 Recombinant DNA Technology The Role of Recombinant DNA Technology in Biotechnology Biotechnology

More information

Today-applications: Medicine-better health Pharmaceutical-production of antibiotics Foods-wine, cheese, beer Agriculture-selective breeding

Today-applications: Medicine-better health Pharmaceutical-production of antibiotics Foods-wine, cheese, beer Agriculture-selective breeding I. Genetic Engineering modification of DNA of organisms to produce new genes with new characteristics -genes are small compared to chromosomes -need methods to get gene-sized pieces of DNA -direct manipulation

More information

Genetic Transformation Part 1

Genetic Transformation Part 1 Genetic Transformation Part 1 The beginning of an exploration of genetic transformation and the influence of environment on gene expression. * CONTENTS 1 Objectives... 1 1.1 Experimental Goal... 1 1.2

More information

Protein assay. Absorbance Fluorescence Emission Colorimetric detection BIO/MDT 325. Absorbance

Protein assay. Absorbance Fluorescence Emission Colorimetric detection BIO/MDT 325. Absorbance Protein assay Absorbance Fluorescence Emission Colorimetric detection BIO/MDT 325 Absorbance Using A280 to Determine Protein Concentration Determination of protein concentration by measuring absorbance

More information

Rapid Colony Transformation of E. coli with Plasmid DNA

Rapid Colony Transformation of E. coli with Plasmid DNA Rapid Colony Transformation of E. coli with Plasmid DNA Introduction: The bacterium Escherichia coli (E. coli) is an ideal organism for the molecular geneticist to manipulate and has been used extensively

More information

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes.

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology has had-and will havemany important

More information

CLONING IN ESCHERICHIA COLI

CLONING IN ESCHERICHIA COLI CLONING IN ESCHERICHIA COLI Introduction: In this laboratory, you will carry out a simple cloning experiment in E. coli. Specifically, you will first create a recombinant DNA molecule by carrying out a

More information

LAB 16 Rapid Colony Transformation of E. coli with Plasmid DNA

LAB 16 Rapid Colony Transformation of E. coli with Plasmid DNA LAB 16 Rapid Colony Transformation of E. coli with Plasmid DNA Objective: In this laboratory investigation, plasmids containing fragments of foreign DNA will be used to transform Escherichia coli cells,

More information

Biotechnology: DNA Technology & Genomics

Biotechnology: DNA Technology & Genomics Chapter 20. Biotechnology: DNA Technology & Genomics 2003-2004 The BIG Questions How can we use our knowledge of DNA to: diagnose disease or defect? cure disease or defect? change/improve organisms? What

More information

Recombinant DNA and Biotechnology

Recombinant DNA and Biotechnology Recombinant DNA and Biotechnology Chapter 18 Lecture Objectives What Is Recombinant DNA? How Are New Genes Inserted into Cells? What Sources of DNA Are Used in Cloning? What Other Tools Are Used to Study

More information

Biochem 717 Gene Cloning. Prof Amer Jamil Dept of Biochemistry University of Agriculture Faisalabad

Biochem 717 Gene Cloning. Prof Amer Jamil Dept of Biochemistry University of Agriculture Faisalabad Biochem 717 Gene Cloning Prof Amer Jamil Dept of Biochemistry University of Agriculture Faisalabad How to construct a recombinant DNA molecule? DNA isolation Cutting of DNA molecule with the help of restriction

More information

Transforming E. Coli with pglo Plasmids, a Lab Day One

Transforming E. Coli with pglo Plasmids, a Lab Day One Name: Transforming E. Coli with pglo Plasmids, a Lab Day One TOC# Transformation Background: Transformation is a process of transferring genetic information from one organism to another. In bacteria, a

More information

Biology Lab Activity 4-5 DNA Transformation

Biology Lab Activity 4-5 DNA Transformation Biology Lab Activity 4-5 DNA Transformation Scientists can insert genes into bacteria. The genes inserted in the Indo-Blu process (this lab) are on a circular piece of DNA called a plasmid. (The plasmid

More information

Vectors cont.. Pattern of Infection. Lytic cycle. Pattern of Infection. Question. Dr. Dinithi Peiris Dept. of Zoology

Vectors cont.. Pattern of Infection. Lytic cycle. Pattern of Infection. Question. Dr. Dinithi Peiris Dept. of Zoology Vectors cont.. Dr. Dinithi Peiris Dept. of Zoology 1 2 Pattern of Infection Lytic cycle 3 Pattern of Infection 4 Question What is the unique feature in this life cycle Phages causes lysis & cell death

More information

Cloning GFP into Mammalian cells

Cloning GFP into Mammalian cells Protocol for Cloning GFP into Mammalian cells Studiepraktik 2013 Molecular Biology and Molecular Medicine Aarhus University Produced by the instructors: Tobias Holm Bønnelykke, Rikke Mouridsen, Steffan

More information

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells.

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells. Transfection Key words: Transient transfection, Stable transfection, transfection methods, vector, plasmid, origin of replication, reporter gene/ protein, cloning site, promoter and enhancer, signal peptide,

More information

Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company

Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Biotechnology and reporter genes Here, a lentivirus is used to carry foreign DNA into chickens. A reporter gene (GFP)indicates that foreign DNA has been successfully transferred. Recombinant DNA continued

More information

CHAPTER 14 LECTURE NOTES: RECOMBINANT DNA TECHNOLOGY

CHAPTER 14 LECTURE NOTES: RECOMBINANT DNA TECHNOLOGY CHAPTER 14 LECTURE NOTES: RECOMBINANT DNA TECHNOLOGY I. General Info A. Landmarks in modern genetics 1. Rediscovery of Mendel s work 2. Chromosomal theory of inheritance 3. DNA as the genetic material

More information

Plasmid-based cloning vectors

Plasmid-based cloning vectors Page: 1 Molecular Cloning A glaring problem in most areas of biochemical research is obtaining sufficient amounts of the substance of interest. For example, a 10 L culture of E. coli grown to its maximum

More information

Microbiology / Active Lecture Questions Chapter 9 Biotechnology & Recombinant DNA 1 Chapter 9 Biotechnology & Recombinant DNA

Microbiology / Active Lecture Questions Chapter 9 Biotechnology & Recombinant DNA 1 Chapter 9 Biotechnology & Recombinant DNA 1 2 Restriction enzymes were first discovered with the observation that a. DNA is restricted to the nucleus. b. phage DNA is destroyed in a host cell. c. foreign DNA is kept out of a cell. d. foreign DNA

More information

GFP Transformation Genetic Manipulations

GFP Transformation Genetic Manipulations MODULE 2 Objective 2.1 Lesson E GFP Transformation Genetic Manipulations Course Advanced Biotechnology Unit DNA Technology Essential Question How is foreign DNA genes taken up by organisms and expressed?

More information

Chapter 10 Manipulating Genes

Chapter 10 Manipulating Genes How DNA Molecules Are Analyzed Chapter 10 Manipulating Genes Until the development of recombinant DNA techniques, crucial clues for understanding how cell works remained lock in the genome. Important advances

More information

Overview of the Recombinant DNA technology- the process of subcloning a foreign gene into the plasmid vector puc19

Overview of the Recombinant DNA technology- the process of subcloning a foreign gene into the plasmid vector puc19 Health and Life Sciences Faculty Course Title: Biological and Forensic Science Module code: 216 BMS Module Title: Molecular Genetics Overview of the Recombinant DNA technology- the process of subcloning

More information

Student Manual. pglo Transformation

Student Manual. pglo Transformation Student Manual pglo Transformation Lesson 1 Introduction to Transformation In this lab you will perform a procedure known as genetic transformation. Remember that a gene is a piece of DNA which provides

More information

CHAPTER 8 RECOMBINANT DNA and GENETIC ENGINEERING

CHAPTER 8 RECOMBINANT DNA and GENETIC ENGINEERING CHAPTER 8 RECOMBINANT DNA and GENETIC ENGINEERING Questions to be addressed: How are recombinant DNA molecules generated in vitro? How is recombinant DNA amplified? What analytical techniques are used

More information

Welcome to the SDSU Structural Biology Program! Wednesday, October 8, :00-8:00 p.m. GMCS 305

Welcome to the SDSU Structural Biology Program! Wednesday, October 8, :00-8:00 p.m. GMCS 305 Welcome to the SDSU Structural Biology Program! Wednesday, October 8, 2008 7:00-8:00 p.m. GMCS 305 http://sci.sdsu.edu/sbp/ Protein structure determination by X-ray crystallography Derive a source of material

More information

restriction enzymes 350 Home R. Ward: Spring 2001

restriction enzymes 350 Home R. Ward: Spring 2001 restriction enzymes 350 Home Restriction Enzymes (endonucleases): molecular scissors that cut DNA Properties of widely used Type II restriction enzymes: recognize a single sequence of bases in dsdna, usually

More information

TransformAid Bacterial Transformation Kit

TransformAid Bacterial Transformation Kit Home Contacts Order Catalog Support Search Alphabetical Index Numerical Index Restriction Endonucleases Modifying Enzymes PCR Kits Markers Nucleic Acids Nucleotides & Oligonucleotides Media Transfection

More information

SESSION 2. Possible answer:

SESSION 2. Possible answer: UPDATED CLONE THAT GENE ACTIVITY 2014 TEACHER GUIDE SESSION 2 Key ideas: When creating a recombinant plasmid, it is important to examine the sequences of the plasmid DNA and of the human DNA that contains

More information

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY GENE CLONING AND RECOMBINANT DNA TECHNOLOGY What is recombinant DNA? DNA from 2 different sources (often from 2 different species) are combined together in vitro. Recombinant DNA forms the basis of cloning.

More information

The Jellyfish Gene. Cloning Genes & Transformations. Heredity & Human Affairs (BIO-1605) Spring 2012

The Jellyfish Gene. Cloning Genes & Transformations. Heredity & Human Affairs (BIO-1605) Spring 2012 http://images.the-scientist.com/content/figures/images/yr2003/dec01/sciseen.jpg The Jellyfish Gene Cloning Genes & Transformations Heredity & Human Affairs (BIO-1605) Spring 2012 Recall DNA Structure http://nanopedia.case.edu/image/dna%20structure.jpg

More information

SNAP! Bacterial Transformation Student Materials

SNAP! Bacterial Transformation Student Materials SNAP! Bacterial Transformation Student Materials Introduction... 2 Lab Protocol... 3 Pre-Lab Questions and Predictions... 5 Data Collection Worksheet... 6 Post-Lab Questions... 7 Students You should read

More information

AP Biology Review Packet 4: Viruses, Bacteria and Expression & DNA Technology

AP Biology Review Packet 4: Viruses, Bacteria and Expression & DNA Technology AP Biology Review Packet 4: Viruses, Bacteria and Expression & DNA Technology 3A1- DNA, and in some cases RNA, is the primary source of heritable information. 3B1- Gene Regulation results in differential

More information

Genetics. Chapter 9. Chromosome. Genes Three categories. Flow of Genetics/Information The Central Dogma. DNA RNA Protein

Genetics. Chapter 9. Chromosome. Genes Three categories. Flow of Genetics/Information The Central Dogma. DNA RNA Protein Chapter 9 Topics - Genetics - Flow of Genetics/Information - Regulation - Mutation - Recombination gene transfer Genetics Genome - the sum total of genetic information in a organism Genotype - the A's,

More information

Gene Cloning. Reference. T.A. Brown, Gene Cloning, Chapman and Hall. S.B. Primrose, Molecular Biotechnology, Blackwell

Gene Cloning. Reference. T.A. Brown, Gene Cloning, Chapman and Hall. S.B. Primrose, Molecular Biotechnology, Blackwell Gene Cloning 2004 Seungwook Kim Chem. & Bio. Eng. Reference T.A. Brown, Gene Cloning, Chapman and Hall S.B. Primrose, Molecular Biotechnology, Blackwell Why Gene Cloning is Important? A century ago, Gregor

More information

VECTOR MAYA SHOVITRI

VECTOR MAYA SHOVITRI VECTOR MAYA SHOVITRI Brown, T.A. 2010. Gene Cloning and DNA Analysis, an Introduction. 6 th Edition. Wiley-Blackwell A fragment of DNA is inserted into a vector, to produce a recombinant DNA molecule.

More information

Transformation Ameer Effat M. Elfarash

Transformation Ameer Effat M. Elfarash Transformation Ameer Effat M. Elfarash Dept. of Genetics Fac. of Agriculture, Assiut Univ. amir_effat@yahoo.com DNA Cloning Overview Introduction to cell A. Cell type: Bacteria, Mammalian cells, insect

More information

Certificate of Analysis

Certificate of Analysis Certificate of Analysis Clontech Laboratories, Inc. A Takara Bio Company 1290 Terra Bella Avenue, Mountain View, CA 94043, USA U.S. Technical Support: tech@clontech.com pet6xhn Expression Vector Set (In-Fusion

More information

Mutations Investigation: Bacterial Transformation

Mutations Investigation: Bacterial Transformation Mutations Investigation: Bacterial Transformation Materials Mutated puc19 plasmid library XL-1 Blue competent E. coli cells 14 ml round-bottom tubes (1/transformation) Sterile cell spreaders (1/transformation)

More information

Recipient Cell. DNA Foreign DNA. Recombinant DNA

Recipient Cell. DNA Foreign DNA. Recombinant DNA Module 4B Biotechnology In this module, we will examine some of the techniques scientists have developed to study and manipulate the DNA of living organisms. Objective # 7 Explain what genetic recombination

More information

BIOTECHNOLOGY. What can we do with DNA?

BIOTECHNOLOGY. What can we do with DNA? BIOTECHNOLOGY What can we do with DNA? Biotechnology Manipulation of biological organisms or their components for research and industrial purpose Usually manipulate DNA itself How to study individual gene?

More information

STANDARD 2 Students will demonstrate appropriate safety procedures and equipment use in the laboratory.

STANDARD 2 Students will demonstrate appropriate safety procedures and equipment use in the laboratory. BIOTECHNOLOGY Levels: 11-12 Units of Credit: 1.0 CIP Code: 51.1201 Prerequisite: Biology or Chemistry Skill Certificates: #708 COURSE DESCRIPTION is an exploratory course designed to create an awareness

More information

DNA CAN BE TRANSFERRED BETWEEN BACTERIA GENETIC ENGINEERING USING RECOMBINANT DNA TECHNOLOGY

DNA CAN BE TRANSFERRED BETWEEN BACTERIA GENETIC ENGINEERING USING RECOMBINANT DNA TECHNOLOGY Bacterial Transformation DNA CAN BE TRANSFERRED BETWEEN BACTERIA Background Information Plasmid Transformed Cell Figure 1: Bacterial Transformation Quick Reference Abbreviations GFP pgfp gfp Green fl uorescent

More information

Blue-white screening liquid can eliminate false positives in blue-white colony screening

Blue-white screening liquid can eliminate false positives in blue-white colony screening Blue-white screening liquid can eliminate false positives in blue-white colony screening Y.S. Zhang 1,2 1 Department of Biotechnology, College of Chemistry and Biology Engineering, University of Electronic

More information

GENETICS OF BACTERIA AND VIRUSES

GENETICS OF BACTERIA AND VIRUSES GENETICS OF BACTERIA AND VIRUSES 1 Genes of bacteria are found in bacterial chromosomes Usually a single type of chromosome May have more than one copy of that chromosome Number of copies depends on the

More information

pglo Bacterial Transformation Evaluation copy

pglo Bacterial Transformation Evaluation copy pg Bacterial Transformation Computer 6A Introduction to Transformation In this lab, you will perform a procedure known as genetic transformation. Genetic transformation literally means change caused by

More information

30. Genetics and recombination in bacteria Lecture Outline 11/16/05. The Bacterial Genome and Its Replication The bacterial chromosome

30. Genetics and recombination in bacteria Lecture Outline 11/16/05. The Bacterial Genome and Its Replication The bacterial chromosome 30. Genetics and recombination in bacteria Lecture Outline 11/16/05 Replication in bacteria Types of recombination in bacteria Transduction by phage Conjugation ( mating ) F+ plasmids Hfr s Transformation

More information

QuickClean 96-Well Plasmid Miniprep Kit

QuickClean 96-Well Plasmid Miniprep Kit QuickClean 96-Well Plasmid Miniprep Kit L00237 Technical Manual No. TM 0231 Version 0712007 I Description.. 1 II Kit Contents.. 1 III Applications 2 IV Key Features.. 2 V Storage.. 2 VI Plasmid Miniprep

More information

Lesson 2 Review Questions

Lesson 2 Review Questions LESSON 2 Lesson 2 Review Questions Name Before collecting data and analyzing your results answer the following questions. 1. On which of the plates would you expect to find bacteria most like the original

More information

Student Manual. pglo Transformation

Student Manual. pglo Transformation Student Manual pglo Transformation Lesson 1 Introduction to Transformation In this lab you will perform a procedure known as genetic transformation. Remember that a gene is a piece of DNA which provides

More information

Bacterial Transformation

Bacterial Transformation laroslav Neliubov/ShutterStock, Inc. 1 Bacterial Transformation Introduction Microorganisms or microbes are divided into three groups: prokaryotes, eukaryotes, and viruses. Prokaryotes include bacteria,

More information

Total Test Questions: 71 Levels: Grades 10-12 Units of Credit: 1.0 STANDARD 1 STUDENTS WILL INVESTIGATE THE PAST, PRESENT, AND FUTURE APPLICATIONS OF

Total Test Questions: 71 Levels: Grades 10-12 Units of Credit: 1.0 STANDARD 1 STUDENTS WILL INVESTIGATE THE PAST, PRESENT, AND FUTURE APPLICATIONS OF DESCRIPTION Biotechnology is designed to create an awareness of career possibilities in the field of biotechnology. Students are introduced to diagnostic and therapeutic laboratory procedures that support

More information

Zback Faster Ligation Kit

Zback Faster Ligation Kit Zback Faster Ligation Kit For the highest efficiency cloning of PCR products either blunt or sticky-end Kit Contents Contents TGVTB04 TGVTB04-2 pzback/blunt vector 10 µl 20 µl T4 DNA Ligase 5 µl 10 µl

More information

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA INTRODUCTION DNA : DNA is deoxyribose nucleic acid. It is made up of a base consisting of sugar, phosphate and one nitrogen base.the

More information

Genetics Faculty of Agriculture and Veterinary Medicine

Genetics Faculty of Agriculture and Veterinary Medicine Genetics 10201232 Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 15:Recombinant DNA Technology 1 Recombinant DNA Technology Recombinant DNA Technology is the use of

More information

Gene Cloning Technology

Gene Cloning Technology Gene Cloning Technology Also known as: Genetic engineering or Genetic manipulation (GM) technology implies precision engineering being applied to DNA molecules Recombinant DNA technology - implies that

More information

Viruses and Prokaryotes. Chapter 21 Part 1

Viruses and Prokaryotes. Chapter 21 Part 1 Viruses and Prokaryotes Chapter 21 Part 1 Impacts, Issues The Effects of AIDS Some viruses and bacteria help us; others, such as the HIV virus that causes AIDS, can kill 21.1 Viral Characteristics and

More information

DNA CLONING. DNA segment has been developed: polymerase chain reaction PCR. Viral DNA-s bacteriophage λ, filamentous bacteriophages

DNA CLONING. DNA segment has been developed: polymerase chain reaction PCR. Viral DNA-s bacteriophage λ, filamentous bacteriophages DNA CLONING - What is cloning? The isolation of discrete pieces of DNA from their host organism and their amplification through propagation in the same or a different host More recently an alternitive,

More information

Gene Cloning and DNA Analysis: An Introduction

Gene Cloning and DNA Analysis: An Introduction Gene Cloning and DNA Analysis: An Introduction Brown, Terry A. ISBN-13: 9781405111218 Table of Contents PART 1 THE BASIC PRINCIPLES OF GENE CLONING AND DNA ANALYSIS. Chapter 1 Why Gene Cloning and DNA

More information

11/19/2008. Gene analysis. Sequencing PCR. Northern-blot RT PCR. Western-blot Sequencing. in situ hybridization. Southern-blot

11/19/2008. Gene analysis. Sequencing PCR. Northern-blot RT PCR. Western-blot Sequencing. in situ hybridization. Southern-blot Recombinant technology Gene analysis Sequencing PCR RNA Northern-blot RT PCR Protein Western-blot Sequencing Southern-blot in situ hybridization in situ hybridization Function analysis Histochemical analysis

More information

PART 1 THE BASIC PRINCIPLES OF GENE CLONING AND DNA ANALYSIS. Chapter 1 Why Gene Cloning and DNA Analysis are Important

PART 1 THE BASIC PRINCIPLES OF GENE CLONING AND DNA ANALYSIS. Chapter 1 Why Gene Cloning and DNA Analysis are Important TABLE OF CONTENTS PART 1 THE BASIC PRINCIPLES OF GENE CLONING AND DNA ANALYSIS Chapter 1 Why Gene Cloning and DNA Analysis are Important 1.1 The early development of genetics 1.2 The advent of gene cloning

More information

LAB 10 DNA TRANSFORMATION

LAB 10 DNA TRANSFORMATION LAB 10 DNA TRANSFORMATION STUDENT GUIDE GOAL The objective of this lab is to successfully perform DNA transformation of a recombinant plasmid and use blue-white selection to select recombinant clones.

More information

Prokaryotes (bacteria) and Gram Staining

Prokaryotes (bacteria) and Gram Staining Prokaryotes (bacteria) and Gram Staining Gram positive and Gram negative Why are we learning this? We will be monitoring our bioreactors for bacterial contamination. We sometimes are culturing E.coli as

More information

Description: Molecular Biology Services and DNA Sequencing

Description: Molecular Biology Services and DNA Sequencing Description: Molecular Biology s and DNA Sequencing DNA Sequencing s Single Pass Sequencing Sequence data only, for plasmids or PCR products Plasmid DNA or PCR products Plasmid DNA: 20 100 ng/μl PCR Product:

More information

Lab 1: Who s Your Daddy? (AKA DNA Purification and PCR)

Lab 1: Who s Your Daddy? (AKA DNA Purification and PCR) Lab 1: Who s Your Daddy? (AKA DNA Purification and PCR) Goals of the lab: 1. To understand how DNA s chemical properties can be exploited for purification 2. To learn practical applications of DNA purification

More information

NAME: Microbiology BI234 MUST be written and will not be accepted as a typed document.

NAME: Microbiology BI234 MUST be written and will not be accepted as a typed document. Chapter 8 Study Guide What is the study of genetics, and what topics does it focus on? What is a genome? NAME: Microbiology BI234 MUST be written and will not be accepted as a typed document. Describe

More information