# Survival Analysis: An Introduction

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Survival Analysis: An Introduction Jaine Blayney Bioinformatics, CCRCB 24/09/2012 JKB 1

2 DEFINITION OF SURVIVAL ANALYSIS Survival analysis examines and models the time it takes for events to occur. Events? Could be: recurrence of disease, death, reoffending, return to drug use... 24/09/2012 JKB 2

3 SURVIVAL TOPICS What this workshop covers: Introduction to terms commonly used in survival analysis Examples of most popular analysis techniques Suggested ways to evaluate and present results What this workshop doesn t cover: In-depth mathematical formulae, big sums! Power analysis for survival Interactions 24/09/2012 JKB 3

4 BOTH THEORY AND PRACTICE... He who loves practice without theory is like the sailor who boards ship without a rudder and compass and never knows where he may be cast." Leonardo da Vinci, /09/2012 JKB 4

5 SURVIVAL TOPICS Specific areas covered: Overall and recurrence-free survival definitions Censoring Calculating/coding recurrence-free/overall survival from data Kaplan-Meier analysis Sub-group analysis Cox Proportional Hazards Putting it all together 24/09/2012 JKB 5

6 SURVIVAL ANALYSIS - SOFTWARE Survival analysis software tools: GraphPad Prism SPSS (copy/licensing available from School/IT) R (open source: Relevant R packages: survival, survcomp, HMISC, Design, MASS 24/09/2012 JKB 6

7 OVERALL AND RECURRENCE-FREE SURVIVAL DEFINITIONS Overall Survival (OS) Overall survival refers to the time a patient survives after a particular event, e.g. date of first treatment or date of surgery. If the patient is still alive, OS is taken until the last follow-up time. If a patient has died, the end date is the date of death. This includes death from any cause. Recurrence-Free Survival (RFS) Recurrence-free survival refers to the time a patient survives without evidence of the disease. End-points will vary and definitions will depend on context. One example: if a patient recurs, RFS is taken from date of surgery/first treatment to date of recurrence. if a patient is non-recurring/alive the end date is the last follow-up. if a patient dies (non-recurring), the date of death is the end date. 24/09/2012 JKB 7

8 SURVIVAL/CENSORING Patients may have censored survival times if death or recurrence has not yet occurred (or there is no evidence to show that either has occurred). This could happen when: they drop-out of the study, e.g. they stop attending clinics for follow-up the study has a fixed time-line and recurrence or death occurs after the cut-off 24/09/2012 JKB 8

9 OVERALL SURVIVAL/CENSORING Background: We are interested in overall survival for patients (Group 1) after surgery for nonsmall-cell lung cancer (NSCLC): Patient 1A: Patient 1A dies 72 months after surgery. Uncensored, as event has occurred. Patient 1B: Patient 1B dies 36 months after surgery. Uncensored, as event has occurred. Patient 1C: Patient 1C is followed for 47 months after surgery, then stops attending clinic. They die at 58 months, though this is unknown to the study. Right-censoring (random), as they were still alive at last check-up. Adapted from: J Fox, 24/09/2012 JKB 9

10 Patient 1A Start of study OVERALL SURVIVAL/CENSORING Uncensored Patient 1B Uncensored Patient 1C Right-censored (random) Overall Survival Time (months post-surgery) Adapted from: J Fox, 10

11 Background: RECURRENCE-FREE SURVIVAL/CENSORING We are interested in recurrence-free survival (recurrence or death) for patients after surgery for non-small-cell lung cancer (NSCLC). Patient 1A: Patient 1A recurs at 49 months post surgery (dies 72 months after surgery). Uncensored, as event (recurrence) has occurred. Note: 2 events, choose first Patient 1B: Patient 1B recurs at 25 months post surgery (dies 36 months after surgery). Uncensored, as event (recurrence) has occurred. Patient 1C: Patient 1C is followed for 47 months after surgery, then stops attending clinic. There was no evidence of recurrence up to this point (they later die at 58 months, unknown to the study). Right-censoring (random), as they were still alive and non-recurring at last check-up. Adapted from: J Fox, 11

12 RECURRENCE-FREE SURVIVAL/CENSORING Patient 1A Start of study Uncensored Patient 1B Uncensored Patient 1C Right-censored (random) Recurence-Free Survival Time (months post-surgery) Adapted from: J Fox, 12

13 OVERALL SURVIVAL (60-MONTHS)/CENSORING Background: We are interested in 60-months overall survival for patients after surgery for non-small-cell lung cancer (NSCLC). Patient 1A: Patient 1A is followed for 60+ months years after surgery. They are still alive at the end of the 60 months, but die in month 72. Right-censoring (fixed), as they are still alive by the allotted time period. Patient 1B: Patient 1B dies 36 months after surgery. Uncensored, as event has occurred. Patient 1C: Patient 1C is followed for 47 months after surgery, then stops attending clinic. They die at 58 months, though this is unknown to the study. Right-censoring (random), as they were still alive at last check-up. Adapted from: J Fox, 24/09/2012 JKB 13

14 OVERALL SURVIVAL (60-MONTHS)/CENSORING Patient 1A Start of study Right-censored (fixed) End of study Patient 1B Uncensored Patient 1C Right-censored (random) Months Overall Survival Time (months post-surgery) Adapted from: J Fox, 24/09/2012 JKB 14

15 EXAMPLE SURVIVAL DATA CODING FOR EVENTS Recurring Dead/ Alive OS (mths) OS Status RFS (mths) RFS Status OS _60mnths (mths) OS_60mnths Status Patient 1A Yes Dead Patient 1B Yes Dead Patient 1C No Alive /09/2012 JKB 15

16 EXAMPLE SURVIVAL DATA CODING FOR OS EVENTS Date of Surgery Date of Recurrence Date of Death Date of Last Follow-Up Recurring Dead/ Alive OS (mths) OS Status RFS (mths) RFS Status Patient 1C 05/06/1998 NA NA 01/06/2002 No Alive Patient 1F 06/11/1999 NA NA 04/12/2004 No Alive Patient 1B 03/04/ /05/ /04/ /04/2003 No Dead Patient 1H 23/07/2002 NA 01/09/ /09/2005 No Dead Patient 1J 06/07/1999 NA 12/06/ /06/2004 No Dead Patient 1D 09/08/ /11/2003 NA 06/12/2005 Yes Alive Patient 1E 12/04/ /05/2003 NA 12/05/2005 Yes Alive Patient 1G 09/04/ /05/2001 NA 02/06/2005 Yes Alive Patient 1A 18/05/ /06/ /05/ /05/2005 Yes Dead Patient 1I 27/02/ /05/ /01/ /01/2005 Yes Dead Patient 1K 18/03/ /04/ /11/ /11/2004 Yes Dead 24/09/2012 JKB 16

17 EXAMPLE SURVIVAL DATA CODING FOR RFS EVENTS Date of Surgery Date of Recurrence Date of Death Date of Last Follow-Up Recurring Dead/ Alive OS (mths) OS Status RFS (mths) RFS Status Patient 1C 05/06/1998 NA NA 01/06/2002 NA NA Patient 1F 06/11/1999 NA NA 04/12/2004 No Alive Patient 1B 03/04/ /05/ /04/ /04/2003 No Dead Patient 1H 23/07/2002 NA 01/09/ /09/2005 No Dead Patient 1J 06/07/1999 NA 12/06/ /06/2004 No Dead Patient 1D 09/08/ /11/2003 NA 06/12/2005 Yes Alive Patient 1E 12/04/ /05/2003 NA 12/05/2005 Yes Alive Patient 1G 09/04/ /05/2001 NA 02/06/2005 Yes Alive Patient 1A 18/05/ /06/ /05/ /05/2005 Yes Dead Patient 1I 27/02/ /05/ /01/ /01/2005 Yes Dead Patient 1K 18/03/ /04/ /11/ /11/2004 Yes Dead 24/09/2012 JKB 17

18 SURVIVAL CURVES Patient Group 1 Patient 1B Patient 1H Patient 1C Patient 1D Pt Time (months) Censor 1C F B H J D E G A I K Input Output Created using: GraphPad Prism, 24/09/2012 JKB 18

19 SURVIVAL CURVES KAPLAN-MEIER Previous example of survival curve using Kaplan-Meier estimate of the survivor function Ŝ(t) = the probability that a subject survives longer than time t. Assumptions in calculating Ŝ(t): Let n j denote the number of individuals alive (at risk) just before time t(j), i.e. at the beginning of the day/week/month (including those who will die at time t(j) and those who are censored at time t(j)) Both deaths and censoring are taken as occurring immediately after time t(j), i.e. at the end of the day/week/month Let d j denote the number of failures (deaths) at time t(j), i.e. at the end of the day/week/month Survivor function, Ŝ(t), is calculated using: Alive at start of day etc Deaths at end of day etc n 1 -d 1 * n 2 -d 2 * n 3 -d 3... * n k -d k n 1 n 2 n 3 n k Adapted from: Ventre and Fine, 24/09/2012 JKB 19

20 SURVIVAL CURVES KAPLAN-MEIER t(j) event Patient 1B 36 1 Patient 1H 37 1 Patient 1C 47 0 Patient 1D 51 0 Patient 1K 55 1 Patient 1I 58 1 Patient 1J 59 1 Patient 1F 60 0 Patient 1E 61 0 Patient 1A 72 1 Patient 1G 73 0 Patient Group 1 Note: The censored cases at t(j) = 47 and 51 are omitted from n j at t(j) = 55 Likewise, the censored cases at t(j) = 60 and 61 are omitted from nj at t(j) = 72 Start of day End of day j t(j) n j d j (n j d j )/n j Ŝ(t) /09/2012 JKB 20

21 COMPARISON OF SURVIVAL CURVES KAPLAN-MEIER And if we want to compare two or more survival curves? Log-rank test is the most popular method as a test significance of significance No assumption regarding the distribution of survival times. Log-rank tests the null hypothesis that there is no difference between the populations in the probability of an event, e.g. death or recurrence, at any time point 24/09/2012 JKB 21

22 COMPARISON OF SURVIVAL CURVES LOG-RANK Group 2 Week Death (=1) Group 3 Week Death (=1) Week Overall Observed Deaths Expected Deaths Group 2 Expected Deaths Group 3 Observed Remainder Group 2 Observed Remainder Group 3 6 1/ / Total (Expected) Sum Sum Total (Observed) Χ 2 (Chi-square) statistic to test null hypothesis = (Observed Group 2 Expected Group 2) 2 + (Observed Group 3 Expected Group 3) 2 Expected Group 2 Expected Group 3 Degrees of freedom = Number of groups 1 = 2-1 = 1 From table of Χ 2 distributions, find p-value Taken from: Bland and Altman, BMJ, 328, 1073, 2004 JKB Probability that such an (extreme) chi-square value could be obtained by chance =0.05/

23 COMPARISON OF SURVIVAL CURVES LOG-RANK censored 3 censored Groups 2 and 3 be drawn from factors such as pathological staging, e.g. NSCLC Stage IA vs IB If comparing multiple groups e.g. Stage IA, IB, IIA, IIB, then need to correct for multiple comparisons Simplest method: Bonferroni correction If comparing 3 curves, Stage IA, IB, IIA, then 3 possible comparisons: IA/IB, 1A/IIA and IB/IIA Overall Comparisons Chi-Square df Sig. Log Rank (Mantel-Cox) Test of equality of survival distributions for the different levels of Group. Bonferroni correction = significance cut-off number of comparisons = 0.05/3 = Calculated using SPSS 19 using data from Bland and Altman, BMJ, 328, 1073,

24 SUB-GROUP ANALYSIS And if we want to consider the effect of other variables? E.g. How does survival differ for different age groups/pathological staging? Could separate groups eg <60yrs/Stage IA; 60yrs/Stage IA; <60yrs/Stage IB; 60yrs/Stage IB and analyse by Kaplan-Meier? Sub-group analysis, proceed with caution! (see Sleight, 2000) In retrospect, perhaps one of the most important results in the ISIS trials was the analysis of the results by astrological star sign... We were... able to divide our population into 12 subgroups by astrological star sign. Even in a highly positive trial such as ISIS-2 (International Study of Infarct Survival), in which the overall statistical benefit for aspirin over placebo was extreme (P < ), division into only 12 subgroups threw up two (Gemini and Libra) for which aspirin had a nonsignificantly adverse effect Sleight, Debate: Subgroup analyses in clinical trials: fun to look at - but don't believe them!, Curr Control Trials Cardiovasc Med, 1, 25 27, 2000 JKB 24

25 COX PROPORTIONAL HAZARDS REGRESSION MODEL If we want to consider the effect of multiple variables in relation to RFS and/or OS, consider Cox proportional hazards regression model Hazard Function and Hazard Ratio: Hazard function: h(t) is a function of the probability of an event in the time interval [t, t+i], given that the individual has survived up to time t In the single variable case eg age, given the baseline hazard function, i.e. no explanatory variable : h 0 (t) h(t) = h 0 (t)*exp(x 1 β 1 ) Not dependent on time Where X 1 is an explanatory continuous or categorical variable that is modelled to predict an individual s hazard and where β 1 is a regression coefficient of the predictor variable. Eg: model of age in ovarian cancer (estimated β 1 ) : h(t age) = h 0 (t)*exp(age * 0.02) Unit increase Taken from: 24/09/2012 JKB 25

26 COX PROPORTIONAL HAZARDS REGRESSION MODEL Hazard ratio: Consider two patients, patient 1 aged x 1 and patient 2 aged x 2. We are interested in the relationship of this covariate with RFS. Hazard Ratio = h 0 (t)exp(x 2 β) ^ ^ h 0 (t)exp(x 1 β) ^ = exp((x 2 x 1 )β) ^ β = Estimate of regression coefficient If, in this case ^ β = 0.02, and patient 1 is aged 60 and patient 2 is aged 70 then patient 2 is 1.22 (=exp(10*0.02)) times more likely to experience recurrence or death than patient 1 Cox PH Regression Model assumes proportional hazards and linearity within each group of covariates Adapted from: 24/09/2012 JKB 26

27 COX PROPORTIONAL HAZARDS REGRESSION MODEL We are interested in the effect of five covariates (only variables for which we have complete data): Histology, Performance Status, Age, Grade and Stage within three cohorts of cancer patients in relation to RFS and OS. #In R input: uni_ps <- read.table( file.txt", header= TRUE) names(uni_ps) attach(uni_ps) fitps <- coxph(surv(os, OS_event)~(PS)+strata(study), method = "breslow") summary(fitps) Input file Returns variables and attaches them to R workspace Calls Cox PH function, considering effect of covariate Performance Status (PS) on overall survival (OS and OS_event). Method can be Breslow or Efron, this refers to approach for dealing with event time ties. Efron is more accurate. Histology Histology1 Histology2 Performance Status Age (yrs) 24/09/2012 JKB 27 <60 =>60 Grade I II Stage I, II, III IV

28 COX PROPORTIONAL HAZARDS REGRESSION MODEL Hazard Ratio for unit increase in PS, values: 0, 1, 2 #In R output from summary(fitps): ^ β Output: Call: coxph(formula = Surv(OS, Os_stat) ~ (PS), data = strata(study), method = "breslow") n= 161 coef exp(coef) se(coef) z Pr(> z ) PS ** --- Signif. codes: 0 *** ** 0.01 * exp(coef) exp(-coef) lower.95 upper.95 PS P-value... 95% Confidence Interval 24/09/2012 JKB 28

29 COX PROPORTIONAL HAZARDS REGRESSION MODEL We now need to check if the covariate meets the proportional hazards assumption. #In R input: Fit from previous stage ph_fit_ps <-cox.zph(fitps, transform ='log') ph_fit_ps plot(ph_fit_ps) Returns summary abline(h=0, lty=3) Graphical plot of the Schoenfeld residuals versus log(time) #In R output: rho chisq p PS P is >0.05! Check both plots and output. PS appears to fit the PH assumption 24/09/2012 JKB 29

30 COX PROPORTIONAL HAZARDS REGRESSION MODEL NOTE: You can check the PH assumption in a number of ways including: Log-log plot By this method, a plot of the logarithm of time against the logarithm of the negative logarithm of the estimated survivor function. If curves are not crossing each other then PH assumption is satisfied. >data(leukemia) >leukemia.surv <- survfit(surv(time, status) ~ x, data = leukemia) >plot(leukemia.surv, lty = 2:3) >lsurv2 <- survfit(surv(time, status) ~ x, data= leukemia) >plot(lsurv2, lty=2:3, fun="cloglog", xlab="months", ylab="log-log survival plot") 24/09/2012 JKB 30

31 COX PROPORTIONAL HAZARDS REGRESSION MODEL And if the covariate does not meet the proportional hazards assumption? Options: Omit the covariate Check for interactions of the covariate with time (this has occurred for tumour size in both breast and lung cancer) see Fox: Stratify by the covariate #In R input: fitps <- coxph(surv(os, OS_event)~(PS)+strata(study), method = "breslow") Strata = stratified Cox model; separate baseline hazard functions are allowed for each stratum. The stratum-specific analyses are pooled to get an overall estimate. In multi-centre studies, you normally stratify by centre. Can stratify by more than one 24/09/2012 variable. JKB 31

32 COX PROPORTIONAL HAZARDS REGRESSION MODEL Next, we need to check if the covariate (continuous) is linear: Use Martingale residuals: #In R input: Graphical plot of the Martingale residuals res <- residuals(fitps, type='martingale') X <- as.matrix(uni_ps[,("ps")]) # matrix of covariates plot(x[,1], res, xlab=c("ps")[1], ylab="residuals") abline(h=0, lty=2) + lines(lowess(x[,1], res, iter=0)) In this case, PS was modelled as continuous and appears to be linear If non-linear, what do you? Consider discretizing into ranges, though be careful as these need to be meaningful cut-offs. Even then can result in serious loss of information. OR fit a spline model eg restricted cubic spline (see Harrell, 24/09/2012 help/hmisc/html/rcspline.plot.html ) JKB 32

33 COX PROPORTIONAL HAZARDS REGRESSION MODEL Consider univariate analysis, then multivariate analysis using Cox Proportional Hazards model. Definitions: Univariate One covariate similar to the log-rank test Multivariate More than one covariate. In medical science a multivariate model refers to multi-explanatory variables in relation to RFS and OS etc. However, in statistics, the term of multivariate model is used in the sense of multivariate responses (outcomes). Clearly define your terms! 24/09/2012 JKB 33

34 COX PROPORTIONAL HAZARDS REGRESSION MODEL Clinical Factor Univariate Disease-Free Survival N(n) HR CI p-value Histology Histology1 50 (24) 1 Histology2 45 (30) <0.001 Performance Status 95 (54) Age <60 46 (21) 1 =>60 44 (23) Grade I 35 (20) 1 II 60 (34) Stage I, II, III 50 (26) 1 IV 45 (28) /09/2012 JKB 34

35 COX PROPORTIONAL HAZARDS REGRESSION MODEL How to select variables to take forward into multivariate model? Not by univariate p-value, more benefit from clinical knowledge and relevance Can use Akaike s information criterion (AIC) to select variables (backward selection) Then assess quality of the fitted model using: AIC BIC (Bayesian information criterion) Deviance (-2 log likelihood) And check for discriminatory power of model using: Concordance index (c-index) 24/09/2012 JKB 35

36 COX PROPORTIONAL HAZARDS REGRESSION MODEL #In R using stepaic (Mass) fitall <- coxph(surv(os, Os_stat)~agec+histc+stagec+grade+PS+strata(study), method = "breslow") stepaic(fitall, direction=c("backward")) #Output #Output contd... Want this value as low as possible Start: AIC= Surv(OS, Os_stat) ~ agec + histc + stagec + grade + PS Df AIC - grade agec histc <none> stagec PS Step: AIC= Surv(OS, Os_stat) ~ histc + stagec + PS Df AIC - histc <none> stagec PS Step: AIC= Surv(OS, Os_stat) ~ stagec + PS Df AIC <none> stagec PS Does removal of a covariate push the AIC up? Call: coxph(formula = Surv(OS, Os_stat) ~ stagec + PS, data = strata(study), method = "breslow") coef exp(coef) se(coef) z p stagec PS Likelihood ratio test=10.6 on 2 df, p= n= /09/2012 JKB 36

37 COX PROPORTIONAL HAZARDS REGRESSION MODEL What if two (or more) models, e.g. Stage/PS and Stage/PS/Histology, produce similar values? Check AIC, BIC and deviance values, then c-index fit3 <- coxph(surv(os, Os_stat)~histc+stagec+PS+strata(study), method = "breslow") fit2 <- coxph(surv(os, Os_stat)~stagec+PS+strata(study), method = "breslow") stepaic(fit3, direction=c("backward")) stepaic(fit3, k=log(161)) anova(fit3) #AIC #BIC #Deviance #Output: deviance -> anova(fit3) -Analysis of Deviance Table - Cox model: response is Surv(OS, Os_stat) --Terms added sequentially (first to last) Look for loglik and p-value columns - loglik Chisq Df Pr(> Chi ) -NULL histc stagec PS ** -Signif. codes: 0 *** ** 0.01 * /09/2012 JKB 37

38 COX PROPORTIONAL HAZARDS REGRESSION MODEL -Output: AIC -> stepaic(fit3, direction=c("backward")) -Start: AIC= Surv(OS, Os_stat) ~ histc + stagec + PS Reference values -Output: BIC -> stepaic(fit3, k=log(161)) -Start: AIC= Surv(OS, Os_stat) ~ histc + stagec + PS - Df AIC -- histc <none> stagec PS Step: AIC= Surv(OS, Os_stat) ~ stagec + PS Does removal of a covariate push the AIC up? - Df AIC -- histc stagec <none> PS Step: AIC= Surv(OS, Os_stat) ~ stagec + PS - Df AIC -<none> stagec PS Call: -coxph(formula = Surv(OS, Os_stat) ~ stagec + PS, data = strata(study), method = "breslow") - coef exp(coef) se(coef) z p -stagec PS Likelihood ratio test=10.6 on 2 df, p= n= Df AIC -- stagec <none> PS Step: AIC= Surv(OS, Os_stat) ~ PS - Df AIC -<none> PS Call: coxph(formula = Surv(OS, Os_stat) ~ PS, data = strata(study), method = "breslow") - coef exp(coef) se(coef) z p -PS /09/2012 JKB 38 -Likelihood ratio test=6.73 on 1 df, p= n= 161

39 Deviance and BIC scores suggest a one-factor model (PS). AIC suggests a two-factor model: PS and stage Check for discriminatory power using c-index (score of 0.5 is no better than random, usually for survival models) Also parsimony principle #R input COX PROPORTIONAL HAZARDS REGRESSION MODEL fitps <- coxph(surv(os, Os_stat)~PS,strata(study), method = "breslow") fitpsstage <- coxph(surv(os, Os_stat)~stagec+PS,strata(study), method = "breslow") survconcordance(surv(os, Os_stat) ~predict(fitps), data=uni_ps) survconcordance(surv(os, Os_stat) ~predict(fitpsstage), data=uni_ps) #R input (PS only) Value for stage and PS model is higher: So go with stage and PS [1] \$stats agree disagree tied.x tied.time incomparable \$call survconcordance(formula = Surv(OS, Os_stat) ~ predict(fitps), data = uni_ps) 24/09/2012 JKB 39

40 COX PROPORTIONAL HAZARDS REGRESSION MODEL Clinical Factors Composition Grade I (50), II (45) Age Median: 63 yrs Stage I (10), II (20), III (20), IV (45) Histology Epithelial (60), Mixed (25), Sarcomatous (20) Performance status 0 (30), 1 (40), 2 (25) 95 patients used in univariate and multivariate analysis. Explain why 17 were excluded. Results: Of a total of 112 patients, those with incomplete information for the following clinical factors were excluded: histology (n = 3), stage (n = 4) and histology/staging (n = 10). The final multivariate data-set thus comprised 95 patients (Table 1). The median RFS for this group was 6.5 (CI ) months; for OS the median was 12.1 (CI ) months. 24/09/2012 JKB 40

41 COX PROPORTIONAL HAZARDS REGRESSION MODEL At least 10 events per predictor variable Results of AIC backward selection. Present final model separately Taken from: Francart J, Vaes E, Henrard S, et al: A prognostic index for progression-free survival in malignant mesothelioma with application to the design of phase II trials: A combined analysis of 10 EORTC trials. Eur J Cancer 45: ,

42 COX PROPORTIONAL HAZARDS REGRESSION MODEL More results (summary of patients)... From the 598 patients registered, 75 were excluded (for ineligibility (n = 41), for incoherent or missing data (n = 9), histological diagnosis not definite or probable (n = 25)). The remaining 523 patients were predominantly male (83%) with a performance status of 0 or 1 (86%). The median age was 58 years (range: years). Mesothelioma diagnosis was definite in 89% and probable in 11%. Histological type was epithelial in 69%, sarcomatous in 8% and mixed in 23%. Forty-one percent of patients had a stage III disease and 33% had a stage IV disease. The median WBC count, platelet count and haemoglobin concentration were /l (range: /l), /l (range: /l) and 13.2 g/dl (range: g/dl), respectively. LDH level was abnormal in 18% (58/322) and alkaline phosphatase level was abnormal in 31% (109/355). Median follow-up time was 9.9 months (IQR: months). Of the 523 patients, 485 (93%) progressed during follow-up and 445 (85%) died, leading to 3% (18/523) of progression-free survivors after the follow-up. Median survival and median PFS were 9.1 months (95% confidence interval (CI): months) and 3.9 months (95% CI: months), respectively. Taken from: Francart J, Vaes E, Henrard S, et al: A prognostic index for progression-free survival in malignant mesothelioma with application to the design of phase II trials: A combined analysis of 10 EORTC trials. Eur J Cancer 45: , /09/2012 JKB 42

43 COX PROPORTIONAL HAZARDS REGRESSION MODEL More results (reporting univariate)... In univariate analysis of PFS (Table 1), poor prognosis was associated with age < 60 years, high WBC count ( /l), haemoglobin concentration < 12 g/dl, performance status greater than 0 and an abnormal LDH level. A moderate increase in platelet count was associated with an increased risk but without reaching statistical significance; a high level was clearly significantly associated with an increased risk. Stage IV disease was associated with a poor prognosis compared with stage I and II disease. A better prognosis was associated with epithelial histological type as compared with mixed or sarcomatous type. Time interval since diagnosis (p = 0.450), gender (p = 0.875), alkaline phosphatase level (p = 0.121) and certainty of histological diagnosis (p = 0.343) did not reach significance for predicting PFS. For the variables of histological type, stage of disease and WBC count, different categories had similar HRs, and thus they were regrouped before their inclusion in the multivariate analysis. Taken from: Francart J, Vaes E, Henrard S, et al: A prognostic index for progression-free survival in malignant mesothelioma with application to the design of phase II trials: A combined analysis of 10 EORTC trials. Eur J Cancer 45: , /09/2012 JKB 43

44 COX PROPORTIONAL HAZARDS REGRESSION MODEL Risk categories were identified from Cox model based on scores for PS, histology and staging. Survival curves taken from: Francart J, Vaes E, Henrard S, et al: A prognostic index for progression-free survival in malignant mesothelioma with application to the design of phase II trials: A combined analysis of 10 EORTC trials. Eur J Cancer 45: , /09/2012 JKB 44

45 COX PROPORTIONAL HAZARDS REGRESSION MODEL Nomograms visual interpretations of Cox models.taken from: Francart J, Vaes E, Henrard S, et al: A prognostic index for progression-free survival in malignant mesothelioma with application to the design of phase II trials: A combined analysis of 10 EORTC trials. Eur J Cancer 45: , /09/2012 JKB 45

46 AND FINALLY... For further reading Anything by: Frank Harrell (both statistical theory and R implementations) Terry Therneau (statistics theory and R implementations) and Doug Altman (from a medical statistics point of view) 24/09/2012 JKB 46

47 Survival Analysis: An Introduction R Tutorial Jaine Blayney Bioinformatics, CCRCB

48 WORKING WITH SURVIVAL DATA 1 KAPLAN-MEIER ANALYSIS Data Source Reading in Data Formatting Data Load Survival Package Create a Survival Object Plot Survival Curves Compare Survival Curves 8 PRACTICE EXAMPLES 9 Question 1: Plotting/Comparing Survival Curves Part I 9 Question 2: Plotting/Comparing Survival Curves Part II 11 2 COX PROPORTIONAL HAZARDS Testing PH Assumption Testing Linearity Univariate Analysis Multivariate Analysis 19 PRACTICE EXAMPLES 21 Question 3: Developing A Cox PH Model 21 Question 4: Variable Selection 22 SUGGESTED SOLUTIONS 23 The material in this tutorial has been adapted in part from the UCLA Statistical Computing Seminars Survival Analysis Series (http://www.ats.ucla.edu/stat/) 1

49 1 KAPLAN-MEIER ANALYSIS 1.1 Data Source The hmohiv data-set is drawn from a study of HIV positive patients. The study examined whether there was a difference in survival times of HIV positive patients between those who had used intravenous drugs and those who had not. This data-set has been taken from [http://www.ats.ucla.edu/stat/r/examples/asa/asa_ch2_r.htm]. The hmohiv data-set contains the variables: patient ID, overall survival time, study entry date, date last seen/study end date, age, drug use and an event/censored variable. ID time age drug censor entdate enddate /05/ /10/ /09/ /03/ /04/ /12/ /01/ /04/ /09/ /07/ /03/ /04/ /11/ /06/ /11/ /08/

### Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne

Applied Statistics J. Blanchet and J. Wadsworth Institute of Mathematics, Analysis, and Applications EPF Lausanne An MSc Course for Applied Mathematicians, Fall 2012 Outline 1 Model Comparison 2 Model

### Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln. Log-Rank Test for More Than Two Groups

Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln Log-Rank Test for More Than Two Groups Prepared by Harlan Sayles (SRAM) Revised by Julia Soulakova (Statistics)

### Tips for surviving the analysis of survival data. Philip Twumasi-Ankrah, PhD

Tips for surviving the analysis of survival data Philip Twumasi-Ankrah, PhD Big picture In medical research and many other areas of research, we often confront continuous, ordinal or dichotomous outcomes

### 11. Analysis of Case-control Studies Logistic Regression

Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

### Linda Staub & Alexandros Gekenidis

Seminar in Statistics: Survival Analysis Chapter 2 Kaplan-Meier Survival Curves and the Log- Rank Test Linda Staub & Alexandros Gekenidis March 7th, 2011 1 Review Outcome variable of interest: time until

### Multivariate Logistic Regression

1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation

### Survival Analysis Using SPSS. By Hui Bian Office for Faculty Excellence

Survival Analysis Using SPSS By Hui Bian Office for Faculty Excellence Survival analysis What is survival analysis Event history analysis Time series analysis When use survival analysis Research interest

### Package smoothhr. November 9, 2015

Encoding UTF-8 Type Package Depends R (>= 2.12.0),survival,splines Package smoothhr November 9, 2015 Title Smooth Hazard Ratio Curves Taking a Reference Value Version 1.0.2 Date 2015-10-29 Author Artur

### Generalized Linear Models

Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the

### SUMAN DUVVURU STAT 567 PROJECT REPORT

SUMAN DUVVURU STAT 567 PROJECT REPORT SURVIVAL ANALYSIS OF HEROIN ADDICTS Background and introduction: Current illicit drug use among teens is continuing to increase in many countries around the world.

### Prostatectomy, pelvic lymphadenect. Med age 63 years Mean followup 53 months No other cancer related therapy before recurrence. Negative.

Adjuvante und Salvage Radiotherapie Ludwig Plasswilm Klinik für Radio-Onkologie, KSSG CANCER CONTROL WITH RADICAL PROSTATECTOMY ALONE IN 1,000 CONSECUTIVE PATIENTS 1983 1998 Clinical stage T1 and T2 Mean

### If several different trials are mentioned in one publication, the data of each should be extracted in a separate data extraction form.

General Remarks This template of a data extraction form is intended to help you to start developing your own data extraction form, it certainly has to be adapted to your specific question. Delete unnecessary

### Statistics in Retail Finance. Chapter 6: Behavioural models

Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

### Introduction. Survival Analysis. Censoring. Plan of Talk

Survival Analysis Mark Lunt Arthritis Research UK Centre for Excellence in Epidemiology University of Manchester 01/12/2015 Survival Analysis is concerned with the length of time before an event occurs.

### Vignette for survrm2 package: Comparing two survival curves using the restricted mean survival time

Vignette for survrm2 package: Comparing two survival curves using the restricted mean survival time Hajime Uno Dana-Farber Cancer Institute March 16, 2015 1 Introduction In a comparative, longitudinal

### Prognosis of survival for breast cancer patients

Prognosis of survival for breast cancer patients Ken Ryder Breast Cancer Unit Data Section Guy s Hospital Patrick Royston, MRC Clinical Trials Unit London Outline Introduce the data and outcomes requested

### Gamma Distribution Fitting

Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### LOGISTIC REGRESSION ANALYSIS

LOGISTIC REGRESSION ANALYSIS C. Mitchell Dayton Department of Measurement, Statistics & Evaluation Room 1230D Benjamin Building University of Maryland September 1992 1. Introduction and Model Logistic

### Simple Linear Regression One Binary Categorical Independent Variable

Simple Linear Regression Does sex influence mean GCSE score? In order to answer the question posed above, we want to run a linear regression of sgcseptsnew against sgender, which is a binary categorical

### Checking proportionality for Cox s regression model

Checking proportionality for Cox s regression model by Hui Hong Zhang Thesis for the degree of Master of Science (Master i Modellering og dataanalyse) Department of Mathematics Faculty of Mathematics and

### Survival analysis methods in Insurance Applications in car insurance contracts

Survival analysis methods in Insurance Applications in car insurance contracts Abder OULIDI 1-2 Jean-Marie MARION 1 Hérvé GANACHAUD 3 1 Institut de Mathématiques Appliquées (IMA) Angers France 2 Institut

### Correctly Compute Complex Samples Statistics

SPSS Complex Samples 16.0 Specifications Correctly Compute Complex Samples Statistics When you conduct sample surveys, use a statistics package dedicated to producing correct estimates for complex sample

### Survival Analysis of Dental Implants. Abstracts

Survival Analysis of Dental Implants Andrew Kai-Ming Kwan 1,4, Dr. Fu Lee Wang 2, and Dr. Tak-Kun Chow 3 1 Census and Statistics Department, Hong Kong, China 2 Caritas Institute of Higher Education, Hong

### # load in the files containing the methyaltion data and the source # code containing the SSRPMM functions

################ EXAMPLE ANALYSES TO ILLUSTRATE SS-RPMM ######################## # load in the files containing the methyaltion data and the source # code containing the SSRPMM functions # Note, the SSRPMM

### Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association

### CONTINUOUS VARIABLES: TO CATEGORIZE OR TO MODEL?

CONTINUOUS VARIABLES: TO CATEGORIZE OR TO MODEL? Willi Sauerbrei 1 and Patrick Royston 2 1 IMBI, University Medical Center Freiburg, Germany 2 MRC Central Trials Unit, United Kingdom wfs@imbi.uni-freiburg.de

### Yiming Peng, Department of Statistics. February 12, 2013

Regression Analysis Using JMP Yiming Peng, Department of Statistics February 12, 2013 2 Presentation and Data http://www.lisa.stat.vt.edu Short Courses Regression Analysis Using JMP Download Data to Desktop

### A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R Brian S. Everitt and Torsten Hothorn CHAPTER 6 Logistic Regression and Generalised Linear Models: Blood Screening, Women s Role in Society, and Colonic Polyps

### A new score predicting the survival of patients with spinal cord compression from myeloma

A new score predicting the survival of patients with spinal cord compression from myeloma (1) Sarah Douglas, Department of Radiation Oncology, University of Lubeck, Germany; sarah_douglas@gmx.de (2) Steven

### SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

### ANOVA. February 12, 2015

ANOVA February 12, 2015 1 ANOVA models Last time, we discussed the use of categorical variables in multivariate regression. Often, these are encoded as indicator columns in the design matrix. In [1]: %%R

### This can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form.

One-Degree-of-Freedom Tests Test for group occasion interactions has (number of groups 1) number of occasions 1) degrees of freedom. This can dilute the significance of a departure from the null hypothesis.

### Regression Modeling Strategies

Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions

### Examining a Fitted Logistic Model

STAT 536 Lecture 16 1 Examining a Fitted Logistic Model Deviance Test for Lack of Fit The data below describes the male birth fraction male births/total births over the years 1931 to 1990. A simple logistic

### Comparison of Survival Curves

Comparison of Survival Curves We spent the last class looking at some nonparametric approaches for estimating the survival function, Ŝ(t), over time for a single sample of individuals. Now we want to compare

### Adequacy of Biomath. Models. Empirical Modeling Tools. Bayesian Modeling. Model Uncertainty / Selection

Directions in Statistical Methodology for Multivariable Predictive Modeling Frank E Harrell Jr University of Virginia Seattle WA 19May98 Overview of Modeling Process Model selection Regression shape Diagnostics

### SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing lsun@smu.edu.sg

SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing lsun@smu.edu.sg IN SPSS SESSION 2, WE HAVE LEARNT: Elementary Data Analysis Group Comparison & One-way

### Introduction Objective Methods Results Conclusion

Introduction Objective Methods Results Conclusion 2 Malignant pleural mesothelioma (MPM) is the most common form of mesothelioma a rare cancer associated with long latency period (i.e. 20 to 40 years),

### Developing Business Failure Prediction Models Using SAS Software Oki Kim, Statistical Analytics

Paper SD-004 Developing Business Failure Prediction Models Using SAS Software Oki Kim, Statistical Analytics ABSTRACT The credit crisis of 2008 has changed the climate in the investment and finance industry.

### Cross Validation techniques in R: A brief overview of some methods, packages, and functions for assessing prediction models.

Cross Validation techniques in R: A brief overview of some methods, packages, and functions for assessing prediction models. Dr. Jon Starkweather, Research and Statistical Support consultant This month

### Lecture 15 Introduction to Survival Analysis

Lecture 15 Introduction to Survival Analysis BIOST 515 February 26, 2004 BIOST 515, Lecture 15 Background In logistic regression, we were interested in studying how risk factors were associated with presence

### More details on the inputs, functionality, and output can be found below.

Overview: The SMEEACT (Software for More Efficient, Ethical, and Affordable Clinical Trials) web interface (http://research.mdacc.tmc.edu/smeeactweb) implements a single analysis of a two-armed trial comparing

### Lecture 2 ESTIMATING THE SURVIVAL FUNCTION. One-sample nonparametric methods

Lecture 2 ESTIMATING THE SURVIVAL FUNCTION One-sample nonparametric methods There are commonly three methods for estimating a survivorship function S(t) = P (T > t) without resorting to parametric models:

### Basic Statistical and Modeling Procedures Using SAS

Basic Statistical and Modeling Procedures Using SAS One-Sample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Univariable survival analysis S9. Michael Hauptmann Netherlands Cancer Institute Amsterdam, The Netherlands

Univariable survival analysis S9 Michael Hauptmann Netherlands Cancer Institute Amsterdam, The Netherlands m.hauptmann@nki.nl 1 Survival analysis Cohort studies (incl. clinical trials & patient series)

### Kaplan-Meier Survival Analysis 1

Version 4.0 Step-by-Step Examples Kaplan-Meier Survival Analysis 1 With some experiments, the outcome is a survival time, and you want to compare the survival of two or more groups. Survival curves show,

### Simple Linear Regression

Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression Statistical model for linear regression Estimating

### Developing Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@

Developing Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@ Yanchun Xu, Andrius Kubilius Joint Commission on Accreditation of Healthcare Organizations,

### UNDERSTANDING CLINICAL TRIAL STATISTICS. Prepared by Urania Dafni, Xanthi Pedeli, Zoi Tsourti

UNDERSTANDING CLINICAL TRIAL STATISTICS Prepared by Urania Dafni, Xanthi Pedeli, Zoi Tsourti DISCLOSURES Urania Dafni has reported no conflict of interest Xanthi Pedeli has reported no conflict of interest

### Competing-risks regression

Competing-risks regression Roberto G. Gutierrez Director of Statistics StataCorp LP Stata Conference Boston 2010 R. Gutierrez (StataCorp) Competing-risks regression July 15-16, 2010 1 / 26 Outline 1. Overview

### Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova

### Personalized Predictive Medicine and Genomic Clinical Trials

Personalized Predictive Medicine and Genomic Clinical Trials Richard Simon, D.Sc. Chief, Biometric Research Branch National Cancer Institute http://brb.nci.nih.gov brb.nci.nih.gov Powerpoint presentations

### Lecture 16: Logistic regression diagnostics, splines and interactions. Sandy Eckel 19 May 2007

Lecture 16: Logistic regression diagnostics, splines and interactions Sandy Eckel seckel@jhsph.edu 19 May 2007 1 Logistic Regression Diagnostics Graphs to check assumptions Recall: Graphing was used to

### 7. Tests of association and Linear Regression

7. Tests of association and Linear Regression In this chapter we consider 1. Tests of Association for 2 qualitative variables. 2. Measures of the strength of linear association between 2 quantitative variables.

### Regression in ANOVA. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Regression in ANOVA James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 30 Regression in ANOVA 1 Introduction 2 Basic Linear

### Size of a study. Chapter 15

Size of a study 15.1 Introduction It is important to ensure at the design stage that the proposed number of subjects to be recruited into any study will be appropriate to answer the main objective(s) of

### Guide to Biostatistics

MedPage Tools Guide to Biostatistics Study Designs Here is a compilation of important epidemiologic and common biostatistical terms used in medical research. You can use it as a reference guide when reading

### Introduction to Survival Analysis

John Fox Lecture Notes Introduction to Survival Analysis Copyright 2014 by John Fox Introduction to Survival Analysis 1 1. Introduction I Survival analysis encompasses a wide variety of methods for analyzing

### Psychology 205: Research Methods in Psychology

Psychology 205: Research Methods in Psychology Using R to analyze the data for study 2 Department of Psychology Northwestern University Evanston, Illinois USA November, 2012 1 / 38 Outline 1 Getting ready

### 5. Ordinal regression: cumulative categories proportional odds. 6. Ordinal regression: comparison to single reference generalized logits

Lecture 23 1. Logistic regression with binary response 2. Proc Logistic and its surprises 3. quadratic model 4. Hosmer-Lemeshow test for lack of fit 5. Ordinal regression: cumulative categories proportional

### Understanding Clinical Trials

Understanding Clinical Trials HR =.6 (CI :.51.7) p

### SUGI 29 Statistics and Data Analysis

Paper 194-29 Head of the CLASS: Impress your colleagues with a superior understanding of the CLASS statement in PROC LOGISTIC Michelle L. Pritchard and David J. Pasta Ovation Research Group, San Francisco,

### Categorical Data Analysis

Richard L. Scheaffer University of Florida The reference material and many examples for this section are based on Chapter 8, Analyzing Association Between Categorical Variables, from Statistical Methods

### Modeling the Claim Duration of Income Protection Insurance Policyholders Using Parametric Mixture Models

Modeling the Claim Duration of Income Protection Insurance Policyholders Using Parametric Mixture Models Abstract This paper considers the modeling of claim durations for existing claimants under income

### Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate

### Students' Opinion about Universities: The Faculty of Economics and Political Science (Case Study)

Cairo University Faculty of Economics and Political Science Statistics Department English Section Students' Opinion about Universities: The Faculty of Economics and Political Science (Case Study) Prepared

### Chapter 15. Mixed Models. 15.1 Overview. A flexible approach to correlated data.

Chapter 15 Mixed Models A flexible approach to correlated data. 15.1 Overview Correlated data arise frequently in statistical analyses. This may be due to grouping of subjects, e.g., students within classrooms,

### Komorbide brystkræftpatienter kan de tåle behandling? Et registerstudie baseret på Danish Breast Cancer Cooperative Group

Komorbide brystkræftpatienter kan de tåle behandling? Et registerstudie baseret på Danish Breast Cancer Cooperative Group Lotte Holm Land MD, ph.d. Onkologisk Afd. R. OUH Kræft og komorbiditet - alle skal

### Logistic regression diagnostics

Logistic regression diagnostics Biometry 755 Spring 2009 Logistic regression diagnostics p. 1/28 Assessing model fit A good model is one that fits the data well, in the sense that the values predicted

Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.

### Lecture - 32 Regression Modelling Using SPSS

Applied Multivariate Statistical Modelling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 32 Regression Modelling Using SPSS (Refer

### Package dsmodellingclient

Package dsmodellingclient Maintainer Author Version 4.1.0 License GPL-3 August 20, 2015 Title DataSHIELD client site functions for statistical modelling DataSHIELD

### , then the form of the model is given by: which comprises a deterministic component involving the three regression coefficients (

Multiple regression Introduction Multiple regression is a logical extension of the principles of simple linear regression to situations in which there are several predictor variables. For instance if we

### SAS Syntax and Output for Data Manipulation:

Psyc 944 Example 5 page 1 Practice with Fixed and Random Effects of Time in Modeling Within-Person Change The models for this example come from Hoffman (in preparation) chapter 5. We will be examining

### Design and Analysis of Equivalence Clinical Trials Via the SAS System

Design and Analysis of Equivalence Clinical Trials Via the SAS System Pamela J. Atherton Skaff, Jeff A. Sloan, Mayo Clinic, Rochester, MN 55905 ABSTRACT An equivalence clinical trial typically is conducted

### IBM SPSS Complex Samples

IBM Software IBM SPSS Complex Samples 20 IBM SPSS Complex Samples Correctly compute complex samples statistics Highlights Produce correct estimates for complex sample data. Increase the precision of your

### Topic 3 - Survival Analysis

Topic 3 - Survival Analysis 1. Topics...2 2. Learning objectives...3 3. Grouped survival data - leukemia example...4 3.1 Cohort survival data schematic...5 3.2 Tabulation of events and time at risk...6

### Effect of Risk and Prognosis Factors on Breast Cancer Survival: Study of a Large Dataset with a Long Term Follow-up

Georgia State University ScholarWorks @ Georgia State University Mathematics Theses Department of Mathematics and Statistics 7-28-2012 Effect of Risk and Prognosis Factors on Breast Cancer Survival: Study

### How to set the main menu of STATA to default factory settings standards

University of Pretoria Data analysis for evaluation studies Examples in STATA version 11 List of data sets b1.dta (To be created by students in class) fp1.xls (To be provided to students) fp1.txt (To be

### E(y i ) = x T i β. yield of the refined product as a percentage of crude specific gravity vapour pressure ASTM 10% point ASTM end point in degrees F

Random and Mixed Effects Models (Ch. 10) Random effects models are very useful when the observations are sampled in a highly structured way. The basic idea is that the error associated with any linear,

### A new score predicting the survival of patients with spinal cord compression from myeloma

A new score predicting the survival of patients with spinal cord compression from myeloma (1) Sarah Douglas, Department of Radiation Oncology, University of Lubeck, Germany; sarah_douglas@gmx.de (2) Steven

### Chi Squared and Fisher's Exact Tests. Observed vs Expected Distributions

BMS 617 Statistical Techniques for the Biomedical Sciences Lecture 11: Chi-Squared and Fisher's Exact Tests Chi Squared and Fisher's Exact Tests This lecture presents two similarly structured tests, Chi-squared

### Introduction to survival analysis

Chapter Introduction to survival analysis. Introduction In this chapter we examine another method used in the analysis of intervention trials, cohort studies and data routinely collected by hospital and

### Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

### Sonneveld, P; de Ridder, M; van der Lelie, H; et al. J Clin Oncology, 13 (10) : 2530-2539 Oct 1995

Comparison of Doxorubicin and Mitoxantrone in the Treatment of Elderly Patients with Advanced Diffuse Non-Hodgkin's Lymphoma Using CHOP Versus CNOP Chemotherapy. Sonneveld, P; de Ridder, M; van der Lelie,

### Profile Likelihood Confidence Intervals for GLM s

Profile Likelihood Confidence Intervals for GLM s The standard procedure for computing a confidence interval (CI) for a parameter in a generalized linear model is by the formula: estimate ± percentile

### L Lang-Lazdunski, A Bille, S Marshall, R Lal, D Landau, J Spicer

Pleurectomy/decortication, hyperthermic pleural lavage with povidone-iodine and systemic chemotherapy in malignant pleural mesothelioma. A 10-year experience. L Lang-Lazdunski, A Bille, S Marshall, R Lal,

### Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

### Ordinal Regression. Chapter

Ordinal Regression Chapter 4 Many variables of interest are ordinal. That is, you can rank the values, but the real distance between categories is unknown. Diseases are graded on scales from least severe

### Temporal Trends in Demographics and Overall Survival of Non Small-Cell Lung Cancer Patients at Moffitt Cancer Center From 1986 to 2008

Special Report Temporal Trends in Demographics and Overall Survival of Non Small-Cell Lung Cancer Patients at Moffitt Cancer Center From 1986 to 2008 Matthew B. Schabath, PhD, Zachary J. Thompson, PhD,

Modelling and added value Course: Statistical Evaluation of Diagnostic and Predictive Models Thomas Alexander Gerds (University of Copenhagen) Summer School, Barcelona, June 30, 2015 1 / 53 Multiple regression

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### Statistical Modeling Using SAS

Statistical Modeling Using SAS Xiangming Fang Department of Biostatistics East Carolina University SAS Code Workshop Series 2012 Xiangming Fang (Department of Biostatistics) Statistical Modeling Using

### Primary Prevention of Cardiovascular Disease with a Mediterranean diet

Primary Prevention of Cardiovascular Disease with a Mediterranean diet Alejandro Vicente Carrillo, Brynja Ingadottir, Anne Fältström, Evelyn Lundin, Micaela Tjäderborn GROUP 2 Background The traditional