Network Performance Measurement and Analysis

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Network Performance Measurement and Analysis"

Transcription

1 Network Performance Measurement and Analysis Outline Measurement Tools and Techniques Workload generation Analysis Basic statistics Queuing models Simulation CS 640 1

2 Measurement and Analysis Overview Size, complexity and diversity of the Internet makes it very difficult to understand cause-effect relationships Measurement is necessary for understanding current system behavior and how new systems will behave How, when, where, what do we measure? Measurement is meaningless without careful analysis Analysis of data gathered from networks is quite different from work done in other disciplines Measurement/analysis enables models to be built which can be used to effectively develop and evaluate new techniques Statistical models Queuing models Simulation models CS 640 2

3 Determining What to Measure Before any measurements can take place one must determine what to measure There are many commonly used network performance characteristics Latency Throughput Response time Arrival rate Utilization Bandwidth Loss Routing Reliability CS 640 3

4 Measurement Introduction Internet measurement is done to either analyze/characterize network phenomena or to test new tools, protocols, systems, etc. Measuring Internet performance is easier said than done What does performance mean? Workload (what and where you re measuring) selection is critical Reproducibility is often essential Many tools have been developed to measure/monitor general characteristics of network performance traceroute and ping are two of the most popular These are examples of active measurement tools Passive tools are the other major category Representative and reproducible workload generation will be a focus CS 640 4

5 Active Measurement Tools Send probe packet(s) into the network and measure a response Ping: RTT and loss Zing: one way Poisson probes Traceroute: path and RTT Nettimer (Lai): latest bottleneck bandwidth using packet pair method Size/BW T1 T0 Tn+1 Tn Pathchar: per-hop bandwidth, latency, loss measurement Pchar, clink: open-source reimplementation of pathchar Problem: measurement timescales vary widely Tn+1 - Tn = max(s/bw, T1 T0) CS 640 5

6 Passive Measurement Tools Passive tools: Capture data as it passes by Logging at application level Packet capture applications (tcpdump) uses packet capture filter (bpf,libpcap) Requires access to the wire Can have many problems (adds, deletes, reordering) Flow-based measurement tools SNMP tools Routing looking glass sites Problems LOTS of data! Privacy issues Getting packet scoped in backbone of the network CS 640 6

7 Workload Generation Local and/or wide area experiments often require representative and reproducible workloads How do we select a workload? Currently HTTP makes up the majority of Internet traffic Trace-based workloads Capture traces and replay them Black-box method Synthetic workloads Abstraction of actual operation May not capture all aspects of workload Analytic workloads Attempt to model workload precisely Very difficult CS 640 7

8 SURGE Web Workload Generator Scalable URl Generator Analytic workload generator Based on 12 empirically derived distributions of Web browsing behaviror Explicit, parameterized models Captures heavy-tailed (highly variable) properties of Web workloads Widely used SURGE components: Statistical distribution generator Hyper Text Transfer Protocol (HTTP) request generator CS 640 8

9 Workload characteristics captured in SURGE BF EF1 EF2 Off time SF Off time BF EF1 Characteristic Component Model System Impact File Size Base file - body Lognormal File System * Base file - tail Pareto * Embedded file Lognormal * Single file1 Lognormal * Single file 2 Lognormal * Request Size Body Lognormal Network * Tail Pareto * Document Popularity Zipf Caches, buffers Temporal Locality Lognormal Caches, buffers OFF Times Pareto * Embedded References Pareto ON Times * Session Lengths Inverse Gaussian Connection times CS 640 9

10 SURGE Architecture SURGE Client System ON/OFF Thread ON/OFF Thread ON/OFF Thread SURGE Client System LAN Web Server System SURGE Client System CS

11 SURGE and SPECWeb96 exercise servers very differently Percent CPU Utilization Surge SPECWeb Packets per Second SPECWeb96 SURGE CS

12 Analyzing Measured Data Analyzing measured data in networks is typically done using statistical methods Selecting appropriate analysis method(s) is critical Averaging Dispersion (variability) Correlations Regression analysis Distributional analysis Frequency analysis Principal-component analysis Cluster analysis Each form of analysis has strengths and weaknesses CS

13 Self-Similar Nature of Network Traffric W. Leland, M. Taqqu, W. Willinger, D. Wilson, On the Self-Similar Nature of Ethernet Traffic, IEEE/ACM TON, Baker Award winner V. Paxson, S. Floyd, Wide-Area Traffic: The Failure of Poisson Modeling, IEEE/ACM TON, M. Crovella, A. Bestavros, Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes, IEEE/ACM TON, CS

14 Queuing Models One of the key modeling techniques for computer systems in general Vast literature on queuing theory Nicely suited for network analysis Prof. Mary Vernon is our local expert Generally, queuing systems deal with a situation where jobs (of which there are many) wait in line for a resource (of which there are few) Queuing theory can enable us to determine response time Examples? CS

15 Queuing Models contd. Example: packets arriving at a router how can we determine how long it takes for packets to be forwarded by the router? Characteristics necessary to specify a queuing system Arrival process Service time distribution Number of servers System capacity (number of buffers) Population size Service discipline Kendal notation: A/S/m/B/K/SD Response time = waiting time + service time For stability, mean arrival rate must be less than mean service rate CS

16 Little s Law One of the most basic theorems in queuing theory (1961) Mean number jobs in system = arrival rate * mean response time Treats a system as a black box Applies whenever number of jobs entering the system equals number of jobs leaving the system No jobs created or lost inside system Can be extended to include systems with finite buffers Example: Average forwarding time in a router is 100 microseconds, I/O rate for packets is 100k. What is the mean number of packets buffered in the router? CS

17 Simulation Models Simulation is one of the most common/important methods of analysis/modeling Typically an abstraction of the system under consideration Can provide significant insight to system s behavior Network simulation is difficult because of the different layers of operation and the complexity at each layer Simulation options: build your own, use someone else s Canonical network simulator is ns developed at LBL ssf-net is a new, routing-enabled simulator CS

EVALUATION OF LOAD BALANCING ALGORITHMS AND INTERNET TRAFFIC MODELING FOR PERFORMANCE ANALYSIS. Arthur L. Blais

EVALUATION OF LOAD BALANCING ALGORITHMS AND INTERNET TRAFFIC MODELING FOR PERFORMANCE ANALYSIS. Arthur L. Blais EVALUATION OF LOAD BALANCING ALGORITHMS AND INTERNET TRAFFIC MODELING FOR PERFORMANCE ANALYSIS by Arthur L. Blais B.A., California State University, Fullerton, 1982 A thesis submitted to the Graduate Faculty

More information

Internet Traffic Variability (Long Range Dependency Effects) Dheeraj Reddy CS8803 Fall 2003

Internet Traffic Variability (Long Range Dependency Effects) Dheeraj Reddy CS8803 Fall 2003 Internet Traffic Variability (Long Range Dependency Effects) Dheeraj Reddy CS8803 Fall 2003 Self-similarity and its evolution in Computer Network Measurements Prior models used Poisson-like models Origins

More information

Recent Advances in Web System Performance Modeling with Queueing Networks. Author: Nikola Janevski Class: CS 736 Software Performance Engineering

Recent Advances in Web System Performance Modeling with Queueing Networks. Author: Nikola Janevski Class: CS 736 Software Performance Engineering Recent Advances in Web System Performance Modeling with Queueing Networks Author: Nikola Janevski Class: CS 736 Software Performance Engineering 1 How are Web systems different Many users Multi-tier architecture

More information

Examining Self-Similarity Network Traffic intervals

Examining Self-Similarity Network Traffic intervals Examining Self-Similarity Network Traffic intervals Hengky Susanto Byung-Guk Kim Computer Science Department University of Massachusetts at Lowell {hsusanto, kim}@cs.uml.edu Abstract Many studies have

More information

Overview of Network Measurement Tools

Overview of Network Measurement Tools Overview of Network Measurement Tools Jon M. Dugan Energy Sciences Network Lawrence Berkeley National Laboratory NANOG 43, Brooklyn, NY June 1, 2008 Networking for the Future of Science

More information

Observingtheeffectof TCP congestion controlon networktraffic

Observingtheeffectof TCP congestion controlon networktraffic Observingtheeffectof TCP congestion controlon networktraffic YongminChoi 1 andjohna.silvester ElectricalEngineering-SystemsDept. UniversityofSouthernCalifornia LosAngeles,CA90089-2565 {yongminc,silvester}@usc.edu

More information

CS551 End-to-End Internet Packet Dynamics [Paxson99b]

CS551 End-to-End Internet Packet Dynamics [Paxson99b] CS551 End-to-End Internet Packet Dynamics [Paxson99b] Bill Cheng http://merlot.usc.edu/cs551-f12 1 End-to-end Packet Dynamics How do you measure Internet performance? Why do people want to know? Are ISPs

More information

Assignment #2 for Computer Networks

Assignment #2 for Computer Networks Assignment # for Computer Networks Savvas C. Nikiforou Department of Computer Science and Engineering University of South Florida Tampa, FL 6 Abstract The purpose of this assignment is to compare the queueing

More information

ON THE FRACTAL CHARACTERISTICS OF NETWORK TRAFFIC AND ITS UTILIZATION IN COVERT COMMUNICATIONS

ON THE FRACTAL CHARACTERISTICS OF NETWORK TRAFFIC AND ITS UTILIZATION IN COVERT COMMUNICATIONS ON THE FRACTAL CHARACTERISTICS OF NETWORK TRAFFIC AND ITS UTILIZATION IN COVERT COMMUNICATIONS Rashiq R. Marie Department of Computer Science email: R.R.Marie@lboro.ac.uk Helmut E. Bez Department of Computer

More information

Connection-level Analysis and Modeling of Network Traffic

Connection-level Analysis and Modeling of Network Traffic ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP Connection-level Analysis and Modeling of Network Traffic Shriram Sarvotham, Rudolf Riedi, Richard Baraniuk Abstract Most network traffic analysis and modeling

More information

Empirical Models of TCP and UDP End User Network Traffic from Data Analysis

Empirical Models of TCP and UDP End User Network Traffic from Data Analysis Empirical Models of TCP and UDP End User Network Traffic from NETI@home Data Analysis Charles R. Simpson, Jr., Dheeraj Reddy, George F. Riley School of Electrical and Computer Engineering Georgia Institute

More information

A STUDY OF WORKLOAD CHARACTERIZATION IN WEB BENCHMARKING TOOLS FOR WEB SERVER CLUSTERS

A STUDY OF WORKLOAD CHARACTERIZATION IN WEB BENCHMARKING TOOLS FOR WEB SERVER CLUSTERS 382 A STUDY OF WORKLOAD CHARACTERIZATION IN WEB BENCHMARKING TOOLS FOR WEB SERVER CLUSTERS Syed Mutahar Aaqib 1, Lalitsen Sharma 2 1 Research Scholar, 2 Associate Professor University of Jammu, India Abstract:

More information

Connection-level Analysis and Modeling of Network Traffic

Connection-level Analysis and Modeling of Network Traffic Connection-level Analysis and Modeling of Network Traffic Shriram Sarvotham, Rudolf Riedi, Richard Baraniuk Abstract Most network traffic analysis and modeling studies lump all connections together into

More information

MEASURING WORKLOAD PERFORMANCE IS THE INFRASTRUCTURE A PROBLEM?

MEASURING WORKLOAD PERFORMANCE IS THE INFRASTRUCTURE A PROBLEM? MEASURING WORKLOAD PERFORMANCE IS THE INFRASTRUCTURE A PROBLEM? Ashutosh Shinde Performance Architect ashutosh_shinde@hotmail.com Validating if the workload generated by the load generating tools is applied

More information

Web Analytics Understand your web visitors without web logs or page tags and keep all your data inside your firewall.

Web Analytics Understand your web visitors without web logs or page tags and keep all your data inside your firewall. Web Analytics Understand your web visitors without web logs or page tags and keep all your data inside your firewall. 5401 Butler Street, Suite 200 Pittsburgh, PA 15201 +1 (412) 408 3167 www.metronomelabs.com

More information

Performance Measurement of Wireless LAN Using Open Source

Performance Measurement of Wireless LAN Using Open Source Performance Measurement of Wireless LAN Using Open Source Vipin M Wireless Communication Research Group AU KBC Research Centre http://comm.au-kbc.org/ 1 Overview General Network Why Network Performance

More information

Gaining Operational Efficiencies with the Enterasys S-Series

Gaining Operational Efficiencies with the Enterasys S-Series Gaining Operational Efficiencies with the Enterasys S-Series Hi-Fidelity NetFlow There is nothing more important than our customers. Gaining Operational Efficiencies with the Enterasys S-Series Introduction

More information

Using IPM to Measure Network Performance

Using IPM to Measure Network Performance CHAPTER 3 Using IPM to Measure Network Performance This chapter provides details on using IPM to measure latency, jitter, availability, packet loss, and errors. It includes the following sections: Measuring

More information

Stateful Traffic Generator 10/100/1000G, 10G & 40G Ethernet

Stateful Traffic Generator 10/100/1000G, 10G & 40G Ethernet Stateful Traffic Generator 10/100/1000G, 10G & 40G Ethernet Manufactured By East Coast Datacom, Inc. in collaboration with developers Seven One Solution and NM 2 Why a traffic generator? A traffic generator

More information

Accelerated Simulation Method for Power-law Traffic and Non- FIFO Scheduling

Accelerated Simulation Method for Power-law Traffic and Non- FIFO Scheduling Accelerated Simulation Method for Power-law Traffic and Non- FIF Scheduling Authors: Sharifah H. S. Ariffin and John A. Schormans Department of Electronic Engineering, Queen Mary, University of London,

More information

Network Management and Monitoring Software

Network Management and Monitoring Software Page 1 of 7 Network Management and Monitoring Software Many products on the market today provide analytical information to those who are responsible for the management of networked systems or what the

More information

WEB APPLICATION PERFORMANCE PREDICTION

WEB APPLICATION PERFORMANCE PREDICTION WEB APPLICATION PERFORMANCE PREDICTION H. Karlapudi and J. Martin Department of Computer Science Clemson University Clemson, SC 9-9 Email: hkarlap, jim.martin@cs.clemson.edu ABSTRACT In this paper, we

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information

Network Performance Monitoring for Applications Using EXPAND.

Network Performance Monitoring for Applications Using EXPAND. Network Performance Monitoring for Applications Using EXPAND. Björn Landfeldt*, Aruna Seneviratne*, Bob Melander**, Per Gunningberg** *Dept. of Electrical Engineering and Telecommunications The University

More information

pathchar a tool to infer characteristics of Internet paths

pathchar a tool to infer characteristics of Internet paths pathchar a tool to infer characteristics of Internet paths Van Jacobson (van@ee.lbl.gov) Network Research Group Lawrence Berkeley National Laboratory Berkeley, CA 94720 MSRI April 21, 1997 c 1997 by Van

More information

Internet Management and Measurements Measurements

Internet Management and Measurements Measurements Internet Management and Measurements Measurements Ramin Sadre, Aiko Pras Design and Analysis of Communication Systems Group University of Twente, 2010 Measurements What is being measured? Why do you measure?

More information

Traffic model and performance evaluation of Web servers

Traffic model and performance evaluation of Web servers Performance Evaluation 46 (2001) 77 100 Traffic model and performance evaluation of Web servers Zhen Liu, Nicolas Niclausse, César Jalpa-Villanueva 1 INRIA, Centre Sophia Antipolis, 2004 Route des Lucioles,

More information

Towards Traffic Benchmarks for Empirical Networking Research: The Role of Connection Structure in Traffic Workload Modeling

Towards Traffic Benchmarks for Empirical Networking Research: The Role of Connection Structure in Traffic Workload Modeling 22 IEEE 2th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems Towards Traffic Benchmarks for Empirical Networking Research: The Role of Connection Structure

More information

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT:

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: In view of the fast-growing Internet traffic, this paper propose a distributed traffic management

More information

Communications and Networking

Communications and Networking Communications and Networking History and Background telephone system local area networks Internet architecture: what the pieces are and how they fit together names and addresses: what's your name and

More information

Network traffic: Scaling

Network traffic: Scaling Network traffic: Scaling 1 Ways of representing a time series Timeseries Timeseries: information in time domain 2 Ways of representing a time series Timeseries FFT Timeseries: information in time domain

More information

Measuring IP Performance. Geoff Huston Telstra

Measuring IP Performance. Geoff Huston Telstra Measuring IP Performance Geoff Huston Telstra What are you trying to measure? User experience Responsiveness Sustained Throughput Application performance quality Consistency Availability Network Behaviour

More information

IP Network Monitoring and Measurements: Techniques and Experiences

IP Network Monitoring and Measurements: Techniques and Experiences IP Network Monitoring and Measurements: Techniques and Experiences Philippe Owezarski LAAS-CNRS Toulouse, France Owe@laas.fr 1 Outline 4 Introduction 4 Monitoring problematic 8Only based on network administration

More information

Characteristics of Network Traffic Flow Anomalies

Characteristics of Network Traffic Flow Anomalies Characteristics of Network Traffic Flow Anomalies Paul Barford and David Plonka I. INTRODUCTION One of the primary tasks of network administrators is monitoring routers and switches for anomalous traffic

More information

Web Server Software Architectures

Web Server Software Architectures Web Server Software Architectures Author: Daniel A. Menascé Presenter: Noshaba Bakht Web Site performance and scalability 1.workload characteristics. 2.security mechanisms. 3. Web cluster architectures.

More information

Cisco Bandwidth Quality Manager 3.1

Cisco Bandwidth Quality Manager 3.1 Cisco Bandwidth Quality Manager 3.1 Product Overview Providing the required quality of service (QoS) to applications on a wide-area access network consistently and reliably is increasingly becoming a challenge.

More information

Optimizing TCP Forwarding

Optimizing TCP Forwarding Optimizing TCP Forwarding Vsevolod V. Panteleenko and Vincent W. Freeh TR-2-3 Department of Computer Science and Engineering University of Notre Dame Notre Dame, IN 46556 {vvp, vin}@cse.nd.edu Abstract

More information

Scaling for E-Business. Chapter 11 Characterizing E-Business Workloads

Scaling for E-Business. Chapter 11 Characterizing E-Business Workloads Scaling for E-Business Chapter 11 Characterizing E-Business Workloads Overview Introduction Workload Characterization of Web Traffic Characterizing Customer Behavior From HTTP Logs to CBMGs GetSessions

More information

Web Load Stress Testing

Web Load Stress Testing Web Load Stress Testing Overview A Web load stress test is a diagnostic tool that helps predict how a website will respond to various traffic levels. This test can answer critical questions such as: How

More information

Evaluation and Characterization of Available Bandwidth Probing Techniques

Evaluation and Characterization of Available Bandwidth Probing Techniques IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 6, AUGUST 2003 879 Evaluation and Characterization of Available Bandwidth Probing Techniques Ningning Hu, Student Member, IEEE, and Peter

More information

A Statistically Customisable Web Benchmarking Tool

A Statistically Customisable Web Benchmarking Tool Electronic Notes in Theoretical Computer Science 232 (29) 89 99 www.elsevier.com/locate/entcs A Statistically Customisable Web Benchmarking Tool Katja Gilly a,, Carlos Quesada-Granja a,2, Salvador Alcaraz

More information

Whitepaper Performance Testing and Monitoring of Mobile Applications

Whitepaper Performance Testing and Monitoring of Mobile Applications M eux Test Whitepaper Performance Testing and Monitoring of Mobile Applications Abstract The testing of a mobile application does not stop when the application passes all functional tests. Testing the

More information

What Is PERFORMANCE TUNING TRAINING? Who should attend the session? Trainer Profile:

What Is PERFORMANCE TUNING TRAINING? Who should attend the session? Trainer Profile: What Is PERFORMANCE TUNING TRAINING? Who should attend the session? Trainer Profile: Duration: Course Topics PERFORMANCE TUNING OVERVIEW Introduction to Performance Tuning Introduction to Performance Tuning

More information

Local-Area Network -LAN

Local-Area Network -LAN Computer Networks A group of two or more computer systems linked together. There are many [types] of computer networks: Peer To Peer (workgroups) The computers are connected by a network, however, there

More information

Comparative Analysis of Congestion Control Algorithms Using ns-2

Comparative Analysis of Congestion Control Algorithms Using ns-2 www.ijcsi.org 89 Comparative Analysis of Congestion Control Algorithms Using ns-2 Sanjeev Patel 1, P. K. Gupta 2, Arjun Garg 3, Prateek Mehrotra 4 and Manish Chhabra 5 1 Deptt. of Computer Sc. & Engg,

More information

Transparent Optimization of Grid Server Selection with Real-Time Passive Network Measurements. Marcia Zangrilli and Bruce Lowekamp

Transparent Optimization of Grid Server Selection with Real-Time Passive Network Measurements. Marcia Zangrilli and Bruce Lowekamp Transparent Optimization of Grid Server Selection with Real-Time Passive Network Measurements Marcia Zangrilli and Bruce Lowekamp Overview Grid Services Grid resources modeled as services Define interface

More information

First Midterm for ECE374 02/25/15 Solution!!

First Midterm for ECE374 02/25/15 Solution!! 1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

Self-Similarity Defined

Self-Similarity Defined Presentation Outline 1. Self similarity in nature 2. Quick review of autocorrelation 3. Definition of self-similar discrete process Exactly/asymptotic self-similar Long range vs short range dependence

More information

OpenFlow Based Load Balancing

OpenFlow Based Load Balancing OpenFlow Based Load Balancing Hardeep Uppal and Dane Brandon University of Washington CSE561: Networking Project Report Abstract: In today s high-traffic internet, it is often desirable to have multiple

More information

Understanding Data Center Traffic Characteristics

Understanding Data Center Traffic Characteristics Understanding Data Center Traffic Characteristics Theophilus Benson, Ashok Anand, Aditya Akella University of Wisconsin, Madison Madison, WI, USA {tbenson, ashok, akella}@cs.wisc.edu Ming Zhang Microsoft

More information

Geist. Internet Traffic Generator for Server Architecture Evaluation. Krishna Kant, Vijay Tewari, Ravishankar Iyer. Intel Corporation.

Geist. Internet Traffic Generator for Server Architecture Evaluation. Krishna Kant, Vijay Tewari, Ravishankar Iyer. Intel Corporation. Geist Internet Traffic Generator for Server Architecture Evaluation Krishna Kant, Vijay Tewari, Ravishankar Iyer Intel Corporation Slide 1 Overview lmotivation lother Traffic Generators lfeatures of Geist

More information

Hanyang University Grid Network Monitoring

Hanyang University Grid Network Monitoring Grid Network Monitoring Hanyang Univ. Multimedia Networking Lab. Jae-Il Jung Agenda Introduction Grid Monitoring Architecture Network Measurement Tools Network Measurement for Grid Applications and Services

More information

Lecture 8 Performance Measurements and Metrics. Performance Metrics. Outline. Performance Metrics. Performance Metrics Performance Measurements

Lecture 8 Performance Measurements and Metrics. Performance Metrics. Outline. Performance Metrics. Performance Metrics Performance Measurements Outline Lecture 8 Performance Measurements and Metrics Performance Metrics Performance Measurements Kurose-Ross: 1.2-1.4 (Hassan-Jain: Chapter 3 Performance Measurement of TCP/IP Networks ) 2010-02-17

More information

measurement metrics measurement techniques throughput measurement packet processing overhead packet size in real traffic

measurement metrics measurement techniques throughput measurement packet processing overhead packet size in real traffic measurement metrics Traffic Measurement and Analysis (2) JAIST Lecture 2003/11/28 connectivity throughput delay path routing Kenjiro Cho JAIST/Sony Computer Science Labs, Inc. kjc@csl.sony.co.jp measurement

More information

Static and Dynamic Scheduling Algorithms for Scalable Web Server Farm

Static and Dynamic Scheduling Algorithms for Scalable Web Server Farm Static and Dynamic Scheduling Algorithms for Scalable Web Server Farm Emiliano Casalicchio University of Roma Tor Vergata Roma, Italy, 133 ecasalicchio@ing.uniroma2.it Salvatore Tucci University of Roma

More information

Delay, loss, layered architectures. packets queue in router buffers. packets queueing (delay)

Delay, loss, layered architectures. packets queue in router buffers. packets queueing (delay) Computer Networks Delay, loss and throughput Layered architectures How do loss and delay occur? packets queue in router buffers packet arrival rate to exceeds output capacity packets queue, wait for turn

More information

Performance Evaluation of New Methods of Automatic Redirection for Load Balancing of Apache Servers Distributed in the Internet

Performance Evaluation of New Methods of Automatic Redirection for Load Balancing of Apache Servers Distributed in the Internet Performance Evaluation of New Methods of Automatic Redirection for Load Balancing of Apache Servers Distributed in the Internet Kripakaran Suryanarayanan and Kenneth J. Christensen Department of Computer

More information

On evaluating the differences of TCP and ICMP in network measurement

On evaluating the differences of TCP and ICMP in network measurement Computer Communications 30 (2007) 428 439 www.elsevier.com/locate/comcom On evaluating the differences of TCP and ICMP in network measurement Li Wenwei b, *, Zhang Dafang a, Yang Jinmin a, Xie Gaogang

More information

Testing & Assuring Mobile End User Experience Before Production. Neotys

Testing & Assuring Mobile End User Experience Before Production. Neotys Testing & Assuring Mobile End User Experience Before Production Neotys Agenda Introduction The challenges Best practices NeoLoad mobile capabilities Mobile devices are used more and more At Home In 2014,

More information

QoS in Axis Video Products

QoS in Axis Video Products Table of contents 1 Quality of Service...3 1.1 What is QoS?...3 1.2 Requirements for QoS...3 1.3 A QoS network scenario...3 2 QoS models...4 2.1 The IntServ model...4 2.2 The DiffServ model...5 2.3 The

More information

CS640: Introduction to Computer Networks. Applications FTP: The File Transfer Protocol

CS640: Introduction to Computer Networks. Applications FTP: The File Transfer Protocol CS640: Introduction to Computer Networks Aditya Akella Lecture 4 - Application Protocols, Performance Applications FTP: The File Transfer Protocol user at host FTP FTP user client interface local file

More information

Web Traffic Capture. 5401 Butler Street, Suite 200 Pittsburgh, PA 15201 +1 (412) 408 3167 www.metronomelabs.com

Web Traffic Capture. 5401 Butler Street, Suite 200 Pittsburgh, PA 15201 +1 (412) 408 3167 www.metronomelabs.com Web Traffic Capture Capture your web traffic, filtered and transformed, ready for your applications without web logs or page tags and keep all your data inside your firewall. 5401 Butler Street, Suite

More information

Network-based Modeling of Assets and Malicious Actors

Network-based Modeling of Assets and Malicious Actors Network-based Modeling of Assets and Malicious Actors Christopher Kruegel Computer Security Group MURI Meeting Santa Barbara, August 23-24, 2010 Motivation Thrust I: Obtaining an up-to-date view of the

More information

Internet Traffic Measurement

Internet Traffic Measurement Internet Traffic Measurement Internet Traffic Measurement Network Monitor Placement Measurement Analysis Tools Measurement Result Reporting Probing Mechanism Vantage Points Edge vs Core Hardware vs Software

More information

IP SLAs Overview. Finding Feature Information. Information About IP SLAs. IP SLAs Technology Overview

IP SLAs Overview. Finding Feature Information. Information About IP SLAs. IP SLAs Technology Overview This module describes IP Service Level Agreements (SLAs). IP SLAs allows Cisco customers to analyze IP service levels for IP applications and services, to increase productivity, to lower operational costs,

More information

Best Practices in Core Network Capacity Planning

Best Practices in Core Network Capacity Planning White Paper Best Practices in Core Network Capacity Planning Architectural Principles of the MATE Portfolio of Products What You Will Learn Core network capacity planning is the process of ensuring that

More information

Event-based Network Traffic Monitoring In A Wide Area Network

Event-based Network Traffic Monitoring In A Wide Area Network Event-based Network Traffic Monitoring In A Wide Area Network Katsuhisa ABE and Glenn Mansfield Keeni 19 Feb. 2005 Abstract Network monitoring is necessary to evaluate the performance and to ensure operational

More information

Effects of Interrupt Coalescence on Network Measurements

Effects of Interrupt Coalescence on Network Measurements Effects of Interrupt Coalescence on Network Measurements Ravi Prasad, Manish Jain, and Constantinos Dovrolis College of Computing, Georgia Tech., USA ravi,jain,dovrolis@cc.gatech.edu Abstract. Several

More information

Looking at the Server Side of Peer-to-Peer Systems

Looking at the Server Side of Peer-to-Peer Systems Looking at the Server Side of Peer-to-Peer Systems Yi Qiao Dong Lu Fabián E. Bustamante Peter A. Dinda {yqiao,donglu,fabianb,pdinda}@cs.northwestern.edu Department of Computer Science, Northwestern University

More information

Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow

Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow International Journal of Soft Computing and Engineering (IJSCE) Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow Abdullah Al Masud, Hossain Md. Shamim, Amina Akhter

More information

3. MONITORING AND TESTING THE ETHERNET NETWORK

3. MONITORING AND TESTING THE ETHERNET NETWORK 3. MONITORING AND TESTING THE ETHERNET NETWORK 3.1 Introduction The following parameters are covered by the Ethernet performance metrics: Latency (delay) the amount of time required for a frame to travel

More information

A Simulation Study of Effect of MPLS on Latency over a Wide Area Network (WAN)

A Simulation Study of Effect of MPLS on Latency over a Wide Area Network (WAN) A Simulation Study of Effect of MPLS on Latency over a Wide Area Network (WAN) Adeyinka A. Adewale, Samuel N. John, and Charles Ndujiuba 1 Department of Electrical and Information Engineering, Covenant

More information

co Characterizing and Tracing Packet Floods Using Cisco R

co Characterizing and Tracing Packet Floods Using Cisco R co Characterizing and Tracing Packet Floods Using Cisco R Table of Contents Characterizing and Tracing Packet Floods Using Cisco Routers...1 Introduction...1 Before You Begin...1 Conventions...1 Prerequisites...1

More information

Introduction. The Inherent Unpredictability of IP Networks # $# #

Introduction. The Inherent Unpredictability of IP Networks # $# # Introduction " $ % & ' The Inherent Unpredictability of IP Networks A major reason that IP became the de facto worldwide standard for data communications networks is its automated resiliency based on intelligent

More information

A NEW TRAFFIC MODEL FOR CURRENT USER WEB BROWSING BEHAVIOR

A NEW TRAFFIC MODEL FOR CURRENT USER WEB BROWSING BEHAVIOR A NEW TRAFFIC MODEL FOR CURRENT USER WEB BROWSING BEHAVIOR Jeongeun Julie Lee Communications Technology Lab, Intel Corp. Hillsboro, Oregon Maruti Gupta Communications Technology Lab, Intel Corp. Hillsboro,

More information

Lab VI Capturing and monitoring the network traffic

Lab VI Capturing and monitoring the network traffic Lab VI Capturing and monitoring the network traffic 1. Goals To gain general knowledge about the network analyzers and to understand their utility To learn how to use network traffic analyzer tools (Wireshark)

More information

Quality of Service (QoS)) in IP networks

Quality of Service (QoS)) in IP networks Quality of Service (QoS)) in IP networks Petr Grygárek rek 1 Quality of Service (QoS( QoS) QoS is the ability of network to support applications without limiting it s s function or performance ITU-T T

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book: Computer Networking, A Top-Down Approach, Kurose, Ross Slides: - Course book Slides - Slides from Princeton University COS461

More information

Characterizing and Modeling User Mobility in a Cellular Data Network

Characterizing and Modeling User Mobility in a Cellular Data Network Characterizing and Modeling User Mobility in a Cellular Data Network Emir Halepovic and Carey Williamson Department of Computer Science University of Calgary, Calgary, AB, Canada Email: {emirh, carey}@cpsc.ucalgary.ca

More information

CoMPACT-Monitor: Change-of-Measure based Passive/Active Monitoring Weighted Active Sampling Scheme to Infer QoS

CoMPACT-Monitor: Change-of-Measure based Passive/Active Monitoring Weighted Active Sampling Scheme to Infer QoS CoMPACT-Monitor: Change-of-Measure based Passive/Active Monitoring Weighted Active Sampling Scheme to Infer QoS Masaki Aida, Keisuke Ishibashi, and Toshiyuki Kanazawa NTT Information Sharing Platform Laboratories,

More information

architecture: what the pieces are and how they fit together names and addresses: what's your name and number?

architecture: what the pieces are and how they fit together names and addresses: what's your name and number? Communications and networking history and background telephone system local area networks Internet architecture: what the pieces are and how they fit together names and addresses: what's your name and

More information

Modeling users' dynamic behavior in web application environments

Modeling users' dynamic behavior in web application environments Raúl Peña-Ortiz isoco S.A Innovation Department raul@isoco.com Julio Sahuquillo, Ana Pont, José Antonio Gil Polytechnic University of Valencia Department of Computer Systems {jsahuqui, apont, jagil}@disca.upv.es

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Effects and Implications of File Size/Service Time Correlation on Web Server Scheduling Policies Dong Lu Peter Dinda Yi Qiao Huanyuan Sheng {donglu,pdinda,y-qiao3,h-sheng}@northwestern.edu Northwestern

More information

Intel DPDK Boosts Server Appliance Performance White Paper

Intel DPDK Boosts Server Appliance Performance White Paper Intel DPDK Boosts Server Appliance Performance Intel DPDK Boosts Server Appliance Performance Introduction As network speeds increase to 40G and above, both in the enterprise and data center, the bottlenecks

More information

Visualizations and Correlations in Troubleshooting

Visualizations and Correlations in Troubleshooting Visualizations and Correlations in Troubleshooting Kevin Burns Comcast kevin_burns@cable.comcast.com 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional

More information

What TCP/IP Protocol Headers Can Tell Us About the Web

What TCP/IP Protocol Headers Can Tell Us About the Web at Chapel Hill What TCP/IP Protocol Headers Can Tell Us About the Web Félix Hernández Campos F. Donelson Smith Kevin Jeffay David Ott SIGMETRICS, June 2001 Motivation Traffic Modeling and Characterization

More information

APPLICATION-AWARE ROUTING IN SOFTWARE-DEFINED NETWORKS

APPLICATION-AWARE ROUTING IN SOFTWARE-DEFINED NETWORKS APPLICATION-AWARE ROUTING IN SOFTWARE-DEFINED NETWORKS SARO VELRAJAN Director of Technology, Aricent APPLICATION-AWARE ROUTING IN SOFTWARE-DEFINED NETWORKS Service providers are constantly exploring avenues

More information

An Empirical Model of HTTP Network Traffic

An Empirical Model of HTTP Network Traffic Copyright 997 IEEE. Published in the Proceedings of INFOCOM 97, April 7-, 997 in Kobe, Japan. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising

More information

Assignment #3 Routing and Network Analysis. CIS3210 Computer Networks. University of Guelph

Assignment #3 Routing and Network Analysis. CIS3210 Computer Networks. University of Guelph Assignment #3 Routing and Network Analysis CIS3210 Computer Networks University of Guelph Part I Written (50%): 1. Given the network graph diagram above where the nodes represent routers and the weights

More information

Evaluation of Effective Bandwidth Schemes for Self-Similar Traffic

Evaluation of Effective Bandwidth Schemes for Self-Similar Traffic Proceedings of the 3th ITC Specialist Seminar on IP Measurement, Modeling and Management, Monterey, CA, September 2000, pp. 2--2-0 Evaluation of Effective Bandwidth Schemes for Self-Similar Traffic Stefan

More information

End-to-End Network Centric Performance Management

End-to-End Network Centric Performance Management End-to-End Network Centric Performance Management Gordon Bolt gbolt@opnet.com Application Performance Networks exist to support applications and services Application or End-User Experience is what matters

More information

APPLICATION LEVEL PERFORMANCE METRICS

APPLICATION LEVEL PERFORMANCE METRICS APPLICATION LEVEL PERFORMANCE METRICS WHY IS MEASURING IMPORTANT? "To measure is to know." - Lord Kelvin "If you can not measure it, you can not improve it." - Lord Kelvin "If you try to measure something

More information

Defending Against Traffic Analysis Attacks with Link Padding for Bursty Traffics

Defending Against Traffic Analysis Attacks with Link Padding for Bursty Traffics Proceedings of the 4 IEEE United States Military Academy, West Point, NY - June Defending Against Traffic Analysis Attacks with Link Padding for Bursty Traffics Wei Yan, Student Member, IEEE, and Edwin

More information

LOAD BALANCING AS A STRATEGY LEARNING TASK

LOAD BALANCING AS A STRATEGY LEARNING TASK LOAD BALANCING AS A STRATEGY LEARNING TASK 1 K.KUNGUMARAJ, 2 T.RAVICHANDRAN 1 Research Scholar, Karpagam University, Coimbatore 21. 2 Principal, Hindusthan Institute of Technology, Coimbatore 32. ABSTRACT

More information

Tracking the Evolution of Web Traffic: 1995-2003 *

Tracking the Evolution of Web Traffic: 1995-2003 * Tracking the Evolution of Web Traffic: 995-23 * Félix Hernández-Campos Kevin Jeffay F. Donelson Smith University of North Carolina at Chapel Hill Department of Computer Science Chapel Hill, NC 27599-375

More information

A Measurement Study of Available Bandwidth Estimation Tools

A Measurement Study of Available Bandwidth Estimation Tools A Measurement Study of Available Bandwidth Estimation Tools Jacob Strauss jastr@mit.edu Dina Katabi dk@mit.edu MIT Computer Science and Artificial Intelligence Laboratory Frans Kaashoek kaashoek@mit.edu

More information

A Tool for Evaluation and Optimization of Web Application Performance

A Tool for Evaluation and Optimization of Web Application Performance A Tool for Evaluation and Optimization of Web Application Performance Tomáš Černý 1 cernyto3@fel.cvut.cz Michael J. Donahoo 2 jeff_donahoo@baylor.edu Abstract: One of the main goals of web application

More information

Network Monitoring and Traffic CSTNET, CNIC

Network Monitoring and Traffic CSTNET, CNIC Network Monitoring and Traffic Analysis in CSTNET Chunjing Han Aug. 2013 CSTNET, CNIC Topics 1. The background of network monitoring 2. Network monitoring protocols and related tools 3. Network monitoring

More information

Hyper Node Torus: A New Interconnection Network for High Speed Packet Processors

Hyper Node Torus: A New Interconnection Network for High Speed Packet Processors 2011 International Symposium on Computer Networks and Distributed Systems (CNDS), February 23-24, 2011 Hyper Node Torus: A New Interconnection Network for High Speed Packet Processors Atefeh Khosravi,

More information