97.1 Anemia in the Newborn Infant

Size: px
Start display at page:

Download "97.1 Anemia in the Newborn Infant"

Transcription

1 612 n Part XII The Fetus and the Neonatal Infant Chapter 97 Blood Disorders 97.1 Anemia in the Newborn Infant Akhil Maheshwari and Waldemar A. Carlo Hemoglobin increases with advancing gestational age: at term, cord blood hemoglobin is 16.8 g/dl (14-20 g/dl); hemoglobin levels in very low birthweight (VLBW) infants are 1-2 g/dl below those in term infants (Fig. 97-1). A hemoglobin value less than the normal range of hemoglobin for birthweight and postnatal age is defined as anemia (Table 97-1). A physiologic decrease in hemoglobin content is noticed at 8-12 wk in term infants (hemoglobin, 11 g/dl) and at about 6 wk in premature infants (7-10 g/dl). Infants born by cesarean section may have a lower hematocrit (Hct) than those born vaginally. Anemia at birth is manifested as pallor, heart failure, or shock (Fig. 97-2). It may be due to acute or chronic fetal blood loss, hemolysis, or underproduction of erythrocytes. Specific causes include hemolytic disease of the newborn, tearing or cutting of the umbilical cord during delivery, abnormal cord insertion, communicating placental vessels, placenta previa or abruptio, nuchal cord, incision into the placenta, internal hemorrhage (liver, spleen, intracranial), α-thalassemia, congenital parvovirus infection or other hypoplastic anemias, and twin-twin transfusion in monozygotic twins with arteriovenous placental connections (Chapter 92). Transplacental hemorrhage with bleeding from the fetal into the maternal circulation has been reported in 5-15% of pregnancies, but, unless severe, it is not usually sufficient to cause clinically apparent anemia at birth. The cause of transplacental hemorrhage is not clear, but its occurrence has been proven by

2 Chapter 97 Blood Disorders n 613 Hemoglobin (g/dl) Gestation (wk) Figure 97-1 Range (mean and 95% confidence limits) of hemoglobin concentration from 10 to 40 wk of gestational age in normal (zone I) fetuses obtained by cordocentesis (percutaneous umbilical blood sample). Solid circles depict maternal red blood cell isoimmunization; open circles indicate hemoglobin levels in fetuses with ultrasonographic evidence of hydrops (zone III). (From Soothill PW: Cordocentesis: role in assessment of fetal condition, Clin Perinatol 16: , 1989.) Table 97-1 NORMAL RED BLOOD CELL VALUES FROM 18 WEEKS OF GESTATION TO 14 WEEKS OF LIFE AGE HEMOGLOBIN (g/dl) HEMATOCRIT (%) MCV (µ 3 ) I II III RETICULOCYTES (%) GESTATIONAL (wk) 18-20* 11.5 ± ± ± 8.8 N/A 21-22* 12.3 ± ± ± 6.2 N/A 23-25* 12.4 ± ± ± 6.2 N/A ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 1.4 POSTNATAL (DAYS) ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.4 POSTNATAL (wk) ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3 93 ± ± ± ± 3 91 ± ± ± ± 2 91 ± ± ± ± 3 88 ± ± *Based on samples collected in utero. Results expressed as mean value ± 1 standard deviation from the mean except for postnatal weeks in which only the mean value is given. From Bizzarro MJ, Colson E, Ehrenkranz RA: Differential diagnosis and management of anemia in the newborn, Pediatr Clin North Am 51: , Low Congenital hypoplastic anemias Congenital infections Congenital leukemia Low Hemoglobin concentration Negative MCV Chronic intrauterine blood loss -Thalassemia syndromes Rare misc. causes (e.g., hexokinase deficiency) Normal Infection Blood loss a) Latrogenic (sampling) b) Fetomaternal/fetoplacental Twin to twin Internal hemorrhage c) Placental hemorrhage d) Umbilical cord hemorrhage Reticulocyte count Normal or high Coombs test Positive Immune hemolytic anemia ABO Rh Minor blood group (e.g., Kell) Normal or high Peripheral blood smear Abnormal Hereditary spherocytosis Hereditary elliptocytosis Stomatocytosis Pyropoikilocytosis Pyruvate kinase deficiency G6PD deficiency DIC Figure 97-2 Diagnostic approach to anemia in newborn infants. DIC, disseminated intravascular coagulation; G6PD, glucose-6-phosphate dehydrogenase; MCV, mean corpuscular volume. (Modified from Blanchette VS, Zipursky A: Assessment of anemia in newborn infants, Clin Perinatol 11: , 1984.) demonstration of significant amounts of fetal hemoglobin and red blood cells (RBCs) in maternal blood on the day of delivery by the Kleihauer-Betke test or by flow cytometry methods to detect fetal cells in maternal blood. If the infant has severe anemia with heart failure, emergency exchange transfusion to restore Hct and oxygen-carrying capacity may be needed. Acute blood loss usually results in severe distress at birth, initially with a normal hemoglobin level, no hepatosplenomegaly, and early onset of shock. In contrast, chronic blood loss in utero produces marked pallor, less distress, a low hemoglobin level with microcytic indices, and, if severe, heart failure. Anemia appearing in the first few days after birth is also most frequently a result of hemolytic disease of the newborn. Other causes are hemorrhagic disease of the newborn, bleeding from an improperly tied or clamped umbilical cord, large cephalohematoma, intracranial hemorrhage, and subcapsular bleeding from rupture of the liver, spleen, adrenals, or kidneys. Rapid decreases in hemoglobin or Hct values during the first few days of life may be the initial clue to these conditions. Later in the neonatal period, delayed anemia may develop as a result of hemolytic disease of the newborn, with or without exchange transfusion or phototherapy. Congenital hemolytic anemia (spherocytosis) occasionally appears during the 1st mo of life, and hereditary nonspherocytic hemolytic anemia has been described during the neonatal period secondary to deficiency of glucose-6-phosphate dehydrogenase (G6PD) and pyruvate kinase. Bleeding from hemangiomas of the upper gastrointestinal tract

3 614 n Part XII The Fetus and the Neonatal Infant Table 97-2 TRANSFUSION PROTOCOL HEMATOCRIT (%) HEMOGLOBIN (g/dl) RESPIRATORY SUPPORT AND/OR SYMPTOMS TRANSFUSION VOLUME Infants requiring moderate or significant mechanical ventilation (mean arterial pressure >8 cm 15 ml/kg PRBCs* over 2-4 hr H 2 O and FIO 2 >0.4) Infants requiring minimal respiratory support (any mechanical ventilation or endotracheal/nasal 15 ml/kg PRBCs over 2-4 hr continuous positive airway pressure >6 cm H 2 O and FIO 2 0.4) 25 8 Infants not requiring mechanical ventilation but who are receiving supplemental O 2 or CPAP with an FIO and in whom 1 or more of the following is present: 24 hr of tachycardia (heart rate >180 beats/min) or tachypnea (respiratory rate >80 breaths/ min) 20 ml/kg PRBCs over 2-4 hr (divide into 2 10-mL/kg volumes if infant is fluid sensitive) An increased oxygen requirement from the previous 48 hr, defined as a 4-fold increase in nasal canula flow (i.e., from 0.25 to 1 L/min) or an increase in nasal CPAP 20% from the previous 48 hr (i.e., 5 to 6 cm H 2 O) Weight gain <10 g/kg/day over the previous 4 days while infant is receiving 100 kcal/kg/ day An increase in episodes of apnea and bradycardia (>9 episodes in a 24-hr period or 2 episodes in 24 hr requiring bag and mask ventilation) while infant is receiving therapeutic doses of methylxanthines Undergoing surgery 20 7 Asymptomatic and an absolute reticulocyte count <100,000 cells/µl 20 ml/kg PRBCs over 2-4 hr (2 10-mL/kg volumes) *RBCs should be irradiated prior to transfusion. FIO 2, fractional inspired oxygen; PRBC, packed red blood cells. From Ohls RK, Ehrenkranz RA, Wright LL, et al: Effects of early erythropoietin therapy on the transfusion requirements of preterm infants below 1250 grams birth weight: a multicenter, randomized, controlled trial, Pediatrics 108: , or from ulcers caused by aberrant gastric mucosa in a Meckel diverticulum or duplication is a rare source of anemia in newborns. Repeated blood sampling of infants requiring frequent monitoring of blood gas and chemistry parameters is a common cause of anemia among hospitalized infants. Deficiency of minerals such as copper may cause anemia in infants maintained on total parenteral nutrition. Anemia of prematurity occurs in LBW infants 1-3 mo after birth, is associated with hemoglobin levels <7-10 g/dl, and is clinically manifested as pallor, poor weight gain, decreased activity, tachypnea, tachycardia, and feeding problems. Repeated phlebotomy for blood tests, shortened RBC survival, rapid growth, and the physiologic effects of the transition from fetal (low Pao 2 and hemoglobin saturation) to neonatal life (high Pao 2 and hemoglobin saturation) contribute to anemia of prematurity. The oxygen available to neonatal tissue is lower than that in adults, but a neonate s erythropoietin response is attenuated for the degree of anemia, and as a result, hemoglobin and reticulocyte levels are low. In VLBW infants, delayed clamping of the umbilical cord with the infant held below the level of the placenta may enhance placental-infant transfusion and reduce postnatal transfusion needs. This maneuver should not delay any needed resuscitation and may lead to hyperviscosity. Delayed cord clamping ( 1-2 min or after cessation of cord pulsation) may be beneficial in otherwise well newborns in preventing anemia in full-term infants, with effects extending beyond the neonatal period. The benefits of delayed cord clamping persist for 2-6 mo as improved hematocrit, iron status as measured by ferritin concentration and stored iron, and a clinically important reduction in the risk of anemia in infancy. Late clamping may result in delivery of an extra ml of blood and mg of iron to the newborn. Polycythemia is a risk with delayed clamping but is often asymptomatic. Treatment of neonatal anemia by blood transfusion depends on the severity of symptoms, the hemoglobin level, and the presence of co-morbid diseases (bronchopulmonary dysplasia, cyanotic congenital heart disease, respiratory distress syndrome) that interfere with oxygen delivery. The need for treatment with blood should be balanced against the risks of transfusion, including hemolytic transfusion reactions, exposure to blood product preservatives and other potential toxins, volume overload, possible increased risk of retinopathy of prematurity and necrotizing enterocolitis, graft-versus-host (GVH) reaction, and transfusionacquired infection (cytomegalovirus [CMV], HIV, parvovirus, hepatitis B and C) (Chapter 468). The risk of CMV infection can be almost eliminated by the use of leukoreduced blood. In the infant <1,500 g, CMV antibody-negative leukoreduced blood should be used. The risk of acquiring HIV and hepatitis B and C viruses is reduced but not eliminated by antibody screening of donated blood. Blood banking techniques that limit multiple donor exposure should be encouraged. Although transfusion guidelines for preterm infants have been proposed (Table 97-2), they have not been subjected to rigorous clinical study. Nonetheless, these guidelines have led to a decline in the number of unnecessary transfusions. The use of restrictive vs more liberal transfusion guidelines has been examined in two randomized trials, one conducted at University of Iowa and a second multicentric trial known as the PINT (Premature Infants in Need of Transfusion) study. The restrictive guidelines in the two groups were generally similar. In the Iowa trial, the transfusion thresholds in the liberal- and restrictive-transfusion groups were <46% and <34%, respectively, in tracheally intubated infants receiving assisted ventilation; <38% and <28%, respectively, in infants receiving nasal continuous positive airway pressure or supplemental oxygen; and <30% and <22%, respectively, in infants breathing room air. The transfusion thresholds for the liberal groups were higher in the Iowa trial than in the PINT study. In both trials, the use of restrictive thresholds resulted in fewer transfusions and also increased the number of infants who received no transfusions at all. However, in the Iowa trial (but not in the PINT study), restrictive transfusion thresholds were associated with increases in major cranial ultrasonographic abnormalities and in the frequency of apneic spells. Although these findings need further evaluation in clinical studies, the issue of finding an appropriate transfusion threshold in premature infants remains unresolved. Asymptomatic full-term infants with a hemoglobin level of 10 g/dl may be monitored, whereas symptomatic neonates born after abruptio placentae or with severe hemolytic disease of the newborn need immediate transfusion. Preterm infants who have repeated episodes of apnea and bradycardia despite theophylline therapy and a hemoglobin level 8 g/dl may benefit from RBC transfusion. In addition, infants with respiratory distress syndrome or severe bronchopulmonary dysplasia may need

4 Chapter 97 Blood Disorders n 615 hemoglobin levels of g/dl to improve oxygen delivery. No transfusion is needed to replace blood removed for testing or for mild asymptomatic anemia. Asymptomatic neonates with reticulocytopenia and hemoglobin levels 7 g/dl may require transfusion; if a transfusion is not provided, close observation is essential. Packed RBC transfusion (10-20 ml/kg) is given at a rate of 2-3 ml/kg/hr to raise the hemoglobin concentration; 2 ml/kg raises the hemoglobin level g/dl. Hemorrhage should be treated with whole blood if available; alternatively, fluid resuscitation is initiated, followed by packed RBC transfusion. Recombinant human erythropoietin (r-huepo) may be considered in the treatment of chronic or anticipated anemia in an attempt to decrease or eliminate transfusions when families, for religious reasons, request all possible measures to avoid transfusions. Therapy with r-huepo must be supplemented with oral iron. Doses and regimens vary. In anemia of prematurity, r-huepo does not provide a major reduction in transfusion requirements or the number of donors; therefore, routine use of erythropoietin in VLBW infants is not recommended. Early initiation of r-huepo therapy may produce a small reduction in the total transfusion volume per infant. There were concerns about an increased risk of severe retinopathy of prematurity in the r-huepo group. The effects of late initiation of r-huepo ( 8 days) have also been associated with small reductions in the total blood volume transfused per infant and the number of transfusions per infant. Please visit the Nelson Textbook of Pediatrics website at com for the complete bibliography Hemolytic Disease of the Newborn (Erythroblastosis Fetalis) Akhil Maheshwari and Waldemar A. Carlo Erythroblastosis fetalis is caused by the transplacental passage of maternal antibody active against paternal RBC antigens of the infant and is characterized by an increased rate of RBC destruction. It is an important cause of anemia and jaundice in newborn infants despite the development of a method of preventing maternal isoimmunization by Rh antigens. Although more than 60 different RBC antigens are capable of eliciting an antibody response, significant disease is associated primarily with the D antigen of the Rh group and with incompatibility of ABO factors. Rarely, hemolytic disease may be caused by C or E antigens or by other RBC antigens, such as C W, C X, D U, K (Kell), M, Duffy, S, P, MNS, Xg, Lutheran, Diego, and Kidd. Anti-Lewis antibodies do not cause disease. HEMOLYTIC DISEASE OF THE NEWBORN CAUSED BY RH INCOMPATIBILITY The Rh antigenic determinants are genetically transmitted from each parent, determine the Rh type, and direct the production of a number of blood group factors (C, c, D, d, E, and e). Each factor can elicit a specific antibody response under suitable conditions; 90% are due to D antigen and the remainder to C or E antigens. Pathogenesis Isoimmune hemolytic disease from D antigen is approximately three times more frequent among white persons than among black persons. When Rh-positive blood is infused into an Rhnegative woman through error or when small quantities (usually > 1 ml) of Rh-positive fetal blood containing D antigen inherited from an Rh-positive father enter the maternal circulation during pregnancy, with spontaneous or induced abortion, or at delivery, antibody formation against D antigen may be induced in the unsensitized Rh-negative recipient mother. Once sensitization has taken place, considerably smaller doses of antigen can stimulate an increase in antibody titer. Initially, a rise in immunoglobulin (Ig) M antibody occurs, which is later replaced by IgG antibody; the latter readily crosses the placenta to cause hemolytic manifestations. Hemolytic disease rarely occurs during a first pregnancy because transfusion of Rh-positive fetal blood into an Rh-negative mother occurs near the time of delivery, too late for the mother to become sensitized and transmit antibody to her infant before delivery. The facts that 55% of Rh-positive fathers are heterozygous (D/d) and may have Rh-negative offspring and that fetal-to-maternal transfusion occurs in only 50% of pregnancies reduce the chance of sensitization, as does small family size, in which the opportunities for its reoccurrence are reduced. The disparity between the numbers of incompatible vs alloimmunized maternal-fetal pairs can also be due to a threshold effect of fetomaternal transfusions (a certain amount of the immunizing blood cell antigen is required to activate the maternal immune system), the type of antibody response (IgG antibodies are more efficiently transferred across the placenta to the fetus), differential immunogenicity of blood group antigens, and differences in maternal immune response, presumably related to differences in the efficiency of antigen presentation by various major histocompatibility loci. Thus, the overall incidence of isoimmunization of Rh-negative mothers at risk is low, with antibody to antigen D detected in >10% of those studied, even after five or more pregnancies; only about 5% ever have babies with hemolytic disease. When the mother and fetus are also incompatible with respect to group A or B, the mother is partially protected against sensitization by the rapid removal of Rh-positive cells from her circulation by her preexisting anti-a or anti-b antibodies, which are IgM antibodies and do not cross the placenta. Once a mother has been sensitized, her infant is likely to have hemolytic disease. The severity of Rh illness worsens with successive pregnancies. The possibility that the first affected infant after sensitization may represent the end of the mother s childbearing potential for Rhpositive infants argues urgently for the prevention of sensitization. The injection of anti-d gamma globulin (RhoGAM) into the mother immediately after the delivery of each Rh-positive infant has been a successful strategy to reduce Rh hemolytic disease (see later). Clinical Manifestations A wide spectrum of hemolytic disease occurs in affected infants born to sensitized mothers, depending on the nature of the individual immune response. The severity of the disease may range from only laboratory evidence of mild hemolysis (15% of cases) to severe anemia with compensatory hyperplasia of erythropoietic tissue leading to massive enlargement of the liver and spleen. When the compensatory capacity of the hematopoietic system is exceeded, profound anemia occurs and results in pallor, signs of cardiac decompensation (cardiomegaly, respiratory distress), massive anasarca, and circulatory collapse. This clinical picture of excessive abnormal fluid in two or more fetal compartments (skin, pleura, pericardium, placenta, peritoneum, amniotic fluid), termed hydrops fetalis, frequently results in death in utero or shortly after birth. With the use of anti-d gamma globulin to prevent Rh sensitization, nonimmune (nonhemolytic) conditions have become frequent causes of hydrops (Table 97-3). The severity of hydrops is related to the level of anemia and the degree of reduction in serum albumin (oncotic pressure), which is due in part to hepatic dysfunction. Alternatively, heart failure may increase right heart pressure, with the subsequent development of edema and ascites. Failure to initiate spontaneous effective ventilation because of pulmonary edema or bilateral pleural effusions results in birth asphyxia; after successful resuscitation, severe respiratory distress may develop. Petechiae, purpura, and

5 Chapter 97 Blood Disorders n 615.e1 Aher S, Ohlsson A: Late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants, Cochrane Database Syst Rev (3):CD004868, Anderson C: Critical haemoglobin thresholds in premature infants, Arch Dis Child Fetal Neonatal Ed 84:F146 F148, Bell EF, Strauss RG, Widness JA, et al: Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants, Pediatrics 115: , Bizzarro MJ, Colson E, Ehrenkranz RA: Differential diagnosis and management of anemia in the newborn, Pediatr Clin North Am 51: , Christensen RD, Henry E: Hereditary spherocytosis on neonates with hyperbilirubinemia, Pediatrics 125: , Ferguson D, Hébert PC, Lee SK, et al: Clinical outcomes following institution of universal leukoreduction of blood transfusions for premature infants, JAMA 289: , Hébert PC, Fergusson D, Blajchman MA, et al: Clinical outcomes following institution of the Canadian universal leukoreduction program for red blood cell transfusions, JAMA 289: , Hutton EK, Hassan ES: Late vs early clamping of the umbilical cord in fullterm neonates, JAMA 297: , Kirpalani H, Whyte RK, Andersen C, et al: The Premature Infants in Need of Transfusion (PINT) study: a randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants, J Pediatr 149: , Nicaise C, Gire C, Casha P, et al: Erythropoietin as treatment for late hyporegenerative anemia in neonates with Rh hemolytic disease after in utero exchange transfusion, Fetal Diagn Ther 17:22 24, Ohlsson A, Aher SM: Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants, Cochrane Database Syst Rev (3):CD004863, Rabe H, Reynolds G, Diaz-Rossello J: Early versus delayed umbilical cord clamping in preterm infants, Cochrane Database Syst Rev (4):CD003248, 2004.

6 616 n Part XII The Fetus and the Neonatal Infant Table 97-3 ETIOLOGY OF HYDROPS FETALIS* Anemia CATEGORY Cardiac dysrhythmias Structural heart lesions Vascular Lymphatic Central nervous system Thoracic lesions DISORDER(S) Immune (Rh, Kell) hemolysis α-thalassemia Red blood cell enzyme deficiencies (glucose-6-phosphate dehydrogenase) Fetomaternal hemorrhage Donor in twin-to-twin transfusion Diamond-Blackfan syndrome Supraventricular tachycardia Atrial flutter Congenital heart block Premature closure of foramen ovale Tricuspid insufficiency Hypoplastic left heart Endocardial cushion defect Cardiomyopathy Endocardial fibroelastosis Tuberous sclerosis with cardiac rhabdomyoma Pericardial teratoma Chorioangioma of placenta, chorionic vessels, or umbilical vessels Umbilical artery aneurysm Angiomyxoma of umbilical cord True knot of umbilical cord Hepatic hemangioma Cerebral arteriovenous malformation (aneurysm of vein of Galen) Angiosteohypertrophy (Klippel-Trénaunay syndrome) Thrombosis of renal or umbilical vein or inferior vena cava Recipient in twin-to-twin transfusion Lymphangiectasia Cystic hygroma Chylothorax, chylous ascites Noonan syndrome Multiple pterygium syndrome Absent corpus callosum Encephalocele Intracranial hemorrhage Holoprosencephaly Cystic adenomatoid malformation of lung Mediastinal teratoma Diaphragmatic hernia Sequestered lung Teratomas CATEGORY Tumors and storage diseases Chromosome abnormalities Bone diseases Congenital infections Others Idiopathic *The incidence of nonimmune (nonhemolytic) hydrops fetalis is 1/2,000-1/3,500 births. Modified from Phibbs R. In Polin N, Fox W, editors: Fetal and neonatal physiology, ed 2, Philadelphia, 1998, WB Saunders. DISORDER(S) Choriocarcinoma Sacrococcygeal teratoma Neuroblastoma Hepatoblastoma Gaucher disease Niemann-Pick disease Mucolipidosis GM 1 gangliosidosis Mucopolysaccharidosis Trisomy 13, 15, 16, 18, 21 XX/XY, 45XO Partial duplication of chromosome 11, 15, 17, 18 Partial deletion of chromosome 13, 18 Triploidy Tetraploidy Osteogenesis imperfecta Asphyxiating thoracic dystrophy Skeletal dysplasias Cytomegalovirus Parvovirus Rubella Toxoplasmosis Syphilis Leptospirosis Chagas disease Bowel obstruction with perforation and meconium peritonitis, volvulus Hepatic fibrosis Beckwith-Wiedemann syndrome Prune-belly syndrome Congenital nephrosis Infant of a diabetic mother Myotonic dystrophy Neu-Laxova syndrome Maternal therapy with indomethacin Fetal akinesia Multiple congenital anomaly syndromes thrombocytopenia may also be present in severe cases as a result of decreased platelet production or the presence of concurrent disseminated intravascular coagulation. Jaundice may be absent at birth because of placental clearance of lipid-soluble unconjugated bilirubin, but in severe cases, bilirubin pigments stain the amniotic fluid, cord, and vernix caseosa yellow. Jaundice is generally evident on the 1st day of life because the infant s bilirubin-conjugating and excretory systems are unable to cope with the load resulting from massive hemolysis. Indirect-reacting bilirubin therefore accumulates postnatally and may rapidly reach extremely high levels and present a significant risk of bilirubin encephalopathy. The risk of development of kernicterus from hemolytic disease is greater than from comparable nonhemolytic hyperbilirubinemia, although the risk in an individual patient may be affected by other complications (hypoxia, acidosis). Hypoglycemia occurs frequently in infants with severe isoimmune hemolytic disease and may be related to hyperinsulinism and hypertrophy of the pancreatic islet cells in these infants. Infants born after intrauterine transfusion for prenatally diagnosed erythroblastosis may be severely affected because the indications for transfusion are evidence of already severe disease in utero (hydrops, fetal anemia). Such infants usually have very high (but extremely variable) cord levels of bilirubin, reflecting the severity of the hemolysis and its effects on hepatic function. Infants treated with intraumbilical vein transfusions in utero may also have a benign postnatal course if the anemia and hydrops resolve before birth. Anemia from continuing hemolysis may be masked by the previous intrauterine transfusion, and the clinical manifestations of erythroblastosis may be superimposed on

7 Chapter 97 Blood Disorders n 617 various degrees of immaturity resulting from spontaneous or induced premature delivery. Laboratory Data Before treatment, the direct Coombs test result is usually positive and anemia is generally present. The cord blood hemoglobin content varies and is usually proportional to the severity of the disease; with hydrops fetalis it may be as low as 3-4 g/dl. Alternatively, despite hemolysis, it may be within the normal range because of compensatory bone marrow and extramedullary hematopoiesis. The blood smear typically shows polychromasia and a marked increase in nucleated RBCs. The reticulocyte count is increased. The white blood cell count is usually normal but may be elevated; thrombocytopenia may develop in severe cases. Cord bilirubin is generally between 3 and 5 mg/dl; the directreacting (conjugated) bilirubin content may also be elevated, especially if there was an intrauterine transfusion. Indirectreacting bilirubin content rises rapidly to high levels in the 1st 6 hr of life. After intrauterine transfusions, cord blood may show a normal hemoglobin concentration, negative direct Coombs test result, predominantly type O Rh-negative adult RBCs, and relatively normal smear findings. Diagnosis Definitive diagnosis of erythroblastosis fetalis requires demonstration of blood group incompatibility and corresponding antibody bound to the infant s RBCs. ANTENATAL DIAGNOSIS In Rh-negative women, a history of previous transfusions, abortion, or pregnancy should suggest the possibility of sensitization. Expectant parents blood types should be tested for potential incompatibility, and the maternal titer of IgG antibodies to D antigen should be assayed at 12-16, 28-32, and 36 wk of gestation. Fetal Rh status may be determined by isolating fetal cells or fetal DNA (plasma) from the maternal circulation. The presence of elevated antibody titers at the beginning of pregnancy, a rapid rise in titer, or a titer of 1:64 or greater suggests significant hemolytic disease, although the exact titer correlates poorly with the severity of disease. If a mother is found to have antibody against D antigen at a titer of 1:16 (15 IU/mL in Europe) or greater at any time during a subsequent pregnancy, the severity of fetal disease should be monitored by Doppler ultrasonography of the middle cerebral artery and then percutaneous umbilical blood sampling (PUBS) if indicated (Chapter 90). If the mother has a history of a previously affected infant or a stillbirth, an Rh-positive infant is usually equally or more severely affected than the previous infant, and the severity of disease in the fetus should be monitored. Assessment of the fetus may require information obtained from ultrasonography and PUBS. Real-time ultrasonography is used to detect the progression of disease, with hydrops defined as skin or scalp edema, pleural or pericardial effusions, and ascites. Early ultrasonographic signs of hydrops include organomegaly (liver, spleen, heart), the double bowel wall sign (bowel edema), and placental thickening. Progression to polyhydramnios, ascites, pleural or pericardial effusions, and skin or scalp edema may then follow. If pleural effusions precede ascites and hydrops by a significant time, causes other than fetal anemia should be suspected (see Table 97-4). Extramedullary hematopoiesis and, less so, hepatic congestion compress the intrahepatic vessels and produce venous stasis with portal hypertension, hepatocellular dysfunction, and decreased albumin synthesis. Hydrops is present with a fetal hemoglobin level <5 g/dl, frequent with a level <7 g/dl, and variable with levels between 7 and 9 g/dl. Real-time ultrasonography predicts fetal well-being by means of the biophysical profile (see Table 90-2), whereas Doppler ultrasonography assesses fetal distress by demonstrating increased vascular resistance in fetal arteries (middle cerebral). In pregnancies with ultrasonographic evidence of hemolysis (hepatosplenomegaly), early or late hydrops, or fetal distress, further and more direct assessment of fetal hemolysis should be performed. Amniocentesis was classically used to assess fetal hemolysis. Hemolysis of fetal RBCs produces hyperbilirubinemia before the onset of severe anemia. Bilirubin is cleared by the placenta, but a significant proportion enters the amniotic fluid and can be measured by spectrophotometry. Ultrasonographically guided transabdominal aspiration of amniotic fluid may be performed as early as wk of gestation. Spectrophotometric scanning of amniotic fluid wavelengths demonstrates a positive optical density (OD) deviation of absorption for bilirubin from normal at 450 nm. Amniocentesis and cordocentesis are invasive procedures with risks to both the fetus and mother, including fetal death, bleeding, or bradycardia, worsening of alloimmunization, premature rupture of membranes, preterm labor, and chorioamnionitis. Noninvasive measurements to detect fetal anemia are desirable. In fetuses without hydrops, moderate to severe anemia can be detected noninvasively by demonstration of an increase in the peak velocity of systolic blood flow in the middle cerebral artery by Doppler ultrasonography. PUBS is the standard approach to assessment of the fetus if Doppler and real-time ultrasonography findings suggest that the fetus has erythroblastosis fetalis. PUBS is performed to determine fetal hemoglobin levels and to transfuse packed RBCs in those with serious fetal anemia (Hct 25-30%). POSTNATAL DIAGNOSIS Immediately after the birth of any infant to an Rh-negative woman, blood from the umbilical cord or from the infant should be examined for ABO blood group, Rh type, Hct and hemoglobin, and reaction to the direct Coombs test. If the Coombs test result is positive, a baseline serum bilirubin level should be measured, and a commercially available RBC panel should be used to identify RBC antibodies present in the mother s serum, both tests being performed not only to establish the diagnosis but also to ensure selection of the most compatible blood for exchange transfusion should it be necessary. The direct Coombs test result is usually strongly positive in clinically affected infants and may remain so for a few days up to several months. Treatment The main goals of therapy are to (1) prevent intrauterine or extrauterine death from severe anemia and hypoxia, and (2) avoid neurotoxicity from hyperbilirubinemia. TREATMENT OF AN UNBORN INFANT Survival of severely affected fetuses has been improved by the use of fetal ultrasonography to identify the need for in utero transfusion. Intravascular (umbilical vein) transfusion of packed RBCs is the treatment of choice for fetal anemia, replacing intrauterine transfusion into the fetal peritoneal cavity. Hydrops or fetal anemia (Hct < 30%) is an indication for umbilical vein transfusion in infants with pulmonary immaturity (see Fig. 97-1). Intravascular fetal transfusion is facilitated by maternal and hence fetal sedation with diazepam and by fetal paralysis with pancuronium. Packed RBCs are given by slow-push infusion after being cross-matched against the mother s serum. The cells should be obtained from a CMV-negative donor and irradiated to kill lymphocytes to avoid GVH disease. Of note, leukoreduction alone (without irradiation) does not prevent GVH disease. Transfusions should achieve a post-transfusion Hct of 45-55% and can be repeated every 3-5 wk. Indications for delivery include pulmonary maturity, fetal distress, complications of PUBS, and wk of gestation. The survival rate for intrauterine transfusions is 89%; the complication rate is 3%. Complications include rupture of the membranes and preterm delivery, infection, fetal distress requiring emergency cesarean section, and perinatal death. TREATMENT OF A LIVEBORN INFANT The birth should be attended by a physician skilled in neonatal resuscitation. Fresh, low-titer, group O, leukoreduced, and irradiated Rh-negative blood crossmatched against maternal serum should be immediately available.

8 618 n Part XII The Fetus and the Neonatal Infant If clinical signs of severe hemolytic anemia (pallor, hepatosplenomegaly, edema, petechiae, ascites) are evident at birth, immediate resuscitation and supportive therapy, temperature stabilization, and monitoring before proceeding with exchange transfusion may save some severely affected infants. Such therapy should include correction of acidosis with 1-2 meq/kg of sodium bicarbonate; a small transfusion of compatible packed RBCs to correct anemia; volume expansion for hypotension, especially in those with hydrops; and provision of assisted ventilation for respiratory failure. EXCHANGE TRANSFUSION When an infant s clinical condition at birth does not require an immediate full or partial exchange transfusion, the decision to perform one should be based on a judgment that the infant has a high risk of rapid development of a dangerous degree of anemia or hyperbilirubinemia. Cord hemoglobin value of 10 g/dl or less and bilirubin concentration of 5 mg/dl or more suggest severe hemolysis but inconsistently predict the need for exchange transfusion. Some physicians consider previous kernicterus or severe erythroblastosis in a sibling, reticulocyte counts >15%, and prematurity to be additional factors supporting a decision for early exchange transfusion (Chapters 96.3 and 96.4). Intrauterine, intravascular transfusions have decreased the need for exchange transfusion. The hemoglobin concentration, Hct, and serum bilirubin level should be measured at 4-6 hr intervals initially, with extension to longer intervals if and as the rate of change diminishes. The decision to perform an exchange transfusion is based on the likelihood that the trend of bilirubin levels plotted against hours of age indicates that serum bilirubin will reach the levels indicated in Figure and Table Term infants with bilirubin levels 20 mg/dl have an increased risk of kernicterus. Ordinary transfusions of compatible Rh-negative, leukoreduced, and irradiated RBCs may be necessary to correct anemia at any stage of the disease up to 6-8 wk of age, when the infant s own blood-forming mechanism may be expected to take over. Weekly determinations of hemoglobin or Hct values should be performed until a spontaneous rise has been demonstrated. Careful monitoring of the serum bilirubin level is essential until a falling trend has been demonstrated in the absence of phototherapy (Chapter 96.3). Even then, an occasional infant, particularly if premature, may experience an unpredicted significant rise in serum bilirubin as late as the 7th day of life. Attempts to predict the attainment of dangerously high levels of serum bilirubin on the basis of observed levels exceeding 6 mg/dl in the 1st 6 hr or 10 mg/dl in the 2nd 6 hr of life or on rates of rise exceeding mg/dl/hr can be unreliable. Measurement of unbound bilirubin may be a more sensitive predictor of the risk associated with hyperbilirubinemia. Blood for exchange transfusion should be as fresh as possible. Heparin or citrate-phosphate-dextrose-adenine solution may be used as an anticoagulant. If the blood is obtained before delivery, it should be taken from a type O, Rh-negative donor with a low titer of anti-a and anti-b antibodies and should be determined compatible with the mother s serum by the indirect Coombs test. After delivery, blood should be obtained from an Rh-negative donor whose cells are compatible with both the infant s and the mother s sera; when possible, type O donor cells are generally used, but cells of the infant s ABO blood type may be used when the mother has the same type. A complete cross match, including an indirect Coombs test, should be performed before the 2nd and subsequent transfusions. Blood should be gradually warmed and maintained at a temperature between 35 and 37 C throughout the exchange transfusion. It should be kept well mixed by gentle squeezing or agitation of the bag to avoid sedimentation; otherwise, the use of supernatant serum with a low RBC count at the end of the exchange will leave the infant anemic. Whole blood or packed leukoreduced and irradiated RBCs reconstituted with fresh frozen plasma to an Hct of 40% should be used. The infant s stomach should be emptied before transfusion to prevent aspiration, and body temperature should be maintained and vital signs monitored. A competent assistant should be present to help monitor, tally the volume of blood exchanged, and perform emergency procedures. With strict aseptic technique, the umbilical vein is cannulated with a polyvinyl catheter to a distance no greater than 7 cm in a full-term infant. When free flow of blood is obtained, the catheter is usually in a large hepatic vein or the inferior vena cava. Alternatively, the exchange may be performed through peripheral arterial (drawn out) and venous (infused in) lines. The exchange should be carried out over min, with aspiration of 20 ml of infant blood alternating with infusion of 20 ml of donor blood. Smaller aliquots (5-10 ml) may be indicated for sick and premature infants. The goal should be an isovolumetric exchange of approximately two blood volumes of the infant (2 85 ml/kg). Infants with acidosis and hypoxia from respiratory distress, sepsis, or shock may be further compromised by the significant acute acid load contained in citrated blood, which usually has a ph between 7 and 7.2. The subsequent metabolism of citrate may result in metabolic alkalosis later if citrated blood is used. Fresh heparinized blood avoids this problem. During the exchange, blood ph and Pao 2 should be serially monitored because infants often become acidotic and hypoxic during exchange transfusions. Symptomatic hypoglycemia may occur before or during an exchange transfusion in moderately to severely affected infants; it may also occur 1-3 hr after exchange. Acute complications, noted in 5-10% of infants, include transient bradycardia with or without calcium infusion, cyanosis, transient vasospasm, thrombosis, apnea with bradycardia requiring resuscitation, and death. Infectious risks include CMV, HIV, and hepatitis. Necrotizing enterocolitis is a rare complication of exchange transfusion. The risk of death from an exchange transfusion performed by an experienced physician is 0.3/100 procedures. With the decreasing use of this procedure because of the use of phototherapy and prevention of sensitization, the general level of physician competence is diminishing. Thus, it is best if this procedure is performed in experienced neonatal referral centers. After exchange transfusion, the bilirubin level must be determined at frequent intervals (every 4-8 hr) because bilirubin may rebound 40-50% within hours. Repeated exchange transfusions should be carried out to keep the indirect fraction from exceeding the levels indicated in Table 96-7 for preterm infants and 20 mg/ dl for term infants. Symptoms suggestive of kernicterus are mandatory indications for exchange transfusion at any time. INTRAVENOUS IMMUNOGLOBULIN Early administration of intravenous immunoglobulin (IVIG) may reduce hemolysis, peak serum bilirubin levels, and the need for exchange transfusions. IVIG administration reduces the need for exchange transfusion, the duration of phototherapy, and the length of hospitalization. A dose of gm/kg may be used. Late Complications Infants who have hemolytic disease or who have had an exchange or an intrauterine transfusion must be observed carefully for the development of anemia and cholestasis. Late anemia may be hemolytic or hyporegenerative. Treatment with supplemental iron, blood transfusion, or erythropoietin may be indicated. A mild GVH reaction may manifest as diarrhea, rash, hepatitis, or eosinophilia. Inspissated bile syndrome refers to the rare occurrence of persistent icterus in association with significant elevations in direct and indirect bilirubin levels in infants with hemolytic disease. The cause is unclear, but the jaundice clears spontaneously within a few weeks or months. Portal vein thrombosis and portal hypertension may occur in children who have been subjected to exchange transfusion as newborn infants. It is probably associated with prolonged, traumatic, or septic umbilical vein catheterization.

9 Chapter 97 Blood Disorders n 619 Prevention of Rh Sensitization The risk of initial sensitization of Rh-negative mothers has been reduced to less than 1% by the intramuscular injection of 300 µg of human anti-d globulin (1 ml of RhoGAM) within 72 hr of delivery of an Rh-positive infant, ectopic pregnancy, abdominal trauma in pregnancy, amniocentesis, chorionic villus biopsy, or abortion. This quantity is sufficient to eliminate 10 ml of potentially antigenic fetal cells from the maternal circulation. Large fetal-to-maternal transfers of blood may require proportionately more human anti-d globulin. RhoGAM Administration of human anti-d globulin at wk and again at birth (40 wk) is more effective than a single dose. The use of this technique, combined with improved methods of detecting maternal sensitization and measuring the extent of fetal-to-maternal transfusion, plus the use of fewer obstetric procedures that increase the risk of such fetalto-maternal bleeding (version, manual separation of the placenta), should further reduce the incidence of erythroblastosis fetalis. HEMOLYTIC DISEASE OF THE NEWBORN CAUSED BY BLOOD GROUP A AND B INCOMPATIBILITY ABO incompatibility is the most common cause of hemolytic disease of the newborn. Approximately 15% of live births are at risk, but manifestations of disease develop in only %. Major blood group incompatibility between the mother and fetus generally results in milder disease than Rh incompatibility does. Maternal antibody may be formed against B cells if the mother is type A or against A cells if the mother is type B. Usually, the mother is type O and the infant is type A or B. Although ABO incompatibility occurs in 20-25% of pregnancies, hemolytic disease develops in only 10% of the offspring in such pregnancies, and the infants are generally type A 1, which is more antigenic than A 2. Low antigenicity of the ABO factors in the fetus and newborn infant may account for the low incidence of severe ABO hemolytic disease relative to the incidence of incompatibility between the blood groups of the mother and child. Although antibodies against A and B factors occur without previous immunization ( natural antibodies), they are usually IgM antibodies that do not cross the placenta. However, IgG antibodies to A antigen may be present and these do cross the placenta, so A-O isoimmune hemolytic disease may be found in first-born infants. Mothers who have become immunized against A or B factors from a previous incompatible pregnancy also exhibit IgG antibody. These immune antibodies are the primary mediators in ABO isoimmune disease. Clinical Manifestations Most cases are mild, with jaundice being the only clinical manifestation. The infant is not generally affected at birth; pallor is not present, and hydrops fetalis is extremely rare. The liver and spleen are not greatly enlarged, if at all. Jaundice usually appears during the 1st 24 hr. Rarely, it may become severe, and symptoms and signs of kernicterus develop rapidly. Diagnosis A presumptive diagnosis is based on the presence of ABO incompatibility, a weakly to moderately positive direct Coombs test result, and spherocytes in the blood smear, which may at times suggest the presence of hereditary spherocytosis. Hyperbilirubinemia is often the only other laboratory abnormality. The hemoglobin level is usually normal but may be as low as g/dl. Reticulocytes may be increased to 10-15%, with extensive polychromasia and increased numbers of nucleated RBCs. In 10-20% of affected infants, the unconjugated serum bilirubin level may reach 20 mg/dl or more unless phototherapy is administered. Treatment Phototherapy may be effective in lowering serum bilirubin levels (Chapter 96.4). In severe cases, IVIG administration can reduce the rate of hemolysis and the need for exchange transfusion. Exchange transfusions with type O blood of the same Rh type as the infant may be needed in some cases to correct dangerous degrees of anemia or hyperbilirubinemia. Indications for this procedure are similar to those previously described for hemolytic disease due to Rh incompatibility. Some infants with ABO hemolytic disease may require transfusion of packed RBCs at several weeks of age because of slowly progressive anemia. Post-discharge monitoring of hemoglobin or Hct is essential in newborns with ABO hemolytic disease. OTHER FORMS OF HEMOLYTIC DISEASE Blood group incompatibilities other than Rh or ABO account for < 5% of hemolytic disease of the newborn. The direct Coombs test result is invariably positive, and exchange transfusion may be indicated for hyperbilirubinemia and anemia. Hemolytic disease, anemia, and hydrops fetalis as a result of anti-kell antibodies are not predictable from the previous obstetric history, amniotic fluid bilirubin determinants, or the maternal antibody titer. Erythroid suppression may contribute to the anemia; PUBS is beneficial in actually measuring the fetal Hct. Kell-alloimmunized infants often have inappropriately low numbers of circulating reticulocytes in comparison with other forms of hemolytic disease, which can cause difficulties in the laboratory confirmation of the hemolytic etiology of hyperbilirubinemia. The clinical characteristics of hemolytic disease due to Rh, ABO, and Kell antigen systems are summarized in Table Please visit the Nelson Textbook of Pediatrics website at com for the complete bibliography Plethora in the Newborn Infant (Polycythemia) (See Also Chapter 461) Akhil Maheshwari and Waldemar A. Carlo Plethora, a ruddy, deep red-purple appearance associated with a high Hct, is often due to polycythemia, defined as a central Hct of 65% or higher. Peripheral (heelstick) Hct values are higher than central values, whereas Coulter counter results are lower than Hct values determined by microcentrifugation. The incidence of neonatal polycythemia is increased at high altitudes (5% in Denver vs 1.6% in Texas); in postmature (3%) vs term (1-2%) infants; in small for gestational age (SGA; 8%) vs large for gestational age (LGA; 3%) vs average for gestational age (1-2%) infants; during the 1st day of life (peak, 2-3 hr); in the recipient infant of a twintwin transfusion; after delayed clamping of the umbilical cord; in infants of diabetic mothers; in trisomy 13, 18, or 21; in adrenogenital syndrome; in neonatal Graves disease; in hypothyroidism; in infants of hypertensive mothers or those on propranolol; and in Beckwith-Wiedemann syndrome. Infants of diabetic or hypertensive mothers and those with growth restriction may have been exposed to chronic fetal hypoxia, which stimulates erythropoietin production and increases RBC production. Clinical manifestations include irritability, lethargy, tachypnea, respiratory distress, cyanosis, feeding disturbances, hyperbilirubinemia, hypoglycemia, and thrombocytopenia. Severe complications include seizures, stroke, pulmonary hypertension, necrotizing enterocolitis, renal vein thrombosis, and renal failure. Many affected infants are asymptomatic. Hyperviscosity is present in many infants with central Hct values of 65% or higher and accounts for the symptoms of polycythemia. Hyperviscosity determined at constant shear rates (11.5 sec -1 ) is present when whole blood viscosity is >18 cycles/sec. Hyperviscosity is accentuated because neonatal RBCs have decreased deformability and filterability, which predispose to stasis in the microcirculation.

10 Chapter 97 Blood Disorders n 619.e1 Kumar S: Universal RHD genotyping in fetuses, BMJ 336: , Kumar S, Regan F: Management of pregnancies with RhD alloimmunization, Br Med J 330: , Moise KJ Jr: Diagnosing hemolytic disease of the fetus time to put the needles away, N Engl J Med 355: , Patra K, Storfer-Isser A, Siner B, et al: Adverse events associated with neonatal exchange transfusion in the 1990s, J Pediatr 144: , van Kamp IL, Klumper FJ, Oepkes D, et al: Complications of intrauterine intravascular transfusion for fetal anemia due to maternal red-cell alloimmunization, Am J Obstet Gynecol 192: , 2005.

11 620 n Part XII The Fetus and the Neonatal Infant Table 97-4 HEMOLYTIC DISEASE OF THE NEWBORN Rh ABO KELL BLOOD GROUPS Mother Rh-negative O (occasionally B) K1-negative Infant Positive (D, sometimes C) A (sometimes B) K1-positive CLINICAL FEATURES OF HEMOLYTIC DISEASE IN THE NEWBORN Occurrence in first-born 5% 40-50% Rare Severity in subsequent pregnancies: Predictable Difficult to predict Somewhat predictable Stillbirth/hydrops Frequent Rare 10% Severe anemia Frequent Rare Frequent Jaundice Prominent, severe Mild-moderate Mild LABORATORY TESTS: Direct Coombs test result (infant) Positive Positive or negative Positive or negative Reticulocyte count High High May not be high Maternal antibodies Usually detectable Maternal antibody titers can help predict the severity of fetal disease May not be detectable Titers may not correlate with fetal disease Usually detectable Titers may not correlate with fetal disease; fetus affected at titers lower than for Rh-mediated hemolysis Treatment of symptomatic polycythemic newborns is partial exchange transfusion (with normal saline). A partial exchange transfusion should be considered if the Hct is 70-75% or even lower if signs of hyperviscosity are present. Partial exchange transfusion lowers the Hct and viscosity and improves acute symptoms. The volume to be exchanged is calculated from the following formula: Volume of exchange ( ml) = Blood volume ( Observed Desired hematocrit) Observed hematocrit The long-term prognosis of polycythemic infants is unclear. Reported adverse outcomes include speech deficits, abnormal fine motor control, reduced IQ, school problems, and other neurologic abnormalities. The underlying etiology (chronic intrauterine hypoxia) and hyperviscosity is thought to contribute to adverse outcomes. It is unclear whether partial exchange transfusion improves the long-term outcome. Most asymptomatic infants develop normally. Please visit the Nelson Textbook of Pediatrics website at com for the complete bibliography Hemorrhage in the Newborn Infant Akhil Maheshwari and Waldemar A. Carlo HEMORRHAGIC DISEASE OF THE NEWBORN A moderate decrease in factors II, VII, IX, and X normally occurs in all newborn infants by hr after birth, with a gradual return to birth levels by 7-10 days of age. This transient deficiency of vitamin K dependent factors is probably due to lack of free vitamin K from the mother and absence of the bacterial intestinal flora normally responsible for the synthesis of vitamin K. Rarely in term infants and more frequently in premature infants, accentuation and prolongation of this deficiency between the 2nd and 7th days of life result in spontaneous and prolonged bleeding. Breast milk is a poor source of vitamin K, but hemorrhagic complications are more frequent in breast-fed than in formula-fed infants. This classic form of hemorrhagic disease of the newborn, which is responsive to and prevented by vitamin K therapy, must be distinguished from disseminated intravascular coagulopathy and from the more infrequent congenital deficiencies of one or more of the other factors that are unresponsive to vitamin K (Chapter 470). Early-onset life-threatening vitamin K deficiency induced bleeding (onset from birth to 24 hr) also occurs if the mother has been treated with drugs (phenobarbital, phenytoin) that interfere with vitamin K function. Late onset (>2 wk) is often associated with vitamin K malabsorption, as noted in neonatal hepatitis or biliary atresia (Table 97-5). Hemorrhagic disease of the newborn resulting from severe transient deficiencies in vitamin K dependent factors is characterized by bleeding that tends to be gastrointestinal, nasal, subgaleal, intracranial, or post-circumcision. Prodromal or warning signs (mild bleeding) may occur before serious intracranial hemorrhage. The prothrombin time (PT), blood coagulation time, and partial thromboplastin time (PTT) are prolonged, and levels of prothrombin (II) and factors VII, IX, and X are decreased. Vitamin K facilitates post-transcriptional carboxylation of factors II, VII, IX, and X. In the absence of carboxylation, such factors form PIVKA (protein induced in vitamin K absence), which is a sensitive marker for vitamin K status. Bleeding time, fibrinogen, factors V and VIII, platelets, capillary fragility, and clot retraction are normal for maturity. Intramuscular administration of 1 mg of vitamin K at the time of birth prevents the decrease in vitamin K dependent factors in full-term infants, but it is not uniformly effective in the prophylaxis of hemorrhagic disease of the newborn, particularly in breast-fed and in premature infants. The disease may be effectively treated with a slow intravenous infusion of 1-5 mg of vitamin K 1, with improvement in coagulation defects and cessation of bleeding noted within a few hours. Serious bleeding, particularly in premature infants or those with liver disease, may require a transfusion of fresh frozen plasma or whole blood. The mortality rate is low in treated patients. A particularly severe form of deficiency of vitamin K dependent coagulation factors has been reported in infants born to mothers receiving anticonvulsive medications (phenobarbital and phenytoin) during pregnancy. The infants may have severe bleeding, with onset within the 1st 24 hr of life; the bleeding is usually corrected by vitamin K 1, although in some the response is poor or delayed. A PT should be measured in cord blood, and the infant given 1-2 mg of vitamin K intravenously. If the PT is greatly prolonged and fails to improve, 10 ml/kg of fresh frozen plasma should be administered. The routine use of intramuscular vitamin K for prophylaxis in the United States is safe and is not associated with an increased risk of childhood cancer or leukemia. Although oral vitamin K (birth, discharge, 3-4 wk: 1-2 mg) has been suggested as an

12 Chapter 97 Blood Disorders n 620.e1 Dempsey EM, Barrington K: Short and long term outcomes following partial exchange transfusion in the polycythaemic newborn: a systematic review, Arch Dis Child Fetal Neonatal Ed 91:F2 F6, Pappas A, Delaney-Black V: Differential diagnosis and management of polycythemia, Pediatr Clin North Am 51: , Schimmel MS, Bromiker R, Soll RF: Neonatal polycythemia: is partial exchange transfusion justified? Clin Perinatol 31: , Wong W, Fok TF, Lee CH, et al: Randomized controlled trial: comparison of colloid or crystalloid for partial exchange transfusion for treatment of neonatal polycythaemia, Arch Dis Child 77:F115 F118, 1997.

13 Table 97-5 HEMORRHAGIC DISEASE OF THE NEWBORN EARLY-ONSET DISEASE CLASSIC DISEASE LATE-ONSET DISEASE Age 0-24 hr 2-7 days 1-6 mo Site of hemorrhage Cephalohematoma Gastrointestinal Intracranial Subgaleal Ear-nose-throat-mucosal Gastrointestinal Intracranial Intracranial Cutaneous Gastrointestinal Circumcision Ear-nose-throat-mucosal Umbilicus Cutaneous Injection sites Intra-abdominal Gastrointestinal Thoracic Injection sites Etiology/risks Prevention Maternal drugs (phenobarbital, phenytoin, warfarin, rifampin, isoniazid) that interfere with vitamin K Inherited coagulopathy Possibly, administrations of vitamin K to infant at birth or to mother (20 mg) before birth Avoid high-risk medications Vitamin K deficiency Breast-feeding Prevented by parenteral vitamin K at birth Oral vitamin K regimens require repeated dosing over time Cholestasis malabsorption of vitamin K (biliary atresia, cystic fibrosis, hepatitis) Abetalipoprotein deficiency Idiopathic in Asian breast-fed infants Warfarin ingestion Prevented by parenteral and high-dose oral vitamin K during periods of malabsorption or cholestasis Incidence Very rare 2% if infant not given vitamin K Dependent on primary disease alternative, oral vitamin K is less effective in preventing the late onset of bleeding due to vitamin K deficiency and thus cannot be recommended for routine therapy. The intramuscular route remains the method of choice. Other forms of bleeding may be clinically indistinguishable from hemorrhagic disease of the newborn responsive to vitamin K, but they are neither prevented nor successfully treated with vitamin K. A clinical pattern identical to that of hemorrhagic disease of the newborn may also result from any of the congenital defects in blood coagulation (Chapters 470 and 471). Hematomas, melena, and post-circumcision and umbilical cord bleeding may be present; only 5-35% of cases of factor VIII and IX deficiency become clinically apparent in the newborn period. Treatment of the rare congenital deficiencies of coagulation factors requires fresh frozen plasma or specific factor replacement. Disseminated intravascular coagulopathy in newborn infants results in consumption of coagulation factors and bleeding. Affected infants are often premature; the clinical course is frequently characterized by asphyxia, hypoxia, acidosis, shock, hemangiomas, or infection. Treatment is directed at correcting the primary clinical problem, such as infection, interrupting consumption of clotting factors, and replacing them (Chapter 477). Infants with central nervous system or other bleeding posing an immediate threat to life should receive fresh frozen plasma, vitamin K, and blood if needed as soon as possible after a blood specimen has been obtained for coagulation studies, which should include a determination of the number of platelets. The swallowed blood syndrome, in which blood or bloody stools are passed, usually on the 2nd or 3rd day of life, may be confused with hemorrhage from the gastrointestinal tract. The blood may be swallowed during delivery or from a fissure in the mother s nipple. Differentiation from gastrointestinal hemorrhage is based on the fact that the infant s blood contains mostly fetal hemoglobin, which is alkali-resistant, whereas swallowed blood from a maternal source contains adult hemoglobin, which is promptly changed to alkaline hematin after the addition of alkali. Apt devised the following test for this differentiation: (1) Rinse a blood-stained diaper or some grossly bloody (red) stool with a suitable amount of water to obtain a distinctly pink supernatant hemoglobin solution; (2) centrifuge the mixture and decant the supernatant solution; (3) add 1 part of 0.25 N (1%) sodium hydroxide to 5 parts of the supernatant fluid. Within 1-2 min, a color reaction takes place: A yellow-brown color indicates that the blood is maternal in origin; a persistent pink indicates that it is from the infant. A control test with known adult or infant blood, or both, is advisable. Widespread subcutaneous ecchymoses in premature infants at or immediately after birth are apparently a result of fragile superficial blood vessels rather than a coagulation defect. Administering vitamin K 1 to the mother during labor has no effect on the incidence of ecchymoses. Occasionally, an infant is born with petechiae or a generalized bluish suffusion limited to the face, head, and neck, probably as a result of venous obstruction by a nuchal cord or sudden increases in intrathoracic pressure during delivery. It may take 2-3 wk for such suffusions to disappear. NEONATAL THROMBOCYTOPENIC PURPURA See Chapter 478. Please visit the Nelson Textbook of Pediatrics website at com for the complete bibliography.

14 Chapter 97 Blood Disorders n 621.e1 American Academy of Pediatrics Committee on Fetus and Newborn: Controversies concerning vitamin K and the newborn, Pediatrics 112: , Puckett RM, Offringa M: Prophylactic vitamin K for vitamin K deficiency bleeding in neonates, Cochrane Database Syst Rev (4):CD002776, van Hasselt PM, de Koning TJ, Kvist N, et al: Prevention of vitamin K deficiency bleeding in breastfed infants: lessons from the Dutch and Danish biliary atresia registries, Pediatrics 121:e857 e863, 2008.

More than Meets the Eye Hemolytic Disease of The Newborn with DAT Negative Anemia

More than Meets the Eye Hemolytic Disease of The Newborn with DAT Negative Anemia More than Meets the Eye Hemolytic Disease of The Newborn with DAT Negative Anemia March 7, 2007 Cassandra D. Josephson, MD Assistant Director, Children s s Healthcare of Atlanta Blood Banks and Transfusion

More information

HEMOLYTIC DISEASE OF THE FETUS & NEWBORN

HEMOLYTIC DISEASE OF THE FETUS & NEWBORN HEMOLYTIC DISEASE OF THE FETUS & NEWBORN I. Definition - Red cell destruction in a fetus or newborn caused by feto-maternal blood group incompatibility. Maternal IgG antibody crosses the placenta and attaches

More information

BLOOD GROUP ANTIGENS AND ANTIBODIES

BLOOD GROUP ANTIGENS AND ANTIBODIES BLOOD GROUP ANTIGENS AND ANTIBODIES Over 20 blood group systems having approximately 400 blood group antigens are currently recognised. The ABO and Rhesus (Rh) blood group systems are of major clinical

More information

Canadian Paediatric Society Statement 1999 Approach To The Management Of Hyperbilirubinemia In Term Newborn Infants

Canadian Paediatric Society Statement 1999 Approach To The Management Of Hyperbilirubinemia In Term Newborn Infants Perinatal Manual of Southwestern Ontario A collaboration between the Regional Perinatal Outreach Program of Southwestern Ontario & the Southwestern Ontario Perinatal Partnership (SWOPP) Chapter 22 NEONATAL

More information

Hemolytic Disease of the Fetus/Newborn (Erythroblastosis Fetalis)

Hemolytic Disease of the Fetus/Newborn (Erythroblastosis Fetalis) Introduction Hemolytic Disease of the Fetus/Newborn (Erythroblastosis Fetalis) Hemolytic disease of the fetus or newborn is a disease that often confuses many expectant parents. By better understanding

More information

Why is prematurity a concern?

Why is prematurity a concern? Prematurity What is prematurity? A baby born before 37 weeks of pregnancy is considered premature. Approximately 12% of all babies are born prematurely. Terms that refer to premature babies are preterm

More information

Respiratory distress in the newborn

Respiratory distress in the newborn Respiratory distress in the newborn Respiratory distress is encountered frequently in newborns. respiratory distress in the newborn may be a potentially lifethreatening condition,. The key to successful

More information

WHAT YOU SHOULD KNOW ABOUT HDN. Provided by Grifols

WHAT YOU SHOULD KNOW ABOUT HDN. Provided by Grifols WHAT YOU SHOULD KNOW ABOUT HDN Provided by Grifols 2 PATIENT QUESTIONS AND ANSWERS What is hemolytic disease of the newborn (HDN)? If your body has produced antibodies to fight the antigens on your baby

More information

SARASOTA MEMORIAL HOSPITAL BLOOD COMPONENT CRITERIA AND INDICATIONS SCREENING GUIDELINES

SARASOTA MEMORIAL HOSPITAL BLOOD COMPONENT CRITERIA AND INDICATIONS SCREENING GUIDELINES SARASOTA MEMORIAL HOSPITAL BLOOD COMPONENT CRITERIA AND INDICATIONS SCREENING GUIDELINES TABLE OF CONTENTS SUBJECT PAGE ADULT CRITERIA Red Blood Cells/Autologous 2 Washed Red Blood Cells 2 Cryoprecipitate

More information

Parvovirus B19 Infection in Pregnancy

Parvovirus B19 Infection in Pregnancy Parvovirus B19 Infection in Pregnancy Information Pack Parvovirus B19 Infection in Pregnancy Information Booklet CONTENTS: THE VIRUS page 3 CLINICAL MANIFESTATIONS page 6 DIAGNOSIS page 8 PATIENT MANAGEMENT

More information

Neonatal Intensive Care Form (NIC) Instructions for Completing Form

Neonatal Intensive Care Form (NIC) Instructions for Completing Form Neonatal Intensive Care Form (NIC) Instructions for Completing Form Participant Group: Form Purpose: When completed: Who completes: Other Documents: This form is completed for each live born infant admitted

More information

INDICATIONS FOR USE OF ANTI-D IMMUNOGLOBULIN

INDICATIONS FOR USE OF ANTI-D IMMUNOGLOBULIN The Guidelines for use of Anti-D Immunoglobulin have been prepared by NZ Blood Service for use by Midwives and Medical Practitioners involved in caring for pregnancies or obstetric practice in New Zealand.

More information

NEONATAL INTENSIVE CARE UNIT GOALS, OBJECTIVES AND TEACHING

NEONATAL INTENSIVE CARE UNIT GOALS, OBJECTIVES AND TEACHING NEONATAL INTENSIVE CARE UNIT GOALS, OBJECTIVES AND TEACHING The rotation in the Neonatal Intensive Care Unit is intended to promote the compassionate, effective, and developmentally appropriate assessment

More information

California Association for Medical Laboratory Technology

California Association for Medical Laboratory Technology California Association for Medical Laboratory Technology Distance Learning Program HEMOLYTIC DISEASE OF THE NEWBORN Course # DL-995 BY Helen M. Sowers, MA, CLS, Dept of Biological Science (retired) CSU,

More information

CHAPTER 10 BLOOD GROUPS: ABO AND Rh

CHAPTER 10 BLOOD GROUPS: ABO AND Rh CHAPTER 10 BLOOD GROUPS: ABO AND Rh The success of human blood transfusions requires compatibility for the two major blood group antigen systems, namely ABO and Rh. The ABO system is defined by two red

More information

IRON DEFICIENCY ANEMIA. Simple complement:

IRON DEFICIENCY ANEMIA. Simple complement: IRON DEFICIENCY ANEMIA Simple complement: 1. The hemoglobin level immediately after birth constitutes: A. 100-140 g/l B. 110-130 g/l C. 120-140 g/l D. 140-160 g/l E. 180-240 g/l 2. The hemoglobin level

More information

BLOOD PHYSIOLOGY Lecture 3 BLOOD TYPES AND BLOOD TRANSFUSION. 2nd year Dentistry

BLOOD PHYSIOLOGY Lecture 3 BLOOD TYPES AND BLOOD TRANSFUSION. 2nd year Dentistry BLOOD PHYSIOLOGY Lecture 3 BLOOD TYPES AND BLOOD TRANSFUSION 2nd year Dentistry 2008 1 Objectives 1. Describe the basis of blood typing 2. Know the ABO and Rh systems for blood typing and their clinical

More information

Delayed Cord Clamping

Delayed Cord Clamping ICEA Position Paper Delayed Cord Clamping Position The International Childbirth Education Association recognizes that the first minutes after birth are crucial to both mother and newborn. Optimal care

More information

Haemolytic Jaundice. RPA Newborn Care Guidelines. Rhesus isoimmunisation. Introduction. Incidence and risk factors: Consequences of disease

Haemolytic Jaundice. RPA Newborn Care Guidelines. Rhesus isoimmunisation. Introduction. Incidence and risk factors: Consequences of disease RPA Newborn Care Guidelines Royal Prince Alfred Hospital Haemolytic Jaundice Rhesus isoimmunisation Introduction Rh-negative mothers who have become sensitised to the D-antigen in an Rh-positive fetus

More information

MEDICAL MANAGEMENT POLICY

MEDICAL MANAGEMENT POLICY PAGE: 1 of 10 REVIEW DATE: 03/06/2013 This medical policy is not a guarantee of benefits or coverage, nor should it be deemed as medical advice. In the event of any conflict concerning benefit coverage,

More information

Priya Rajan, MD Northwestern University September 13, 2013

Priya Rajan, MD Northwestern University September 13, 2013 Priya Rajan, MD Northwestern University September 13, 2013 o Study Finds Benefits in Delaying Severing of Umbilical Cord nytimes.com, 7/10/13 o Delay cord clamping for baby health, say experts bbc.com.uk,

More information

Corporate Medical Policy Fetal RHD Genotyping Using Maternal Plasma

Corporate Medical Policy Fetal RHD Genotyping Using Maternal Plasma Corporate Medical Policy Fetal RHD Genotyping Using Maternal Plasma File Name: Origination: Last CAP Review: Next CAP Review: Last Review: fetal_rhd_genotyping_using_maternal_plasma 1/2014 9/2015 9/2016

More information

C. No nucleus and no mitochondria 1. Where did it go relationship to reticulocytes? 4. Does this mean you can t make new RBCs?

C. No nucleus and no mitochondria 1. Where did it go relationship to reticulocytes? 4. Does this mean you can t make new RBCs? I. Characteristics of Erythrocytes A. Biconcave discs--what purpose does this serve? B. 1/3 hemoglobin by volume (remember this with hematocrit) (Fig. 19.4, pg. 673) 1. Heme 2. Globin 3. Fe 4. Oxyhemoglobin

More information

Blood Practice Questions

Blood Practice Questions Blood Practice Questions Student: 1. The hematocrit is the volume of a blood sample made up of A. white blood cells. B. platelets. C. red blood cells. D. plasma. 2. Fifty-five percent of blood is A. plasma.

More information

JAUNDICE 2 PHYSIOLOGICAL & PATHALOGICAL JAUNDICE LYNSEY WARD NETWORK NURSE EDUCATOR 31 ST MARCH 2006

JAUNDICE 2 PHYSIOLOGICAL & PATHALOGICAL JAUNDICE LYNSEY WARD NETWORK NURSE EDUCATOR 31 ST MARCH 2006 JAUNDICE 2 PHYSIOLOGICAL & PATHALOGICAL JAUNDICE LYNSEY WARD NETWORK NURSE EDUCATOR 31 ST MARCH 2006 JAUNDICE OUTCOMES To understand what Jaundice is. To understand what Biliruben is. To identify the difference

More information

QUICK REFERENCE TO BLOOD BANK TESTING

QUICK REFERENCE TO BLOOD BANK TESTING QUICK REFERENCE TO BLOOD BANK TESTING All Blood bank Tests are performed on demand 24 hours a day, 7 days a week. Feto/Maternal Bleed Quantitation estimates will be available within 4 hours of blood bank

More information

Cord Blood Erythropoietin and Markers of Fetal Hypoxia

Cord Blood Erythropoietin and Markers of Fetal Hypoxia July 21, 2011 By NeedsFixing [1] To investigating the relationship between cord blood erythropoietin and clinical markers of fetal hypoxia. Abstract Objective: To investigating the relationship between

More information

K: Maternal/ Newborn Care

K: Maternal/ Newborn Care K: Maternal/ Newborn Care College of Licensed Practical Nurses of Alberta, Competency Profile for LPNs, 3rd Ed. 93 Competency: K-1 Maternal/Newborn Nursing K-1-1 K-1-2 K-1-3 Demonstrate knowledge and ability

More information

Immunohematology. Primary vs. Secondary Response. Blood Group Antibodies. What do we do with that tube of blood?

Immunohematology. Primary vs. Secondary Response. Blood Group Antibodies. What do we do with that tube of blood? Immunohematology Jeffrey S. Jhang, MD Assistant Director, Transfusion Medicine Blood groups antigens Markers on red cell structures Detected by serologic techniques Multiple alleles within each system

More information

Cytomegalovirus in Pregnancy

Cytomegalovirus in Pregnancy Cytomegalovirus in Pregnancy This guideline was updated in June 2016 by Dr Margaret Harpham with input from members of the New Zealand Maternal Fetal Medicine Network. Background Cytomegalovirus (CMV)

More information

Transient Hypogammaglobulinemia of Infancy. Chapter 7

Transient Hypogammaglobulinemia of Infancy. Chapter 7 Transient Hypogammaglobulinemia of Infancy Chapter 7 An unborn baby makes no IgG (antibody) and only slowly starts producing it after birth. However, starting at about the sixth month of pregnancy, the

More information

Neonatal Herpes Simplex Infection

Neonatal Herpes Simplex Infection August 2011 Neonatal Herpes Simplex Infection Revision Dates Case Definition Reporting Requirements Remainder of the Guideline (i.e., Etiology to References sections inclusive) August 2011 August 2011

More information

TALKING ABOUT BLOOD TRANSFUSIONS

TALKING ABOUT BLOOD TRANSFUSIONS TALKING ABOUT BLOOD TRANSFUSIONS TALKING ABOUT BLOOD TRANSFUSIONS Contents What Is a Blood Transfusion?...2 What Is the Role of Blood Transfusion in Treatment for Chronic Disease?...2 Blood and Transfusion

More information

Immune Haemolytic Anaemias. Dr. Abdullah Aljedai

Immune Haemolytic Anaemias. Dr. Abdullah Aljedai Immune Haemolytic Anaemias Dr. Abdullah Aljedai Haemolytic diseases are those conditions in which the red cells of the individual do not survive normally in vivo. Haemolysis lead to red cell destruction

More information

Disorders of Red Blood Cells

Disorders of Red Blood Cells Disorders of Red Blood Cells The function of RBC, facilitated by hemoglobin molecule, is to transport oxygen to the tissue. Oxygen is poorly soluble in plasma, So about 95%-98% is carried bound to hemoglobin.

More information

Neonatal Jaundice. Daniel Preud Homme, M.D. University of South Alabama, Mobile, AL

Neonatal Jaundice. Daniel Preud Homme, M.D. University of South Alabama, Mobile, AL Neonatal Jaundice Daniel Preud Homme, M.D. University of South Alabama, Mobile, AL What is neonatal jaundice? Neonatal jaundice (jaundice in the newborn period) is a condition in which an infant s skin

More information

BODY FLUIDS AND CIRCULATION

BODY FLUIDS AND CIRCULATION BODY FLUIDS AND CIRCULATION 1. composition of blood 2. Lymph (Tissue Fluid) 3. Human circulatory system 4. Circulatory Pathways 5. Double Circulation 6. Regulation of Cardiac Activity 7. Disorders of Circulatory

More information

Newborn Transition to Extra-Uterine Life Janet Mendis, MSN, RNC-NIC, CNS Summer Morgan, MSN, RNC, CPNP UC San Diego Health System

Newborn Transition to Extra-Uterine Life Janet Mendis, MSN, RNC-NIC, CNS Summer Morgan, MSN, RNC, CPNP UC San Diego Health System Newborn Transition to Extra-Uterine Life Janet Mendis, MSN, RNC-NIC, CNS Summer Morgan, MSN, RNC, CPNP UC San Diego Health System OBJECTIVES: Understand fetal circulation and circulatory adjustments post

More information

Optional Tests Offered Before and During Pregnancy

Optional Tests Offered Before and During Pregnancy Plano Women s Healthcare Optional Tests Offered Before and During Pregnancy Alpha-Fetoprotein Test (AFP) and Quad Screen These are screening tests that can assess your baby s risk of having such birth

More information

Clear the Airway. Assess Breathing. Assess Heart Rate

Clear the Airway. Assess Breathing. Assess Heart Rate 200 CHAPTER 9: Emergency Delivery and Newborn Stabilization oxygen consumption. Thoroughly dry every infant, healthy, or depressed. Remove wet towels or blankets from around the baby after drying and replace

More information

Facility Neonatal Reimbursement Policy

Facility Neonatal Reimbursement Policy Policy #: EFRST Facility Neonatal Reimbursement Policy Policy Title: Facility Neonatal Reimbursement Policy Adopted by: Applies to: Enterprise Facility Reimbursement Strategy Team Commercial Adopted Date:

More information

MANAGING JAUNDICE IN THE BREASTFEEDING INFANT

MANAGING JAUNDICE IN THE BREASTFEEDING INFANT MANAGING JAUNDICE IN THE BREASTFEEDING INFANT January 31, 2013 California Breastfeeding Summit Lawrence M. Gartner, M.D. University of Chicago and Valley Center, California DECLARATION I have no conflicts

More information

Blood Physiology. Practical 4. Contents. Practical tasks. Erythrocytes The blood types

Blood Physiology. Practical 4. Contents. Practical tasks. Erythrocytes The blood types Blood Physiology Practical 4 Contents Erythrocytes The blood types Practical tasks Determination of blood groups of the ABO system Determination of the Rhesus system (Rh factor) The cross matching test

More information

California Association for Medical Laboratory Technology. Distance Learning Program

California Association for Medical Laboratory Technology. Distance Learning Program California Association for Medical Laboratory Technology Distance Learning Program Rare Antibody Causing Hemolytic Disease of the Fetus and Newborn Course # DL-006 by Anya Atenousazar, CLS, BS Helen Sowers,

More information

Human Circulation and Respiration Chapter 38

Human Circulation and Respiration Chapter 38 Human Circulation and Respiration Chapter 38 Goals: 1. Compare closed and open circulatory systems. 2. Label the parts of the human heart. 3. Explain how blood travels through the heart; identify chambers

More information

Guideline for the management of Thrombocytopenia in pregnancy (GL927)

Guideline for the management of Thrombocytopenia in pregnancy (GL927) Guideline for the management of Thrombocytopenia in pregnancy (GL927) Approved by Maternity Clinical Governance Committee Approval and Authorisation Job Title or Chair of Committee Chair, Maternity Clinical

More information

Hyperbilirubinemia Care Guidelines for Emergency Department Management

Hyperbilirubinemia Care Guidelines for Emergency Department Management Hyperbilirubinemia Care Guidelines for Emergency Department Management Inclusion Criteria: Previously healthy, age 14 days, born at 37 weeks gestational age. Total Serum Bilirubin of 18mg/dl, < 23mg/dl.

More information

Cardiovascular System. Blood Groups and Blood Typing

Cardiovascular System. Blood Groups and Blood Typing Cardiovascular System Blood Groups and Blood Typing 1 Blood Transfusions Why? Whole blood or components? Although the human body is pretty good at preventing blood loss (hemostasis), there are times when

More information

Blood & Marrow Transplant Glossary. Pediatric Blood and Marrow Transplant Program Patient Guide

Blood & Marrow Transplant Glossary. Pediatric Blood and Marrow Transplant Program Patient Guide Blood & Marrow Transplant Glossary Pediatric Blood and Marrow Transplant Program Patient Guide Glossary Absolute Neutrophil Count (ANC) -- Also called "absolute granulocyte count" amount of white blood

More information

Doppler Ultrasound in the Management of Fetal Growth Restriction Chukwuma I. Onyeije, M.D. Atlanta Perinatal Associates

Doppler Ultrasound in the Management of Fetal Growth Restriction Chukwuma I. Onyeije, M.D. Atlanta Perinatal Associates Doppler Ultrasound in the Management of Fetal Growth Restriction Chukwuma I. Onyeije, M.D. Atlanta Perinatal Associates 1 For your convenience a copy of this lecture is available for review and download

More information

Pediatric Newborn Assessment, Treatment and Resuscitation

Pediatric Newborn Assessment, Treatment and Resuscitation Date: May 31, 2012 Page 1 of 5 Pediatric Newborn Assessment, Treatment and Resuscitation This protocol should be followed for all newly born infants. Pre-Medical Control MFR/EMT/ 1. As the infant is being

More information

Obstetrical Emergencies

Obstetrical Emergencies Date: July 18, 2014 Page 1 of 5 Obstetrical Emergencies Purpose: To provide the process for the assessment and management of the patient with an obstetrical related emergency. Pre-Medical Control 1. Follow

More information

Related Specialty Experiences: Descriptions, Goals and Objectives

Related Specialty Experiences: Descriptions, Goals and Objectives Related Specialty Experiences: Descriptions, Goals and Objectives Overview In addition to clinical rotations within the NICU and ongoing participation in the high-risk follow up clinic, each fellow will

More information

Pathology of the newborn. Basic definitions. Apgar score. Mors praenatalis. Mors neonatalis. Pneumopatology of the newborn

Pathology of the newborn. Basic definitions. Apgar score. Mors praenatalis. Mors neonatalis. Pneumopatology of the newborn Pathology Abortion Delivery Fetus immaturus non vitalis Fetus immaturus vitalis Fetus maturus Fetus permaturus dead born fetus < 1000 g alive born fetus < 500 g, if survives no longer than 24 hours Abortion

More information

Iron and Folic Acid Supplementation in Pregnancy and Autism Spectrum Disorder. Dr. Rahimi Sharbaf Tehran University of Medical Science Yas Hospital

Iron and Folic Acid Supplementation in Pregnancy and Autism Spectrum Disorder. Dr. Rahimi Sharbaf Tehran University of Medical Science Yas Hospital Iron and Folic Acid Supplementation in Pregnancy and Autism Spectrum Disorder Dr. Rahimi Sharbaf Tehran University of Medical Science Yas Hospital Iron and Folic Acid Supplementation The Fact => Iron &

More information

PREGNANCY AND THE LIVER

PREGNANCY AND THE LIVER Imtiaz Alam, M.D. Phone: [512] 719-4370 Mandy Mishra, CNS Fax: [512] 719-4371 Austin Hepatitis Center 12201, Renfert Way Suite 235 Austin, TX 78758 PREGNANCY AND THE LIVER How does pregnancy affect the

More information

Haemolytic disease of the newborn. 09.06.2016 Burak Salgin

Haemolytic disease of the newborn. 09.06.2016 Burak Salgin Haemolytic disease of the newborn 09.06.2016 Burak Salgin Innovation and excellence in health and care Addenbrooke s Hospital I Rosie Hospital Haemolytic disease of the newborn......used to be synonymous

More information

ICD-10 OVERVIEW Coding Guidelines For OB/GYN

ICD-10 OVERVIEW Coding Guidelines For OB/GYN ICD-10 OVERVIEW Coding Guidelines For OB/GYN ICD-10 Chapter 15 Pregnancy, Childbirth and the Puerperium (O00-O9A) Note: Codes from this chapter are for use only on maternal records, NEVER on newborn records.

More information

Overview. Transient Tachypnea of the Newborn. Why discussing TTN? Questions? Questions? Case

Overview. Transient Tachypnea of the Newborn. Why discussing TTN? Questions? Questions? Case Transient Tachypnea of the Newborn CMNRP Feb 29,2012 Prakash K Loganathan (Fellow- Neonates) Overview TTN- pathogenesis, clinical findings, radiology, management. Overview of common conditions causing

More information

Trauma and Pregnancy. William Schecter, MD

Trauma and Pregnancy. William Schecter, MD Trauma and Pregnancy William Schecter, MD Trauma and Pregnancy ATLS Protocol the same Physiologic and Anatomic changes of pregnancy change the pattern of injury and the physiologic response to injury Two

More information

BLOOD-Chp. Chp.. 6 What are the functions of blood? What is the composition of blood? 3 major types of plasma proteins

BLOOD-Chp. Chp.. 6 What are the functions of blood? What is the composition of blood? 3 major types of plasma proteins 6.1 Blood: An overview BLOOD-Chp Chp.. 6 What are the functions of blood? Transportation: oxygen, nutrients, wastes, carbon dioxide and hormones Defense: against invasion by pathogens Regulatory functions:

More information

Whole Blood and Blood Components. Background

Whole Blood and Blood Components. Background Whole Blood and Blood Components Background Blood may be transfused as whole blood or as one of its components. Because patients seldom require all of the components of whole blood, it makes sense to transfuse

More information

CHLAMYDIA SCREENING IN WOMEN

CHLAMYDIA SCREENING IN WOMEN CHLAMYDIA SCREENING IN WOMEN APPLICATIONS OBJECTIVE Purpose of Measure: ELIGIBLE POPULATION Which members are included? STANDARD OF CARE What screening should be done? NCQA ACCEPTED CODES DOCUMENTATION

More information

A New Beginning: Stem Cell Transplant Challenges. Dr. Wendy Lau Director, Transfusion Medicine, The Hospital for Sick Children April 8, 2016

A New Beginning: Stem Cell Transplant Challenges. Dr. Wendy Lau Director, Transfusion Medicine, The Hospital for Sick Children April 8, 2016 A New Beginning: Stem Cell Transplant Challenges Dr. Wendy Lau Director, Transfusion Medicine, The Hospital for Sick Children April 8, 2016 Objectives 1. Outline cellular therapy products and transfusion

More information

Haemolytic anaemias. An Introduction to hemolytic anaemia

Haemolytic anaemias. An Introduction to hemolytic anaemia Haemolytic anaemias An Introduction to hemolytic anaemia Normal red cell destruction Red cell destruction usually occurs after a mean lifespan of 120 days when the cells are removed extravascularly by

More information

SAVE A LIFE... BY GIVING LIFE!

SAVE A LIFE... BY GIVING LIFE! SAVE A LIFE... BY GIVING LIFE! FOLLOW US ON: HÉMA-QUÉBEC PUBLIC CORD BLOOD BANK www.hema-quebec.qc.ca Scan this code with your smart phone to access the page Register to the Public Cord Blood Bank on the

More information

Immunohematology. Immunohematology. Blood Group Antigens

Immunohematology. Immunohematology. Blood Group Antigens Immunohematology Immunohematology Jeffrey S. Jhang, MD Assistant Director, Transfusion Medicine Demonstration of red cell antigen-red cell antibody reactions is the key to immunohematology Combination

More information

Neonatal/Pediatric Cardiopulmonary Care

Neonatal/Pediatric Cardiopulmonary Care Neonatal/Pediatric Cardiopulmonary Care 1 Fetal Assessment & Transition 2 Fetal Heart Rate Indicator of fetal well-being Normal: 140 bpm (early gestation) 120 bpm (late gestation) 3 Fetal Heart Rate Pattern

More information

A.L. Wafa a sameer 2014 Circulatory system / Physiology. Physiology of blood

A.L. Wafa a sameer 2014 Circulatory system / Physiology. Physiology of blood Red Blood Cells (Erythrocytes) Physiology of blood E rythrocytes : are the most abundant cells of the blood and are necessary for the delivery of oxygen to the tissues. The major function of red blood

More information

Chapter 10 Human Immuno Deficiency Virus Infection

Chapter 10 Human Immuno Deficiency Virus Infection 143 Chapter 10 Human Immuno Deficiency Virus Infection Chapter 10 Human Immuno Deficiency Virus Infection...143 HIV infection...144 Clinical Features...146 Clinical Staging of HIV infection recommended

More information

Anti D Prophylaxis Laboratory and Clinical Problems. Stephan Bates Gloucestershire Hospitals NHS Foundation Trust

Anti D Prophylaxis Laboratory and Clinical Problems. Stephan Bates Gloucestershire Hospitals NHS Foundation Trust Anti D Prophylaxis Laboratory and Clinical Problems Stephan Bates Gloucestershire Hospitals NHS Foundation Trust History Immune response Rh D Prophylaxis Estimation of fetal bleeds Problems and common

More information

Recommendations: Other Supportive Therapy of Severe Sepsis*

Recommendations: Other Supportive Therapy of Severe Sepsis* Recommendations: Other Supportive Therapy of Severe Sepsis* K. Blood Product Administration 1. Once tissue hypoperfusion has resolved and in the absence of extenuating circumstances, such as myocardial

More information

Monitoring the condition of the mother during the first stage of labour

Monitoring the condition of the mother during the first stage of labour Before you begin this unit, please take the corresponding test at the end of the book to assess your knowledge of the subject matter. You should redo the test after you ve worked through the unit, to evaluate

More information

Summary of Changes: References/content updated to reflect most current standards of practice.

Summary of Changes: References/content updated to reflect most current standards of practice. Alaska Native Medical Center: Mother Baby Unit Guideline: Neonatal Hypoglycemia Subject: Neonatal Hypoglycemia REVISION DATE: Jan 2015,12/2011, 02/2009, 11, 2007, 07/2007,04/2001, 04/1999 REPLACES: NSY:

More information

Aneuploidy Screening Program for Saskatchewan. Information for Health Care Providers

Aneuploidy Screening Program for Saskatchewan. Information for Health Care Providers Aneuploidy Screening Program for Saskatchewan Information for Health Care Providers Acknowledgements Special recognition goes to the following physicians who helped develop this information booklet: Dr.

More information

The Rh Factor: How It Can Affect Your Pregnancy

The Rh Factor: How It Can Affect Your Pregnancy The American College of Obstetricians and Gynecologists f AQ FREQUENTLY ASKED QUESTIONS FAQ027 PREGNANCY The Rh Factor: How It Can Affect Your Pregnancy What is the Rh factor? How does a person get the

More information

Umbilical cord clamping: influence on newborn iron endowment

Umbilical cord clamping: influence on newborn iron endowment Umbilical cord clamping: influence on newborn iron endowment Source: Chaparro and Lutter, PAHO 2007 Anemia prevalence Overview History of cord clamping practices Placental transfusion and effect of delayed

More information

Respiratory distress in a newborn baby

Respiratory distress in a newborn baby Respiratory distress in a newborn baby Slide RD-l Introduction Respiratory distress in a newborn is a challenging problem. It accounts for significant morbidity and mortality. It occurs in 4 to 6 percent

More information

Laboratory Procedure Manual

Laboratory Procedure Manual Exercise 11 Textbook: Quinley, Chapter 13 Delayed Transfusion Reaction Skills: 40 Objectives: 1. Compare and contrast a hemolytic transfusion reaction due to a primary and secondary immune response including:

More information

Hypoplastic Left Heart Syndrome (HLHS)

Hypoplastic Left Heart Syndrome (HLHS) Hypoplastic Left Heart Syndrome (HLHS) Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect in which the left side of the heart (mitral valve, left ventricle, aortic valve, and aorta)

More information

Maternity - Rh (D) Immunoglobulin (Anti D)

Maternity - Rh (D) Immunoglobulin (Anti D) Guideline Maternity - Rh (D) Document Number GL2015_011 Publication date 16-Sep-2015 Functional Sub group Clinical/ Patient Services - Maternity Clinical/ Patient Services - Nursing and Midwifery Ministry

More information

Diagnosis Codes for Pregnancy and Complications of Pregnancy

Diagnosis Codes for Pregnancy and Complications of Pregnancy This list is for informational purposes only and is not a binding or definitive list of covered conditions. It is not a guarantee of coverage; coverage depends on the available benefits and eligibility

More information

School-age child 5-1 THE BLOOD

School-age child 5-1 THE BLOOD C A S E S T U D Y 5 : School-age child Adapted from Thomson Delmar Learning s Case Study Series: Pediatrics, by Bonita E. Broyles, RN, BSN, MA, PhD. Copyright 2006 Thomson Delmar Learning, Clifton Park,

More information

Trauma in Pregnancy. Julie Kruithof, MSN, RN, CCRN Adult Critical Care Nurse Educator April, 2014 No disclosures

Trauma in Pregnancy. Julie Kruithof, MSN, RN, CCRN Adult Critical Care Nurse Educator April, 2014 No disclosures Trauma in Pregnancy Julie Kruithof, MSN, RN, CCRN Adult Critical Care Nurse Educator April, 2014 No disclosures 2 Objectives Discuss epidemiologic and physiologic considerations related to trauma during

More information

RISK FOR INFECTION IN THE LATE PRETERM INFANT

RISK FOR INFECTION IN THE LATE PRETERM INFANT RISK FOR INFECTION IN THE LATE PRETERM INFANT Late preterm infants are at greater risk of having an infection caused by bacteria. An infection in the uterine environment is sometimes the reason for early

More information

Haemolytic Anaemias. Dr. MUBARAK ABDELRAHMAN MD PEDIATRICS AND CHILD HEALTH. Assistant Professor FACULTY OF MEDICINE -JAZAN

Haemolytic Anaemias. Dr. MUBARAK ABDELRAHMAN MD PEDIATRICS AND CHILD HEALTH. Assistant Professor FACULTY OF MEDICINE -JAZAN Haemolytic Anaemias Dr. MUBARAK ABDELRAHMAN MD PEDIATRICS AND CHILD HEALTH Assistant Professor FACULTY OF MEDICINE -JAZAN Objectives: The student should be able: To recognize the common causes and classification

More information

Neonatal Jaundice. Slide NJ-1. Slide NJ-2 Bilirubin Physiology. NNF Teaching Aids:Newborn Care

Neonatal Jaundice. Slide NJ-1. Slide NJ-2 Bilirubin Physiology. NNF Teaching Aids:Newborn Care 1 Neonatal Jaundice Immature newborn brain is susceptible to toxicity from unconjugated bilirubin resulting in "Kernicterus" or "bilirubin brain damage". Slide NJ-1 Jaundice is the visible manifestation

More information

Oxygen Therapy. Oxygen therapy quick guide V3 July 2012.

Oxygen Therapy. Oxygen therapy quick guide V3 July 2012. PRESENTATION Oxygen (O 2 ) is a gas provided in a compressed form in a cylinder. It is also available in a liquid form. It is fed via a regulator and flow meter to the patient by means of plastic tubing

More information

K: Maternal / Newborn Care

K: Maternal / Newborn Care K: Maternal / Newborn Care Alberta Licensed Practical Nurses Competency Profile 103 Competency: K-1 Prenatal Care, Assessment and Teaching K-1-1 K-1-2 K-1-3 Demonstrate knowledge of human anatomy and physiology

More information

Hydroxyurea and Transfusion Therapy for the Treatment of Sickle Cell Disease

Hydroxyurea and Transfusion Therapy for the Treatment of Sickle Cell Disease Hydroxyurea and Transfusion Therapy for the Treatment of Sickle Cell Disease A Pocket Guide for the Clinician Susan E. Creary, MD, MSc 1 John J. Strouse, MD, PhD 2 1 The Ohio State University School of

More information

FETAL CIRCULATION LEARNING OBJECTIVES

FETAL CIRCULATION LEARNING OBJECTIVES FETAL CIRCULATION LEARNING OBJECTIVES At the end the lecture the student should know the following: Components of fetal circulation Foramen ovale Ductusarteriosus Path of Fetal circulation Changes in circulation

More information

Preoperative Laboratory and Diagnostic Studies

Preoperative Laboratory and Diagnostic Studies Preoperative Laboratory and Diagnostic Studies Preoperative Labratorey and Diagnostic Studies The concept of standardized testing in all presurgical patients regardless of age or medical condition is no

More information

Hello. I would like to think everyone for coming this morning. I m going to talk about heart disease in pregnancy.

Hello. I would like to think everyone for coming this morning. I m going to talk about heart disease in pregnancy. Hello. I would like to think everyone for coming this morning. I m going to talk about heart disease in pregnancy. 1 I have a few objectives for this talk. First, we ll review the normal, anticipated chambers

More information

Prenatal Testing and Genetic Counseling

Prenatal Testing and Genetic Counseling (503) 652-8076 www.vivantemidwifery.com Prenatal Testing and Genetic Counseling Every parent hopes to have a healthy child. The good news is that most babies are born healthy. However, there are occasions

More information

a. General Rules for Obstetric Cases

a. General Rules for Obstetric Cases 15. Chapter 15: Pregnancy, Childbirth, and the Puerperium (O00-O9A) a. General Rules for Obstetric Cases 1) Codes from chapter 15 and sequencing priority Obstetric cases require codes from chapter 15,

More information

Mother s blood test to check her unborn baby s blood group

Mother s blood test to check her unborn baby s blood group Mother s blood test to check her unborn baby s blood group This leaflet explains why it is important to have a blood test to check the baby s blood group, so that only those who need it, receive anti-d

More information

When/how/why should we transfuse newborn? Benefits/hazards?

When/how/why should we transfuse newborn? Benefits/hazards? Transfusion Medicine - State of the Art October 26, 2013 1-5 PM When/how/why should we transfuse newborn? Benefits/hazards? Robert D. Christensen, MD Disclosure Statement Neither I nor any member of my

More information

Keeping track of your numbers

Keeping track of your numbers Keeping track of your numbers If you have relapsed or refractory multiple myeloma, keeping track of your numbers can help you take an active role in your care. It s also one way you and your doctor can

More information

Rh D Immunoglobulin (Anti-D)

Rh D Immunoglobulin (Anti-D) Document Number PD2006_074 Rh D Immunoglobulin (Anti-D) Publication date 29-Aug-2006 Functional Sub group Clinical/ Patient Services - Maternity Clinical/ Patient Services - Medical Treatment Population

More information

Analysis results on infants born in Maternal information

Analysis results on infants born in Maternal information Analysis results on infants born in 24-213 I-1/26 31 Maternal age Maternal information 4 35 3 25 2 34 34 35 35 35 35 36 36 36 36 31 31 31 32 32 32 32 32 32 32 27 28 28 28 28 28 28 28 28 29 24 25 26 27

More information