A(t) is the amount function. a(t) is the accumulation function. a(t) = A(t) k at time s ka(t) A(s)

Size: px
Start display at page:

Download "A(t) is the amount function. a(t) is the accumulation function. a(t) = A(t) k at time s ka(t) A(s)"

Transcription

1 Interest Theory At) is the aount function at) is the accuulation function at) At) A) k at tie s kat) As) at tie t v t, t, is calle the iscount function iscount function at) k at tie s kv t v s at tie t Uner copoun interest v t + i) t i is the annual effective rate of interest + i is the one year interest factor ν is the one year iscount factor is the annual rate of iscount i ν, i ν i + ν, + i ν, iν, ) + i) i ) is the noinal rate of interest copoune ties a year ) is the noinal rate of iscount copoune ties a year ) ) + i + i) ) ) The force of interest is t t lnv t) t ln at) a t) at) t ln At) A t) At) v t e R t s s, at) e R t s s Annuities The cashflow, present an future values of an annuity ue with level payents of one are: Contributions Tie n n ä n i νn an s n i + i)n The cashflow, present an future values of an annuity ieiate with level payents of one: Contributions Tie n

2 a n i νn an s n i + i)n i i The cashflow an present value of an perpetuity ue with level payents of one are: Contributions Tie ä i The cashflow an present value of a perpetuity ieiate with level payents of one are: Contributions Tie a i i The cashflow an present value of a geoetric annuity ue with first payent of one are: Payents + r + r) + r) n Tie n an Gä) n i,r ä n i r +r The cashflow an present value of a geoetric annuity ieiate with first payent of one are: Payents + r + r) + r) n Tie 3 n Ga) n i,r + r a n i r +r The cashflow an present value of a geoetric perpetuity ue with first payent of one are: an an Payents + r + r) + r) n Tie n Gä) i,r { +i i r if i > r, if i r The cashflow an present value of a geoetric perpetuity ieiate with first payent of one are:

3 an Payents + r + r) + r) n Tie 3 n { Ga) i,r if i > r i r if i r The cashflow, present an future values of a ue increasing annuity with first payent of one are: Payents 3 n Tie n Iä) n i än i nν n an I s) n i s n i n The cashflow, present an future values of an ieiate increasing annuity with first payent of one are: Payents 3 n Tie 3 n Ia) n i än i nν n an Is) i n i s n i n i The cashflow an present value of an increasing ue perpetuity with first payent of one are: Payents 3 Tie an Iä) i The cashflow an present value of an increasing ieiate perpetuity with first payent of one are: Payents 3 Tie 3 an Ia) i i The cashflow, present an future values of a ecreasing ue annuity with first payent of one are: Payents n n n Tie n Dä) n i n a n i an D s) n i n + i)n s n i The cashflow, present an future values of a ecreasing ieiate annuity with first payent of one are: 3

4 Payents n n n Tie 3 n Da) n i n a n i an Ds) i n i n + i)n s n i i The cashflow, present an future values of a ue annuity pai ties a year are Contributions Tie in years) ä ) n i νn ) + n an s ) n i + i)n ) The cashflow, present an future values of an ieiate annuity pai ties a year are Contributions Tie in years) + n a ) n i νn an s ) i ) n i + i)n i ) The present value of a continuous annuity with rate Ct) is t Cs)v s s The present value of a continuous annuity with constant unit rate is a n i v t t vn The present value of an annually increasing continuous annuity is Iā) n i [t + ]v t t än i nv n The present value of a continuously increasing annuity is Īā n )n i tv t t ān i nv n The present value of an annually ecreasing continuous annuity is Da) n i [n + t]v t t n a n i The present value of a continuously ecreasing continuous annuity with is Da )n i n t)v t t n a n i n 4

5 Survival oels The cuulative istribution function of the rv X is F X ) P {X }, R The survival function of the nonnegative rv X is S ) s) Pr{X > }, If h an H) ht) t,, then E[HX)] st)ht) t In particular, E[X] If X is a iscrete rv st) t, E[X p ] E[HX)] st)pt p t, E[inX, a)] Pr{X k}hk) Hk )) In particular, for a positive integer a, E[X] Pr{X k}, E[X ] Pr{X k}k ), E[inX, a)] a st) t a Pr{X k} ) is calle a life age T ) T X is the future lifetie of ) The survival function of T ) is t p s+t), t The cf of T ) is s) tq s) s+t), s) t We have that tq t p, p p, q q, s t q Pr{s < T ) s + t} s p s+t p s p tq +s, +np p np +, n p p p + p +n, P k j n j p n p n p +n n3 p +n +n nk p + P k j n j The force of ortality is µ) µ ln S X) f X) S X ) ) S X ) ep µt) t, t p e R +t µy)y, f T ) t) t p µ + t) e E[X] e :n E[inT ), n)] tp t, e E[T )] tp t, tp t, e e :n + n p e+n t is the least integer greater than or equal to t, t k if k < t k K is the tie interval of eath of a life age K) is the curtate uration of eath of a life age, ie the nuber of coplete years live by this life K T ), K) K, K) T ), e E[K)] kp, E[K)) ] k ) kp, e p + e + ), e :n kp, e e :n + n p e +n, e :+n e : + p e+:n 5

6 For e Moivre s law: f X ) ω, S X) ω ω, µ), for < ω, ω tp ω t ω, tq t ω, t ω, e ω, VarT )) ω ) Uner constant force of ortality µ:, e ω, VarK)) ω ) S X ) e µ, F X ) e µ, f X ) µe µ, µ) µ, for >, tp Pr{T ) > t} e µ, e :n e µn µ 3 Life tables s + t) s) e µt,, VarT )) µ, e p, e :n p p n ) q q, VarK)) p q l enote the nuber of iniviuals alive at age The nuber of iniviuals which ie between ages an + t is t l l +t The nuber of iniviuals which ie between ages an + is l l + We have that s) l, F X ) l l, µ) l logl ), l tp l +t, t q l l +t l l t l, p l + l, q l l + l l e, e l n +t t, l +t e :n t, e l l l l, n q l +n l +n+ l l +k l, e :n l +k l The epecte nuber of years live between age an age + n by the l survivors at age is n L nl l e:n l +t t, L L l e:, e k L k l, e :n +n k L k l Interpolation l +t tp L unifor istribution of eaths l + tl + l ) tq l +l + eponential interpolation l p t p t log p Balucci assuption t) l +t l + 6 p t+ t)p l + log p q

7 Uner unifor istribution of eaths: l +t l + tl + l ), t p tq, f T ) t) q, µ +t L l + l +, e e + Uner eponential interpolation: q tq, t, l +t l p t, t p p t, f T t) p t log p, µ +t log p, t Uner Balucci assuption) haronic interpolation: 4 Life insurance t) + t, t p l +t l l + p t + t)p type of insurance payent whole life insurance Z v K n year ter life insurance Z:n vk IK n) n year eferre life insurance n Z v K In < K ) n year pure enowent life insurance Z:n In < K ) n year enowent life insurance Z :n v ink,n) year eferre n year ter life insurance n Z v K I < K + n) Whole life insurance pai at the en of the year: Z v K, A E[Z ] v k k p q +k, A VarZ ) A A, A vq + vp A + v k k p q +k, n year ter life insurance pai at the en of the year: Z:n v K IK n), A :n E[Z:n ] v k k q, A :n VarZ :n ) A :n A :n, A :n vq + vp A +:n v k k q, n year eferre life insurance pai at the en of the year: n Z v K In < K ), n A E[ n Z ] v k k q, n A v k k q, kn+ kn+ Var n Z ) n A n A, n A v n n p q +n + n+ A 7

8 n year pure enowent life insurance pai at the en of the year: Z :n v n In < K ), A :n E[Z :n ] n E v n np, A :n v n np, VarZ :n ) A :n A :n n year enowent life insurance pai at the en of the year: Z :n v ink,n), A :n n E E[Z :n ] v k k q + v n np, A :n v k k q + v n np, VarZ :n ) A :n A :n n A n E A +n, A A :n + n A A :n + n E A +n, A A :n + n A, A :n A :n + A :n, A :n A :n + A :n, Increasing/ecreasing life insurance pai at the en of the year: IA) kv k k q, IA) :n kv k k q, DA) :n n + k)v k k q Uner e Moivre s oel with terinal age ω, if ω,, n are a positive integers, A a ω i ω, A :n a n ω, A :n v n ω n ω, n A v n a ω n i ω Uner constant force of ortality: A q q + i, A :n e nµ+), n A e nµ+) q q + i, A :n e nµ+) q ) q + i type of insurance whole life insurance payent Z v K n year ter life insurance Z :n v T IT n) n year eferre life insurance n Z v T In < T ) n year pure enowent life insurance Z :n v n In < T ) n year enowent life insurance Z :n v int,n) year eferre n-year ter life insurance n Z v T I T + n) Whole life insurance pai at the tie of eath: Z v T A E[Z ] A E[Z ) ] v t f T t) t, v t f T t) t, VarZ ) A A 8

9 n year ter life insurance pai at the tie of eath: Z :n v T IT n), A :n E[Z :n ] v t f T t) t, A :n E[Z n :n ] v t f T t) t, VarZ :n ) A :n A :n n year eferre life insurance pai at the tie of eath: n Z v T In < T ), n A E[ n Z ] n v t f T t) t, n A E[ n Z ] v t f T t) t, Var n Z ) n A n A n year enowent life insurance: Z :n v int,n), A :n E[Z :n ] A :n E[Z :n ) ] n v t f T t) t + v n Pr{T > n}, v t f T t) t + v n Pr{T > n}, VarZ :n ) A :n A :n Z Z :n + n Z, A A :n + n A, A A :n + n A, Z :n Z :n + E :n, A :n A :n + A :n, A :n A :n + A :n, n A n E A +n Uner e Moivre s oel with terinal age ω, A a ω i ω, A :n a n i ω, A Uner constant force of ortality: :n e n ω n ω, n A e n a ω n i ω A µ µ +, A :n e nµ+), n A e nµ+) µ µ +, A :n e nµ+) µ ) µ + Continuously increasing whole life insurance: b t t, t, I A ) tv t tp µ +t t by Annually increasing whole life insurance: b t t, t, present value is enote I A ) k k kv t tp µ +t t 9

10 n year ter continuously increasing whole life insurance: b t t, t n, ) n I A tv t :n tp µ +t t n year ter annually increasing whole life insurance: b t t, t n, I A ) :n k k kv t tp µ +t t Continuously ecreasing life insurance: b t n t, t n, ) n D A n t)v t :n tp µ +t t Annually ecreasing life insurance: b t n t, t n, D A ) :n k k Assuing a unifor istribution of eaths: n + k)v t tp µ +t t A i A, A :n i A :n, n A i n A, A :n i A :n + A :n, A ) i i A, A ) ) :n 5 Life annuities i i ) A :n, n A ) i i ) n A, A ) :n i i ) A :n + A :n ue annuities present value APV whole life Ÿ ä K Z ä A n year eferre life insurance n Ÿ v n ä IK K n > n) n ä n E ä +n n year ter Ÿ :n ä inkn,n) Z :n ä :n A :n ieiate annuities present value APV whole life Y a v Z K a v A n year eferre life insurance n Y v n a K n IK > n + ) n a n E a +n n year ter Y :n a ink,n) v Z :n+ a :n v A :n+ continuous annuities present value APV whole life Y a T Z a A n year eferre life insurance n Y v n a IT T n > n) n a n E a +n n year ter Y :n a int,n) vint,n) a :n A :n

11 Discrete whole life ue annuity: Ÿ ä K Z, ä A Whole life ieiate annuity: v k kp, VarŸ) k Y a K Ÿ v Z, a v A A A VarY ), a vp ä + vp + a + ) Whole life continuous annuity: Y a Z T, a A n year eferre iscrete ue annuity: n Ÿ v n ä K n IK > n), n ä n year eferre iscrete ieiate annuity: A A, ä + vp ä + v k kp, v t tp t, VarY ) v k kp n E ä +n kn n Y n+ Ÿ, n a n+ ä vp n a + n year eferre continuous annuity: n Y v n a T n IT > n), n a n year ter ue iscrete annuity: n v t tp t n E a +n Ÿ :n ä inkn,n) Z n :n, ä :n v k kp A :n, A :n A :n ) VarŸ:n ), ä :n+ ä :n + n E ä +n:, ä ä :n + n ä ä :n + n E ä +n n year ter iscrete ieiate annuity: k Y :n a ink,n) Ÿ:n+ v Z :n+, a :n ä :n+ v k kp v A :n+ A :n+ A :n+ ) VarY :n ), a n a + a :n n a + n E a +n, A A

12 n year ter continuous annuity: Y :n a int,n) vint,n) VarY :n ) A :n A :n ) Uner constant force of ortality: ä Z :n, a :n v s sp s A :n,, a :n+ a :n + n E a +n:, a a :n + n a + i vp q + i e, a +µ) vp q vp q + i Annuities pai ties a year For a whole life unity annuity ue to ) pai ties a year: e +µ) e, a +µ) µ + Ÿ ) Z), ä ) ) A) ) k v k k p, VarŸ ) ) A ) A ) ) ) ) For a whole life unity annuity ieiate to ) pai ties a year: Y ) a ) Ÿ ) ä ) VarY ) ) v/ Z ), ) v/ A ) ) A ) A ) ) ) ) v k k p, For a n year unity annuity ue to ) pai ties a year: :n Z) :n, ä ) :n A) :n Ÿ ) ) :n ) VarŸ ) :n ) VarZ) ) ) ) n k v k p, For a n year unity annuity ue to ) pai ties a year: :n Z) :n, ä ) :n A) :n Ÿ ) ) ) n k v k p, VarŸ ) :n ) :n ) VarZ) ) ) For a n year unity annuity ieiate to ) pai ties a year: Y ) :n Ÿ ) :n + Z :n, a ) :n ä) :n + ne

13 For a n year eferre unity annuity ue to ) pai ties a year: n Ÿ ) Z ä ) :n n Z ) ), n ä ) A :n n A ) ) ä ) :n + n ä ) ä ) :n + ne ä ) +n kn v k k p n E ä ) +n, For a n year eferre unity annuity ieiate to ) pai ties a year: n Y ) a ) n Ÿ ) Z :n, n a ) n E a ) +n n ä ) n E, a ) :n + n a ) a ) :n + ne a ) +n Uner an unifor istribution of eaths within each year: ä ) i A i ) ), a ) 6 Benefit Preius ä ) v/ i Fully iscrete insurance A i ) ), a i A Whole life insurance: L v K P ä K Z P Ÿ Z P Ÿ Z + P ) P, E[L ] A P ä A + P ) P, VarL ) + P ) VarZ ) + P ) A A ) Uner the equivalence principle: P A ä A A ä, VarL ) n year ter insurance: A A A ) A A ä ) L :n Z:n P Ÿ:n Z:n P Z :n,, t P A ä :t P :n P A :n ) A :n ä :n, t P :n P t A :n ) A :n ä :t 3

14 n year pure enowent: L:n Z:n P Ÿ:n Z:n P Z :n, P:n P A:n ) A :n, t P:n P t A ä :n ) A :n :n ä :t n year enowent: L :n v inn,k) P ä ink,n) Z :n P Ÿ:n Z :n P Z :n VarL :n ) + P ) VarZ :n ) + P ) A :n A :n ) ), + P ) Z :n P, P :n P A :n ) A :n, t P :n P t A :n ) A :n, ä :n ä :t VarL :n ) + P ) :n A :n A ) A :n A :n :n ) A:n A :n A :n ä:n ) n year eferre insurance: Properties: Whole life insurance: n year ter insurance: n Z P Ÿ, P n A ) n A, t P n A ) n A ä ä :t P :n P :n + P :n, n P P :n + P :n A +n Seicontinuous annual benefit preius P P A ) A a, t P t P A ) A a :t n year pure enowent: P :n A :n a :n, t P :n t P A :n ) A :n a :t P :n P A:n ) A :n, t P :n t P A a :n ) A :n :n a :t 4

15 n year enowent: n year eferre insurance: Whole life insurance: P :n P A :n ) A :n a :n, t P :n t P A :n ) A :n a :t P n A ) n A a :n, t P n A ) n A a :n Fully continuous insurance LA ) v T P a T Z P Y Z Z VarLA )) Z + P ) P, + P ) VarZ ) + P ) A A ), P A ) A A, t P A ) A a A a a :t VarLA )) + P A ) ) A A ) A A A ) A A a ) n year ter insurance: n year pure enowent: L Z :n P Y :n, P A :n ) A :n, t P A a :n ) A :n :n a :t L Z :n P Y :n, P A:n ) A :n, t P A a :n :n ) A :n a :t n year enowent: L Z :n P Y :n Z :n P Z :n VarL) + P ) A :n ) ) A :n, + P ) P Z :n, P A :n ) A :n a :n a :n a :n A :n A :n, VarL) A :n A :n A:n ), t P A :n ) A :n a :t n year eferre insurance: L n Z P Y :n, P n A ) n A a :n 5

16 n year eferre ue annuity: n year eferre ieiate annuity: n year eferre annuities L n Ÿ P Ÿ:n, P n ä ) n ä ä :n L n Y P Ÿ:n, P n a ) n a ä :n n year eferre continuous annuity fune iscretely: L n Y P Ÿ:n, P n a ) n a ä :n n year eferre continuous annuity fune continuously: L n Y P Y :n, P n a ) n a ä :n 6

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/70 Due n year deferred annuity Definition 1 A due n year deferred

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/94 Due n year temporary annuity Definition 1 A due n year term annuity

More information

ACTS 4301 FORMULA SUMMARY Lesson 1: Probability Review. Name f(x) F (x) E[X] Var(X) Name f(x) E[X] Var(X) p x (1 p) m x mp mp(1 p)

ACTS 4301 FORMULA SUMMARY Lesson 1: Probability Review. Name f(x) F (x) E[X] Var(X) Name f(x) E[X] Var(X) p x (1 p) m x mp mp(1 p) ACTS 431 FORMULA SUMMARY Lesson 1: Probability Review 1. VarX)= E[X 2 ]- E[X] 2 2. V arax + by ) = a 2 V arx) + 2abCovX, Y ) + b 2 V ary ) 3. V ar X) = V arx) n 4. E X [X] = E Y [E X [X Y ]] Double expectation

More information

4. Life Insurance. 4.1 Survival Distribution And Life Tables. Introduction. X, Age-at-death. T (x), time-until-death

4. Life Insurance. 4.1 Survival Distribution And Life Tables. Introduction. X, Age-at-death. T (x), time-until-death 4. Life Insurance 4.1 Survival Distribution And Life Tables Introduction X, Age-at-death T (x), time-until-death Life Table Engineers use life tables to study the reliability of complex mechanical and

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 6. Benefit premiums. Extract from: Arcones Fall 2010 Edition, available at http://www.actexmadriver.com/ 1/24 Non-level premiums and/or benefits. Let b k be the benefit paid by an insurance company

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 4. Life Insurance. Extract from: Arcones Manual for the SOA Exam MLC. Fall 2009 Edition. available at http://www.actexmadriver.com/ 1/14 Level benefit insurance in the continuous case In this chapter,

More information

Actuarial Science with

Actuarial Science with Actuarial Science with 1. life insurance & actuarial notations Arthur Charpentier joint work with Christophe Dutang & Vincent Goulet and Giorgio Alfredo Spedicato s lifecontingencies package Meielisalp

More information

Annuities. Lecture: Weeks 9-11. Lecture: Weeks 9-11 (STT 455) Annuities Fall 2014 - Valdez 1 / 43

Annuities. Lecture: Weeks 9-11. Lecture: Weeks 9-11 (STT 455) Annuities Fall 2014 - Valdez 1 / 43 Annuities Lecture: Weeks 9-11 Lecture: Weeks 9-11 (STT 455) Annuities Fall 2014 - Valdez 1 / 43 What are annuities? What are annuities? An annuity is a series of payments that could vary according to:

More information

Mathematics of Life Contingencies MATH 3281

Mathematics of Life Contingencies MATH 3281 Mathematics of Life Contingencies MATH 3281 Life annuities contracts Edward Furman Department of Mathematics and Statistics York University February 13, 2012 Edward Furman Mathematics of Life Contingencies

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 6. Benefit premiums Extract from: Arcones Fall 2010 Edition, available at http://www.actexmadriver.com/ 1/90 (#4, Exam M, Spring 2005) For a fully discrete whole life insurance of 100,000 on (35)

More information

Insurance Benefits. Lecture: Weeks 6-8. Lecture: Weeks 6-8 (STT 455) Insurance Benefits Fall 2014 - Valdez 1 / 36

Insurance Benefits. Lecture: Weeks 6-8. Lecture: Weeks 6-8 (STT 455) Insurance Benefits Fall 2014 - Valdez 1 / 36 Insurance Benefits Lecture: Weeks 6-8 Lecture: Weeks 6-8 (STT 455) Insurance Benefits Fall 2014 - Valdez 1 / 36 An introduction An introduction Central theme: to quantify the value today of a (random)

More information

Chapter 04 - More General Annuities

Chapter 04 - More General Annuities Chapter 04 - More General Annuities 4-1 Section 4.3 - Annuities Payable Less Frequently Than Interest Conversion Payment 0 1 0 1.. k.. 2k... n Time k = interest conversion periods before each payment n

More information

Premium Calculation. Lecture: Weeks 12-14. Lecture: Weeks 12-14 (Math 3630) Annuities Fall 2015 - Valdez 1 / 32

Premium Calculation. Lecture: Weeks 12-14. Lecture: Weeks 12-14 (Math 3630) Annuities Fall 2015 - Valdez 1 / 32 Premium Calculation Lecture: Weeks 12-14 Lecture: Weeks 12-14 (Math 3630) Annuities Fall 2015 - Valdez 1 / 32 Preliminaries Preliminaries An insurance policy (life insurance or life annuity) is funded

More information

Actuarial mathematics 2

Actuarial mathematics 2 Actuarial mathematics 2 Life insurance contracts Edward Furman Department of Mathematics and Statistics York University January 3, 212 Edward Furman Actuarial mathematics MATH 328 1 / 45 Definition.1 (Life

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 4. Life insurance. Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ (#1, Exam M, Fall 2005) For a special whole life insurance on (x), you are given: (i) Z is

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 4. Life Insurance. Extract from: Arcones Manual for the SOA Exam MLC. Fall 2009 Edition. available at http://www.actexmadriver.com/ 1/44 Properties of the APV for continuous insurance The following

More information

ACTSC 331 Note : Life Contingency

ACTSC 331 Note : Life Contingency ACTSC 331 Note : Life Contingency Johnew Zhang December 3, 212 Contents 1 Review 3 1.1 Survival Moel.................................. 3 1.2 Insurance..................................... 3 1.3 Annuities

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 6. Benefit premiums. Extract from: Arcones Fall 2010 Edition, available at http://www.actexmadriver.com/ 1/77 Fully discrete benefit premiums In this section, we will consider the funding of insurance

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Problem 1 For a discrete random variable X, Statistics 100A Homework 4 Solutions Ryan Rosario Note that all of the problems below as you to prove the statement. We are proving the properties of epectation

More information

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22 Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability

More information

AS 2553a Mathematics of finance

AS 2553a Mathematics of finance AS 2553a Mathematcs of fnance Formula sheet November 29, 2010 Ths ocument contans some of the most frequently use formulae that are scusse n the course As a general rule, stuents are responsble for all

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5. Life annuities Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/60 (#24, Exam M, Fall 2005) For a special increasing whole life annuity-due on (40), you

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Manual for SOA Eam MLC. Chapter 4. Life Insurance. Etract from: Arcones Manual for the SOA Eam MLC. Fall 2009 Edition. available at http://www.actemadriver.com/ Manual for SOA Eam MLC. 1/9 Payments at

More information

Premium Calculation - continued

Premium Calculation - continued Premium Calculation - continued Lecture: Weeks 1-2 Lecture: Weeks 1-2 (STT 456) Premium Calculation Spring 2015 - Valdez 1 / 16 Recall some preliminaries Recall some preliminaries An insurance policy (life

More information

Math 630 Problem Set 2

Math 630 Problem Set 2 Math 63 Problem Set 2 1. AN n-year term insurance payable at the moment of death has an actuarial present value (i.e. EPV) of.572. Given µ x+t =.7 and δ =.5, find n. (Answer: 11) 2. Given: Ā 1 x:n =.4275,

More information

SOA EXAM MLC & CAS EXAM 3L STUDY SUPPLEMENT

SOA EXAM MLC & CAS EXAM 3L STUDY SUPPLEMENT SOA EXAM MLC & CAS EXAM 3L STUDY SUPPLEMENT by Paul H. Johnson, Jr., PhD. Last Modified: October 2012 A document prepared by the author as study materials for the Midwestern Actuarial Forum s Exam Preparation

More information

Mathematics of Life Contingencies. Math 3281 3.00 W Instructor: Edward Furman Homework 1

Mathematics of Life Contingencies. Math 3281 3.00 W Instructor: Edward Furman Homework 1 Mathematics of Life Contingencies. Math 3281 3.00 W Instructor: Edward Furman Homework 1 Unless otherwise indicated, all lives in the following questions are subject to the same law of mortality and their

More information

TIME VALUE OF MONEY PROBLEMS CHAPTERS THREE TO TEN

TIME VALUE OF MONEY PROBLEMS CHAPTERS THREE TO TEN TIME VLUE OF MONEY PROBLEMS CHPTERS THREE TO TEN Probles In how any years $ will becoe $265 if = %? 265 ln n 933844 9 34 years ln( 2 In how any years will an aount double if = 76%? ln 2 n 9 46 years ln76

More information

Chapter 2. 1. You are given: 1 t. Calculate: f. Pr[ T0

Chapter 2. 1. You are given: 1 t. Calculate: f. Pr[ T0 Chapter 2 1. You are given: 1 5 t F0 ( t) 1 1,0 t 125 125 Calculate: a. S () t 0 b. Pr[ T0 t] c. Pr[ T0 t] d. S () t e. Probability that a newborn will live to age 25. f. Probability that a person age

More information

Practice Exam 1. x l x d x 50 1000 20 51 52 35 53 37

Practice Exam 1. x l x d x 50 1000 20 51 52 35 53 37 Practice Eam. You are given: (i) The following life table. (ii) 2q 52.758. l d 5 2 5 52 35 53 37 Determine d 5. (A) 2 (B) 2 (C) 22 (D) 24 (E) 26 2. For a Continuing Care Retirement Community, you are given

More information

Manual for SOA Exam FM/CAS Exam 2.

Manual for SOA Exam FM/CAS Exam 2. Manual for SOA Exam FM/CAS Exam 2. Chapter 3. Annuities. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition,

More information

Lecture 13: Martingales

Lecture 13: Martingales Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

More information

2. Annuities. 1. Basic Annuities 1.1 Introduction. Annuity: A series of payments made at equal intervals of time.

2. Annuities. 1. Basic Annuities 1.1 Introduction. Annuity: A series of payments made at equal intervals of time. 2. Annuities 1. Basic Annuities 1.1 Introduction Annuity: A series of payments made at equal intervals of time. Examples: House rents, mortgage payments, installment payments on automobiles, and interest

More information

TABLE OF CONTENTS. 4. Daniel Markov 1 173

TABLE OF CONTENTS. 4. Daniel Markov 1 173 TABLE OF CONTENTS 1. Survival A. Time of Death for a Person Aged x 1 B. Force of Mortality 7 C. Life Tables and the Deterministic Survivorship Group 19 D. Life Table Characteristics: Expectation of Life

More information

Premium Calculation. Lecture: Weeks 12-14. Lecture: Weeks 12-14 (STT 455) Premium Calculation Fall 2014 - Valdez 1 / 31

Premium Calculation. Lecture: Weeks 12-14. Lecture: Weeks 12-14 (STT 455) Premium Calculation Fall 2014 - Valdez 1 / 31 Premium Calculation Lecture: Weeks 12-14 Lecture: Weeks 12-14 (STT 455) Premium Calculation Fall 2014 - Valdez 1 / 31 Preliminaries Preliminaries An insurance policy (life insurance or life annuity) is

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 4. Life Insurance. c 29. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam MLC. Fall 29 Edition. available at http://www.actexmadriver.com/ c 29. Miguel A. Arcones.

More information

Asset and Liability Composition in Participating Life Insurance: The Impact on Shortfall Risk and Shareholder Value

Asset and Liability Composition in Participating Life Insurance: The Impact on Shortfall Risk and Shareholder Value Asset and Liability Composition in Participating Life Insurance: The Impact on Shortfall Risk and Shareholder Value 7th Conference in Actuarial Science & Finance on Samos June 1, 2012 Alexander Bohnert1,

More information

Financial Mathematics for Actuaries. Chapter 2 Annuities

Financial Mathematics for Actuaries. Chapter 2 Annuities Financial Mathematics for Actuaries Chapter 2 Annuities Learning Objectives 1. Annuity-immediate and annuity-due 2. Present and future values of annuities 3. Perpetuities and deferred annuities 4. Other

More information

EXAM 3, FALL 003 Please note: On a one-time basis, the CAS is releasing annotated solutions to Fall 003 Examination 3 as a study aid to candidates. It is anticipated that for future sittings, only the

More information

n(n + 1) 2 1 + 2 + + n = 1 r (iii) infinite geometric series: if r < 1 then 1 + 2r + 3r 2 1 e x = 1 + x + x2 3! + for x < 1 ln(1 + x) = x x2 2 + x3 3

n(n + 1) 2 1 + 2 + + n = 1 r (iii) infinite geometric series: if r < 1 then 1 + 2r + 3r 2 1 e x = 1 + x + x2 3! + for x < 1 ln(1 + x) = x x2 2 + x3 3 ACTS 4308 FORMULA SUMMARY Section 1: Calculus review and effective rates of interest and discount 1 Some useful finite and infinite series: (i) sum of the first n positive integers: (ii) finite geometric

More information

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1. 1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í

More information

Project Evaluation Roadmap. Capital Budgeting Process. Capital Expenditure. Major Cash Flow Components. Cash Flows... COMM2501 Financial Management

Project Evaluation Roadmap. Capital Budgeting Process. Capital Expenditure. Major Cash Flow Components. Cash Flows... COMM2501 Financial Management COMM501 Financial Manageent Project Evaluation 1 (Capital Budgeting) Project Evaluation Roadap COMM501 Financial Manageent Week 7 Week 7 Project dependencies Net present value ethod Relevant cash flows

More information

The Actuary s Free Study Guide for. Second Edition G. Stolyarov II,

The Actuary s Free Study Guide for. Second Edition G. Stolyarov II, The Actuary s Free Study Guide for Exam 3L Second Edition G. Stolyarov II, ASA, ACAS, MAAA, CPCU, ARe, ARC, API, AIS, AIE, AIAF First Edition Published in August-October 2008 Second Edition Published in

More information

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE QUESTIONS

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE QUESTIONS SOCIETY OF ACTUARIES EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE QUESTIONS The following questions or solutions have been modified since this document was prepared to use with the syllabus effective

More information

1. Datsenka Dog Insurance Company has developed the following mortality table for dogs:

1. Datsenka Dog Insurance Company has developed the following mortality table for dogs: 1 Datsenka Dog Insurance Company has developed the following mortality table for dogs: Age l Age l 0 2000 5 1200 1 1950 6 1000 2 1850 7 700 3 1600 8 300 4 1400 9 0 Datsenka sells an whole life annuity

More information

Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1. q 30+s 1

Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1. q 30+s 1 Solutions to the May 213 Course MLC Examination by Krzysztof Ostaszewski, http://wwwkrzysionet, krzysio@krzysionet Copyright 213 by Krzysztof Ostaszewski All rights reserved No reproduction in any form

More information

Lecture Notes on the Mathematics of Finance

Lecture Notes on the Mathematics of Finance Lecture Notes on the Mathematics of Finance Jerry Alan Veeh February 20, 2006 Copyright 2006 Jerry Alan Veeh. All rights reserved. 0. Introduction The objective of these notes is to present the basic aspects

More information

1 Cash-flows, discounting, interest rate models

1 Cash-flows, discounting, interest rate models Assignment 1 BS4a Actuarial Science Oxford MT 2014 1 1 Cash-flows, discounting, interest rate models Please hand in your answers to questions 3, 4, 5 and 8 for marking. The rest are for further practice.

More information

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given:

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given: Solutions to the May 2012 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, krzysio@krzysio.net Copyright 2012 by Krzysztof Ostaszewski All rights reserved. No reproduction in any

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

Construction Economics & Finance. Module 3 Lecture-1

Construction Economics & Finance. Module 3 Lecture-1 Depreciation:- Construction Econoics & Finance Module 3 Lecture- It represents the reduction in arket value of an asset due to age, wear and tear and obsolescence. The physical deterioration of the asset

More information

**BEGINNING OF EXAMINATION**

**BEGINNING OF EXAMINATION** November 00 Course 3 Society of Actuaries **BEGINNING OF EXAMINATION**. You are given: R = S T µ x 0. 04, 0 < x < 40 0. 05, x > 40 Calculate e o 5: 5. (A) 4.0 (B) 4.4 (C) 4.8 (D) 5. (E) 5.6 Course 3: November

More information

b g is the future lifetime random variable.

b g is the future lifetime random variable. **BEGINNING OF EXAMINATION** 1. Given: (i) e o 0 = 5 (ii) l = ω, 0 ω (iii) is the future lifetime random variable. T Calculate Var Tb10g. (A) 65 (B) 93 (C) 133 (D) 178 (E) 333 COURSE/EXAM 3: MAY 000-1

More information

MATH 3630 Actuarial Mathematics I Class Test 2 Wednesday, 17 November 2010 Time Allowed: 1 hour Total Marks: 100 points

MATH 3630 Actuarial Mathematics I Class Test 2 Wednesday, 17 November 2010 Time Allowed: 1 hour Total Marks: 100 points MATH 3630 Actuarial Mathematics I Class Test 2 Wednesday, 17 November 2010 Time Allowed: 1 hour Total Marks: 100 points Please write your name and student number at the spaces provided: Name: Student ID:

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

Manual for SOA Exam FM/CAS Exam 2.

Manual for SOA Exam FM/CAS Exam 2. Manual for SOA Exam FM/CAS Exam 2. Chapter 3. Annuities. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition,

More information

ACTUARIAL NOTATION. i k 1 i k. , (ii) i k 1 d k

ACTUARIAL NOTATION. i k 1 i k. , (ii) i k 1 d k ACTUARIAL NOTATION 1) v s, t discount function - this is a function that takes an amount payable at time t and re-expresses it in terms of its implied value at time s. Why would its implied value be different?

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

EDUCATION COMMITTEE OF THE SOCIETY OF ACTUARIES MLC STUDY NOTE SUPPLEMENTARY NOTES FOR ACTUARIAL MATHEMATICS FOR LIFE CONTINGENT RISKS VERSION 2.

EDUCATION COMMITTEE OF THE SOCIETY OF ACTUARIES MLC STUDY NOTE SUPPLEMENTARY NOTES FOR ACTUARIAL MATHEMATICS FOR LIFE CONTINGENT RISKS VERSION 2. EDUCATION COMMITTEE OF THE SOCIETY OF ACTUARIES MLC STUDY NOTE SUPPLEMENTARY NOTES FOR ACTUARIAL MATHEMATICS FOR LIFE CONTINGENT RISKS VERSION 2.0 by Mary R. Hardy, PhD, FIA, FSA, CERA David C. M. Dickson,

More information

November 2012 Course MLC Examination, Problem No. 1 For two lives, (80) and (90), with independent future lifetimes, you are given: k p 80+k

November 2012 Course MLC Examination, Problem No. 1 For two lives, (80) and (90), with independent future lifetimes, you are given: k p 80+k Solutions to the November 202 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, krzysio@krzysio.net Copyright 202 by Krzysztof Ostaszewski All rights reserved. No reproduction in

More information

6 Insurances on Joint Lives

6 Insurances on Joint Lives 6 Insurances on Joint Lives 6.1 Introduction Itiscommonforlifeinsurancepoliciesandannuitiestodependonthedeathorsurvivalof more than one life. For example: (i) Apolicywhichpaysamonthlybenefittoawifeorotherdependentsafterthedeathof

More information

Appendix A. Commutation Functions

Appendix A. Commutation Functions Appendix A. Commutation Functions A.I Introduction In this appendix we give an introduction to the use of commutation functions. These functions were invented in the 18th century and achieved great popularity,

More information

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u i s p r z» t a n i a o b i e k t ó w G d y s k i e C eo n t r u m S p o r t us I S t a d i o n p i ł k a r s k i

More information

November 2000 Course 3

November 2000 Course 3 November Course 3 Society of Actuaries/Casualty Actuarial Society November - - GO ON TO NEXT PAGE Questions through 36 are each worth points; questions 37 through 44 are each worth point.. For independent

More information

PSTN. Gateway. Switch. Supervisor PC. Ethernet LAN. IPCC Express SERVER. CallManager. IP Phone. IP Phone. Cust- DB

PSTN. Gateway. Switch. Supervisor PC. Ethernet LAN. IPCC Express SERVER. CallManager. IP Phone. IP Phone. Cust- DB M IPCC EXPRESS Product Solution (IPCC - IP Co n t a c t Ce n t e r ) E i n f ü h r u n g Ü b e r h u nd e r t M il l io ne n N u t ze r - P r o g no s e n zu f o l g e w e r d e n e s in d ie s e m J ah

More information

Enterprise Data Center A c h itec tu re Consorzio Operativo Gruppo MPS Case S t u d y : P r o g et t o D i sast er R ec o v er y Milano, 7 Febbraio 2006 1 Il G r u p p o M P S L a B a n c a M o n t e d

More information

Nominal rates of interest and discount

Nominal rates of interest and discount 1 Nominal rates of interest and discount i (m) : The nominal rate of interest payable m times per period, where m is a positive integer > 1. By a nominal rate of interest i (m), we mean a rate payable

More information

東 海 大 學 資 訊 工 程 研 究 所 碩 士 論 文

東 海 大 學 資 訊 工 程 研 究 所 碩 士 論 文 東 海 大 學 資 訊 工 程 研 究 所 碩 士 論 文 指 導 教 授 楊 朝 棟 博 士 以 網 路 功 能 虛 擬 化 實 作 網 路 即 時 流 量 監 控 服 務 研 究 生 楊 曜 佑 中 華 民 國 一 零 四 年 五 月 摘 要 與 的 概 念 一 同 發 展 的, 是 指 利 用 虛 擬 化 的 技 術, 將 現 有 的 網 路 硬 體 設 備, 利 用 軟 體 來 取 代 其

More information

Solution. Because you are not doing business in the state of New York, you only need to do the calculations at the end of each policy year.

Solution. Because you are not doing business in the state of New York, you only need to do the calculations at the end of each policy year. Exercises in life and annuity valuation. You are the valuation actuary for the Hard Knocks Life Insurance Company offering life annuities and life insurance to guinea pigs. The valuation interest rate

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties: THE DYING FIBONACCI TREE BERNHARD GITTENBERGER 1. Introduction Consider a tree with two types of nodes, say A and B, and the following properties: 1. Let the root be of type A.. Each node of type A produces

More information

REGS 2013: Variable Annuity Guaranteed Minimum Benefits

REGS 2013: Variable Annuity Guaranteed Minimum Benefits Department of Mathematics University of Illinois, Urbana-Champaign REGS 2013: Variable Annuity Guaranteed Minimum Benefits By: Vanessa Rivera Quiñones Professor Ruhuan Feng September 30, 2013 The author

More information

All of my instructors showed a true compassion for teaching. This passion helped students enjoy every class. Amanda

All of my instructors showed a true compassion for teaching. This passion helped students enjoy every class. Amanda F 228 D O z F/ Fx L / H V L I & P G G F Q, z,, B, z -, q k k k FUN F x 20% 02 F 9185957834 I P G j P, E, j, k,, ; I I G F Ex 2011 H B H 2011-2012 F H E U F P G I G L L 228 D & 228 k B P 04 F 9185957834

More information

Earthquake Hazard Zones: The relative risk of damage to Canadian buildings

Earthquake Hazard Zones: The relative risk of damage to Canadian buildings Earthquake Hazard Zones: The relative risk of damage to Canadian buildings by Paul Kovacs Executive Director, Institute for Catastrophic Loss Reduction Adjunct Research Professor, Economics, Univ. of Western

More information

Normal distribution. Chapter 7. This Chapter will explain how to approximate sums of Binomial probabilities,

Normal distribution. Chapter 7. This Chapter will explain how to approximate sums of Binomial probabilities, Page 1 Chapter 7 Normal distribution This Chapter will explain how to approximate sums of Binomial probabilities, b(n, p, k) = P{Bin(n, p) = k} for k =, 1,...,n, by means of integrals of normal density

More information

Actuarial Mathematics and Life-Table Statistics. Eric V. Slud Mathematics Department University of Maryland, College Park

Actuarial Mathematics and Life-Table Statistics. Eric V. Slud Mathematics Department University of Maryland, College Park Actuarial Mathematics and Life-Table Statistics Eric V. Slud Mathematics Department University of Maryland, College Park c 2006 Chapter 4 Expected Present Values of Insurance Contracts We are now ready

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE QUESTIONS

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE QUESTIONS SOCIETY OF ACTUARIES EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE QUESTIONS The following questions or solutions have been modified since this document was prepared to use with the syllabus effective

More information

Chapter 2 Premiums and Reserves in Multiple Decrement Model

Chapter 2 Premiums and Reserves in Multiple Decrement Model Chapter 2 Premiums and Reserves in Multiple Decrement Model 2.1 Introduction A guiding principle in the determination of premiums for a variety of life insurance products is: Expected present value of

More information

FUTURE LIFE-TABLES BASED ON THE LEE-CARTER METHODOLOGY AND THEIR APPLICATION TO CALCULATING THE PENSION ANNUITIES 1

FUTURE LIFE-TABLES BASED ON THE LEE-CARTER METHODOLOGY AND THEIR APPLICATION TO CALCULATING THE PENSION ANNUITIES 1 ACA UNIVERSIAIS LODZIENSIS FOLIA OECONOMICA 250, 20 Agnieszka Rossa * FUURE LIFE-ABLES BASED ON HE LEE-CARER MEHODOLOGY AND HEIR APPLICAION O CALCULAING HE PENSION ANNUIIES Suary. In the paper a new recursie

More information

1. Revision 2. Revision pv 3. - note that there are other equivalent formulae! 1 pv 16.5 4. A x A 1 x:n A 1

1. Revision 2. Revision pv 3. - note that there are other equivalent formulae! 1 pv 16.5 4. A x A 1 x:n A 1 Tutorial 1 1. Revision 2. Revision pv 3. - note that there are other equivalent formulae! 1 pv 16.5 4. A x A 1 x:n A 1 x:n a x a x:n n a x 5. K x = int[t x ] - or, as an approximation: T x K x + 1 2 6.

More information

Endomines - Ilomantsi Gold Project

Endomines - Ilomantsi Gold Project Endomines - Ilomantsi Gold Project Page 1 of 6 1 ILOMAN. AR E A 1 Lo c a t i o n 2 T e n u r e 3 G e o l o g y 4 E x p l o r a t i o n 5 R e s o u r c e s 6 Or e T e s t s 7 E n v i r o n 8 P l a n s OT

More information

M/M/1 and M/M/m Queueing Systems

M/M/1 and M/M/m Queueing Systems M/M/ and M/M/m Queueing Systems M. Veeraraghavan; March 20, 2004. Preliminaries. Kendall s notation: G/G/n/k queue G: General - can be any distribution. First letter: Arrival process; M: memoryless - exponential

More information

2.5 Life tables, force of mortality and standard life insurance products

2.5 Life tables, force of mortality and standard life insurance products Soluions 5 BS4a Acuarial Science Oford MT 212 33 2.5 Life ables, force of moraliy and sandard life insurance producs 1. (i) n m q represens he probabiliy of deah of a life currenly aged beween ages + n

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

More information

Further Topics in Actuarial Mathematics: Premium Reserves. Matthew Mikola

Further Topics in Actuarial Mathematics: Premium Reserves. Matthew Mikola Further Topics in Actuarial Mathematics: Premium Reserves Matthew Mikola April 26, 2007 Contents 1 Introduction 1 1.1 Expected Loss...................................... 2 1.2 An Overview of the Project...............................

More information

Version 3A ACTUARIAL VALUATIONS. Remainder,Income, and Annuity Examples For One Life, Two Lives, and Terms Certain

Version 3A ACTUARIAL VALUATIONS. Remainder,Income, and Annuity Examples For One Life, Two Lives, and Terms Certain ACTUARIAL VALUATIONS Remainder,Income, and Annuity Examples For One Life, Two Lives, and Terms Certain Version 3A For Use in Income, Estate, and Gift Tax Purposes, Including Valuation of Pooled Income

More information

ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES

ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES by Xiaofeng Qian Doctor of Philosophy, Boston University, 27 Bachelor of Science, Peking University, 2 a Project

More information

SOCIETY OF ACTUARIES EXAM M ACTUARIAL MODELS EXAM M SAMPLE QUESTIONS

SOCIETY OF ACTUARIES EXAM M ACTUARIAL MODELS EXAM M SAMPLE QUESTIONS SOCIETY OF ACTUARIES EXAM M ACTUARIAL MODELS EXAM M SAMPLE QUESTIONS Copyright 005 by the Society of Actuaries Some of the questions in this study note are taken from past SOA examinations. M-09-05 PRINTED

More information

Lecture Notes on Actuarial Mathematics

Lecture Notes on Actuarial Mathematics Lecture Notes on Actuarial Mathematics Jerry Alan Veeh May 1, 2006 Copyright 2006 Jerry Alan Veeh. All rights reserved. 0. Introduction The objective of these notes is to present the basic aspects of the

More information

PRESENT VALUE ANALYSIS. Time value of money equal dollar amounts have different values at different points in time.

PRESENT VALUE ANALYSIS. Time value of money equal dollar amounts have different values at different points in time. PRESENT VALUE ANALYSIS Time value of money equal dollar amounts have different values at different points in time. Present value analysis tool to convert CFs at different points in time to comparable values

More information

4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables 4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

More information

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8

More information

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA Features: Glass passivated junction Low incremental surge resistance, excellent clamping capability 600W peak pulse power capability with a 10/1,000μs waveform, repetition rate (duty cycle): 0.01% Very

More information

ISyE 6761 Fall 2012 Homework #2 Solutions

ISyE 6761 Fall 2012 Homework #2 Solutions 1 1. The joint p.m.f. of X and Y is (a) Find E[X Y ] for 1, 2, 3. (b) Find E[E[X Y ]]. (c) Are X and Y independent? ISE 6761 Fall 212 Homework #2 Solutions f(x, ) x 1 x 2 x 3 1 1/9 1/3 1/9 2 1/9 1/18 3

More information

Premium calculation. summer semester 2013/2014. Technical University of Ostrava Faculty of Economics department of Finance

Premium calculation. summer semester 2013/2014. Technical University of Ostrava Faculty of Economics department of Finance Technical University of Ostrava Faculty of Economics department of Finance summer semester 2013/2014 Content 1 Fundamentals Insurer s expenses 2 Equivalence principles Calculation principles 3 Equivalence

More information