Synergistic Sensor Location for Cost-Effective Traffic Monitoring

Size: px
Start display at page:

Download "Synergistic Sensor Location for Cost-Effective Traffic Monitoring"

Transcription

1 Synergistic Sensor Location for Cost-Effective Traffic Monitoring ManWo Ng, Ph.D. Assistant Professor Department of Modeling, Simulation and Visualization Engineering & Department of Civil and Environmental Engineering Web: April 10, 2012

2 Synergistic Sensor Location: The Idea Given that we are interested in monitoring traffic in an entire region (e.g. CBD, city, etc.), do we need to monitor all locations? Answer: Generally, yes. The answer can be no, provided that we can live with inferred traffic conditions. How do we make use of this fundamental notion of flow conservation to determine the minimum number of locations to monitor in an entire network?

3 Outline Some small examples to illustrate the methodology. Details are quite technical and, hence, omitted. Problem variations. Summary. Questions/ feedback.

4 Synergistic Sensor Location : A Simple Example S S i i i S S Vehicular flow conservation. Hence, in order to determine all 7 link flows, we ONLY need to measure 4 (v A,v R1,v R2,v R3 ). FHWA s ramp balancing/ ramp counting procedure.

5 Our Contribution: Generalization FHWA s ramp counting procedure is limited to very special network topologies. We developed a generalization of the ramp counting procedure applicable for arbitrary network topologies. Cost-savings are now within reach: What if instead of 400 locations (say) in our road network, we only need to monitor 200 locations (say), preserving the same amount of information?

6 A More Complicated Example 14 links

7 One Possible Solution? How about we monitor the traffic at the blue arcs/ links? Can we infer the uncounted red arcs/links from them?

8 How about this Solution? Hence, choosing wisely is critical!

9 Two Remarks In both suggested solutions, it was assumed that 9 links to be monitored. It can be shown that this is the minimum number of links possible. The details of the methodology are highly technical (involves abstract concepts from linear algebra), and hence, not discussed here.

10 A Last Example 20 links network How many links/ locations do we need to monitor? What is the minimum number and locations?

11 Another Solution? Hence, there are multiple optimal monitoring strategies. That is, there is flexibility for us to choose. E.g. if we must monitor location x Finally, we CANNOT count less than 14 locations/ links.

12 Large-Scale Implementation Ready These toy networks were relatively easy to address. How about for huge, real-world networks? How to determine the minimum number of monitoring locations (and where they are) is far from trivial for large-scale networks. Our research group has developed an efficient algorithm that makes it possible to address transportation networks of realistic size.

13 Other Variations of the Problem Variation 1: Given that we can monitor at most n locations (e.g. due to budgetary constraints), what locations should we choose in order to maximize the amount of info we gain? Variation 2: How do we combine this technique with existing sensor equipment on the road to maximize the monitoring coverage? Variation 3: Given that we need to observe traffic at m given/ specified locations, what is the minimum number of locations to monitor and where are they? Etc.

14 Summary The presented technique is able to determine: The minimum number of locations to be counted. Where these locations are. Consequently, it has the potential to save $$. Exact savings depend on: Network topology. Number of locations observable Number of sensors installed Budget Synergy increases with the number of monitored locations. Other traffic info, e.g. turning ratios, route flows (e.g. via blue tooth technology) can possibly be incorporated too.

15 Actual Deployment Practice-ready. (Thanks to Frank Hickman and his team for valuable feedback!) Technique is independent of sensor technology (blue tooth, camera s, loop detectors etc.). Currently looking for opportunities to have this technique implemented.

16 Thank you! Questions/ Thoughts?

Efficient Discovery of Load-Balanced Paths. Alistair King al@bellstreet.co.nz

Efficient Discovery of Load-Balanced Paths. Alistair King al@bellstreet.co.nz Efficient Discovery of Load-Balanced Paths Alistair King al@bellstreet.co.nz Load-Balancer Traceroute Gives confidence that the complete topology has been discovered. Probes each TTL repeatedly to discover

More information

A Tool For Active FLEET Management and Analysis of Activities of a Snow PlowING and a Road Salting Fleet

A Tool For Active FLEET Management and Analysis of Activities of a Snow PlowING and a Road Salting Fleet A Tool For Active FLEET Management and Analysis Activities a Snow PlowING and a Road Salting Fleet Rok Strašek, Tina Vukasović Abstract - Current economic crisis combined with increasing fuel costs rises

More information

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Nil Items included with

More information

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s). Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,

More information

A RFID Data-Cleaning Algorithm Based on Communication Information among RFID Readers

A RFID Data-Cleaning Algorithm Based on Communication Information among RFID Readers , pp.155-164 http://dx.doi.org/10.14257/ijunesst.2015.8.1.14 A RFID Data-Cleaning Algorithm Based on Communication Information among RFID Readers Yunhua Gu, Bao Gao, Jin Wang, Mingshu Yin and Junyong Zhang

More information

Load Balancing in Structured Peer to Peer Systems

Load Balancing in Structured Peer to Peer Systems Load Balancing in Structured Peer to Peer Systems DR.K.P.KALIYAMURTHIE 1, D.PARAMESWARI 2 Professor and Head, Dept. of IT, Bharath University, Chennai-600 073 1 Asst. Prof. (SG), Dept. of Computer Applications,

More information

Load Balancing in Structured Peer to Peer Systems

Load Balancing in Structured Peer to Peer Systems Load Balancing in Structured Peer to Peer Systems Dr.K.P.Kaliyamurthie 1, D.Parameswari 2 1.Professor and Head, Dept. of IT, Bharath University, Chennai-600 073. 2.Asst. Prof.(SG), Dept. of Computer Applications,

More information

OVERVIEW OF MOTORWAY NETWORK TRAFFIC CONTROL STRATEGIES

OVERVIEW OF MOTORWAY NETWORK TRAFFIC CONTROL STRATEGIES OVERVIEW OF MOTORWAY NETWORK TRAFFIC CONTROL STRATEGIES Apostolos Kotsialos, and Markos Papageorgiou Dynamic Systems and Simulation Laboratory Technical University of Crete, Greece E-mail: appie@dssl.tuc.gr,

More information

How cloud-based systems and machine-driven big data can contribute to the development of autonomous vehicles

How cloud-based systems and machine-driven big data can contribute to the development of autonomous vehicles How cloud-based systems and machine-driven big data can contribute to the development of autonomous vehicles David Fidalgo- Altran Senior Business Manager CONTENTS I. Altran Group/ Intelligence Systems

More information

INVESTIGATION OF ASIM 29X, CANOGA, RTMS, SAS-1, SMARTSENSOR, TIRTL & OTHER SENSORS FOR AUTOMATIC VEHICLE CLASSIFICATION

INVESTIGATION OF ASIM 29X, CANOGA, RTMS, SAS-1, SMARTSENSOR, TIRTL & OTHER SENSORS FOR AUTOMATIC VEHICLE CLASSIFICATION INVESTIGATION OF ASIM 29X, CANOGA, RTMS, SAS-1, SMARTSENSOR, TIRTL & OTHER SENSORS FOR AUTOMATIC VEHICLE CLASSIFICATION RESEARCH NEED This research will add to the national and local state-of-the-art on

More information

We shall turn our attention to solving linear systems of equations. Ax = b

We shall turn our attention to solving linear systems of equations. Ax = b 59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system

More information

CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS

CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 137 CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 8.1 CONCLUSION In this thesis, efficient schemes have been designed and analyzed to control congestion and distribute the load in the routing process of

More information

Traffic Simulation Modeling: VISSIM. Koh S.Y Doina 1 and Chin H.C 2

Traffic Simulation Modeling: VISSIM. Koh S.Y Doina 1 and Chin H.C 2 Traffic Simulation Modeling: VISSIM Koh S.Y Doina 1 and Chin H.C 2 Faculty of Engineering, Civil Engineering Department, National University of Singapore ABSTRACT This Undergraduate Research Opportunity

More information

{p t [D1t(p t ) + D2t(p t )]}. Proposition 1. With a dynamic centralized pricing mechanism, p cen

{p t [D1t(p t ) + D2t(p t )]}. Proposition 1. With a dynamic centralized pricing mechanism, p cen On Profitability and Efficiency of Wireless Mesh Networks Fang Fang, College of Business Administration, Cal State San Marcos, fangfang@csusm.edu; Lili Qiu, Department of Computer Science, The Univ of

More information

EMERGING FRONTIERS AND FUTURE DIRECTIONS FOR PREDICTIVE ANALYTICS, VERSION 4.0

EMERGING FRONTIERS AND FUTURE DIRECTIONS FOR PREDICTIVE ANALYTICS, VERSION 4.0 EMERGING FRONTIERS AND FUTURE DIRECTIONS FOR PREDICTIVE ANALYTICS, VERSION 4.0 ELINOR L. VELASQUEZ Dedicated to the children and the young people. Abstract. This is an outline of a new field in predictive

More information

10/14/11. Big data in science Application to large scale physical systems

10/14/11. Big data in science Application to large scale physical systems Big data in science Application to large scale physical systems Large scale physical systems Large scale systems with spatio-temporal dynamics Propagation of pollutants in air, Water distribution networks,

More information

1 Definitions. Supplementary Material for: Digraphs. Concept graphs

1 Definitions. Supplementary Material for: Digraphs. Concept graphs Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.

More information

Scaling 10Gb/s Clustering at Wire-Speed

Scaling 10Gb/s Clustering at Wire-Speed Scaling 10Gb/s Clustering at Wire-Speed InfiniBand offers cost-effective wire-speed scaling with deterministic performance Mellanox Technologies Inc. 2900 Stender Way, Santa Clara, CA 95054 Tel: 408-970-3400

More information

Evaluation of a New Method for Measuring the Internet Degree Distribution: Simulation Results

Evaluation of a New Method for Measuring the Internet Degree Distribution: Simulation Results Evaluation of a New Method for Measuring the Internet Distribution: Simulation Results Christophe Crespelle and Fabien Tarissan LIP6 CNRS and Université Pierre et Marie Curie Paris 6 4 avenue du président

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

Network analysis and dimensioning course project

Network analysis and dimensioning course project Network analysis and dimensioning course project Alexander Pyattaev March 10, 2014 Email: alexander.pyattaev@tut.fi 1 Project description Your task in this project is to be a network architect. You will

More information

The Basics of Graphical Models

The Basics of Graphical Models The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures

More information

Integrating Systems Engineering Concepts into Transportation Research, Education, and Practice

Integrating Systems Engineering Concepts into Transportation Research, Education, and Practice Integrating Systems Engineering Concepts into Transportation Research, Education, and Practice John Collura, Ph.D., P.E. Professor of Civil and Environmental Engineering University of Massachusetts at

More information

Eighth Annual Student Research Forum

Eighth Annual Student Research Forum Eighth Annual Student Research Forum February 18, 2011 COMPUTER SCIENCE AND COMPUTATIONAL SCIENCE PRESENTATION SCHEDULE Session Chair: Dr. George Miminis Head, Computer Science: Dr. Edward Brown Director,

More information

Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

Recommendations in Mobile Environments. Professor Hui Xiong Rutgers Business School Rutgers University. Rutgers, the State University of New Jersey

Recommendations in Mobile Environments. Professor Hui Xiong Rutgers Business School Rutgers University. Rutgers, the State University of New Jersey 1 Recommendations in Mobile Environments Professor Hui Xiong Rutgers Business School Rutgers University ADMA-2014 Rutgers, the State University of New Jersey Big Data 3 Big Data Application Requirements

More information

NP-Completeness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness

NP-Completeness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce

More information

Vehicular Cloud. Fan Zhang

Vehicular Cloud. Fan Zhang Vehicular Cloud Fan Zhang Outline VANET Cloud computing Vehicular cloud: motivation and concept Application scenarios Challenges: architecture/security Data forwarding Questions VANET Deliver timely information

More information

VDI 2206 Prof. Dr. Magdy M. Abdelhameed

VDI 2206 Prof. Dr. Magdy M. Abdelhameed Course Code: MDP 454, Course Name:, Second Semester 2014 VDI 2206 Mechatronics System Design The mechatronic design methodology is based on a concurrent (instead of sequential) approach to discipline design,

More information

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 12: June 22, 2012. Abstract. Review session.

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 12: June 22, 2012. Abstract. Review session. June 23, 2012 1 review session Basic Data Analysis Stephen Turnbull Business Administration and Public Policy Lecture 12: June 22, 2012 Review session. Abstract Quantitative methods in business Accounting

More information

INTERACTIVE TRAINING SOFTWARE FOR OPTIMUM TRAVEL ROUTE ANALYSIS APPLICATIONS IN RAILWAY NETWORKS

INTERACTIVE TRAINING SOFTWARE FOR OPTIMUM TRAVEL ROUTE ANALYSIS APPLICATIONS IN RAILWAY NETWORKS 1. Uluslar arası Raylı Sistemler Mühendisliği Çalıştayı (IWRSE 12), 11-13 Ekim 2012, Karabük, Türkiye INTERACTIVE TRAINING SOFTWARE FOR OPTIMUM TRAVEL ROUTE ANALYSIS APPLICATIONS IN RAILWAY NETWORKS Abstract

More information

EFFICIENT DETECTION IN DDOS ATTACK FOR TOPOLOGY GRAPH DEPENDENT PERFORMANCE IN PPM LARGE SCALE IPTRACEBACK

EFFICIENT DETECTION IN DDOS ATTACK FOR TOPOLOGY GRAPH DEPENDENT PERFORMANCE IN PPM LARGE SCALE IPTRACEBACK EFFICIENT DETECTION IN DDOS ATTACK FOR TOPOLOGY GRAPH DEPENDENT PERFORMANCE IN PPM LARGE SCALE IPTRACEBACK S.Abarna 1, R.Padmapriya 2 1 Mphil Scholar, 2 Assistant Professor, Department of Computer Science,

More information

URBAN MOBILITY IN CLEAN, GREEN CITIES

URBAN MOBILITY IN CLEAN, GREEN CITIES URBAN MOBILITY IN CLEAN, GREEN CITIES C. G. Cassandras Division of Systems Engineering and Dept. of Electrical and Computer Engineering and Center for Information and Systems Engineering Boston University

More information

Real Time Traffic Monitoring With Bayesian Belief Networks

Real Time Traffic Monitoring With Bayesian Belief Networks Real Time Traffic Monitoring With Bayesian Belief Networks Sicco Pier van Gosliga TNO Defence, Security and Safety, P.O.Box 96864, 2509 JG The Hague, The Netherlands +31 70 374 02 30, sicco_pier.vangosliga@tno.nl

More information

Dynamic Vehicle Routing in MATSim

Dynamic Vehicle Routing in MATSim Poznan University of Technology Department of Motor Vehicles and Road Transport ZPSiTD Dynamic Vehicle Routing in MATSim Simulation and Optimization Michal Maciejewski michal.maciejewski@put.poznan.pl

More information

Enhancing BoD Services based on Virtual Network Topology Control

Enhancing BoD Services based on Virtual Network Topology Control NTT Network Service Systems Laboratories Enhancing BoD Services based on Virtual Network Topology Control T. Miyamura E. Oki I. Inoue K. Shiomoto NTT Network Service Systems Labs. Today s BoD service application

More information

Using Big Data and Efficient Methods to Capture Stochasticity for Calibration of Macroscopic Traffic Simulation Models

Using Big Data and Efficient Methods to Capture Stochasticity for Calibration of Macroscopic Traffic Simulation Models CIVIL AND ENVIRONMENTAL ENGINEERING Using Big Data and Efficient Methods to Capture Stochasticity for Calibration of Macroscopic Traffic Simulation Models Sandeep Mudigonda 1, Kaan Ozbay 2 1 Department

More information

The Business of Enrollment Management: Focus on Transfer Students. By: Tom von Gunden, Ph.D., corporate strategy lead, Hyland Software

The Business of Enrollment Management: Focus on Transfer Students. By: Tom von Gunden, Ph.D., corporate strategy lead, Hyland Software The Business of Enrollment Management: Focus on Transfer Students By: Tom von Gunden, Ph.D., corporate strategy lead, Hyland Software TABLE OF CONTENTS INTRODUCTION... 3 THE NEED FOR SPEED... 4 STAYING

More information

Session 54 PD, Credibility and Pooling for Group Life and Disability Insurance Moderator: Paul Luis Correia, FSA, CERA, MAAA

Session 54 PD, Credibility and Pooling for Group Life and Disability Insurance Moderator: Paul Luis Correia, FSA, CERA, MAAA Session 54 PD, Credibility and Pooling for Group Life and Disability Insurance Moderator: Paul Luis Correia, FSA, CERA, MAAA Presenters: Paul Luis Correia, FSA, CERA, MAAA Brian N. Dunham, FSA, MAAA Credibility

More information

Doppler Traffic Flow Sensor For Traveler Information Systems. October, 2007 1

Doppler Traffic Flow Sensor For Traveler Information Systems. October, 2007 1 Doppler Traffic Flow Sensor For Traveler Information Systems October, 2007 1 Traffic congestion costs $70B a year Road construction can t keep up with demand Congestion spreading to smaller cities Many

More information

CS 325 Computer Graphics

CS 325 Computer Graphics CS 325 Computer Graphics 01 / 25 / 2016 Instructor: Michael Eckmann Today s Topics Review the syllabus Review course policies Color CIE system chromaticity diagram color gamut, complementary colors, dominant

More information

Flexible mobility management strategy in cellular networks

Flexible mobility management strategy in cellular networks Flexible mobility management strategy in cellular networks JAN GAJDORUS Department of informatics and telecommunications (161114) Czech technical university in Prague, Faculty of transportation sciences

More information

Universal Life Insurance

Universal Life Insurance Universal Life Insurance Lecture: Weeks 11-12 Thanks to my friend J. Dhaene, KU Leuven, for ideas here drawn from his notes. Lecture: Weeks 11-12 (STT 456) Universal Life Insurance Spring 2015 - Valdez

More information

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n. ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

More information

Adaptive Probing: A Monitoring-Based Probing Approach for Fault Localization in Networks

Adaptive Probing: A Monitoring-Based Probing Approach for Fault Localization in Networks Adaptive Probing: A Monitoring-Based Probing Approach for Fault Localization in Networks Akshay Kumar *, R. K. Ghosh, Maitreya Natu *Student author Indian Institute of Technology, Kanpur, India Tata Research

More information

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - nzarrin@qiau.ac.ir

More information

Monitoring and evaluation of walking and cycling (draft)

Monitoring and evaluation of walking and cycling (draft) Sustrans Design Manual Chapter 16 Monitoring and evaluation of walking and cycling (draft) November 2014 September 2014 1 About Sustrans Sustrans makes smarter travel choices possible, desirable and inevitable.

More information

Custom Web Development Guidelines

Custom Web Development Guidelines Introduction Custom Web Development Guidelines Unlike shrink wrap software, custom software development involves a partnership between the architect/programmer/developer (SonicSpider) and the owner/testers/users

More information

Analysis of Distributed Algorithms for Density Estimation in VANETs (Poster)

Analysis of Distributed Algorithms for Density Estimation in VANETs (Poster) 2012 IEEE Vehicular Networking Conference (VNC) Analysis of Distributed Algorithms for Density Estimation in VANETs (Poster) Nabeel Akhtar, Sinem Coleri Ergen and Oznur Ozkasap Department of Computer Engineering

More information

Traffic Monitoring Guide May 1, 2001. Traffic Volume Monitoring

Traffic Monitoring Guide May 1, 2001. Traffic Volume Monitoring Traffic Volume Monitoring SECTION 3 CONTENTS Section Page CHAPTER 1 INTRODUCTION...3-1 Traffic Volume Data Collection...3-1 Objectives of the Traffic Volume Monitoring Program...3-2 Organization of This

More information

CS4025: Pragmatics. Resolving referring Expressions Interpreting intention in dialogue Conversational Implicature

CS4025: Pragmatics. Resolving referring Expressions Interpreting intention in dialogue Conversational Implicature CS4025: Pragmatics Resolving referring Expressions Interpreting intention in dialogue Conversational Implicature For more info: J&M, chap 18,19 in 1 st ed; 21,24 in 2 nd Computing Science, University of

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

Probability Using Dice

Probability Using Dice Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you

More information

Tools and Operational Data Available. 15.12.2015 1 st RESOLUTE Workshop, Florence

Tools and Operational Data Available. 15.12.2015 1 st RESOLUTE Workshop, Florence Tools and Operational Data Available Athens Transport Tools and Operational Data Operations Control Center (OCC): mimic panels, operations modi (full, downgraded, manual) Metro Security Systems: sensors

More information

CARMESH. Deliverable 1.1 Summary. Title: Modeling User Demand & Telematics Services

CARMESH. Deliverable 1.1 Summary. Title: Modeling User Demand & Telematics Services CARMESH IAPP-2008-230684 CARMESH Deliverable 1.1 Summary Title: Modeling User Demand & Telematics Services 1. Introduction In order to build the Carmesh system it is important to start with extensive system

More information

Testing Intelligent Device Communications in a Distributed System

Testing Intelligent Device Communications in a Distributed System Testing Intelligent Device Communications in a Distributed System David Goughnour (Triangle MicroWorks), Joe Stevens (Triangle MicroWorks) dgoughnour@trianglemicroworks.com United States Smart Grid systems

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

UNITED TECHNOLOGIES CARRIER CORPORATION. Remote Monitoring MONITORING YOUR BUILDING 24/7 SO YOU DON T HAVE TO

UNITED TECHNOLOGIES CARRIER CORPORATION. Remote Monitoring MONITORING YOUR BUILDING 24/7 SO YOU DON T HAVE TO UNITED TECHNOLOGIES CARRIER CORPORATION Remote Monitoring MONITORING YOUR BUILDING 24/7 SO YOU DON T HAVE TO One Source for Total Peace of Mind HVAC/R systems represent one of the largest investments in

More information

INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users

INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users INSTRUCTOR WORKBOOK for MATLAB /Simulink Users Developed by: Amir Haddadi, Ph.D., Quanser Peter Martin, M.A.SC., Quanser Quanser educational solutions are powered by: CAPTIVATE. MOTIVATE. GRADUATE. PREFACE

More information

A SIMULATION STUDY FOR T0/T1 DATA REPLICATION AND PRODUCTION ACTIVITIES. Iosif C. Legrand *

A SIMULATION STUDY FOR T0/T1 DATA REPLICATION AND PRODUCTION ACTIVITIES. Iosif C. Legrand * A SIMULATION STUDY FOR T0/T1 DATA REPLICATION AND PRODUCTION ACTIVITIES Iosif C. Legrand * Ciprian Mihai Dobre**, Ramiro Voicu**, Corina Stratan**, Catalin Cirstoiu**, Lucian Musat** * California Institute

More information

IBM G-Cloud IBM SPSS Decision Management Software as a Service

IBM G-Cloud IBM SPSS Decision Management Software as a Service IBM G-Cloud IBM SPSS Decision Management Software as a Service Service Definition 1 1. Summary 1.1 Service Description IBM SPSS Decision Management Software as a Service (SaaS) offers another way of delivering

More information

A REPORT ON ANALYSIS OF OSPF ROUTING PROTOCOL NORTH CAROLINA STATE UNIVERSITY

A REPORT ON ANALYSIS OF OSPF ROUTING PROTOCOL NORTH CAROLINA STATE UNIVERSITY A REPORT ON ANALYSIS OF OSPF ROUTING PROTOCOL Using OPNET 14.5 Modeler NORTH CAROLINA STATE UNIVERSITY SUBMITTED BY: SHOBHANK SHARMA ssharma5@ncsu.edu Page 1 ANALYSIS OF OSPF ROUTING PROTOCOL A. Introduction

More information

The degree of a polynomial function is equal to the highest exponent found on the independent variables.

The degree of a polynomial function is equal to the highest exponent found on the independent variables. DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

Joint Optimization of Routing and Radio Configuration in Fixed Wireless Networks

Joint Optimization of Routing and Radio Configuration in Fixed Wireless Networks Joint Optimization of Routing and Radio Configuration in Fixed Wireless Networks David Coudert, Napoleão Nepomuceno, Hervé Rivano Projet Mascotte, I3S(CNRS-UNSA) INRIA Réunion Mascotte, March 2009 MASCOTTE

More information

https://runtimeverification.com Grigore Rosu Founder, President and CEO Professor of Computer Science, University of Illinois

https://runtimeverification.com Grigore Rosu Founder, President and CEO Professor of Computer Science, University of Illinois https://runtimeverification.com Grigore Rosu Founder, President and CEO Professor of Computer Science, University of Illinois Runtime Verification, Inc. (RV): startup company aimed at bringing the best

More information

Transportation Asset Management

Transportation Asset Management Transportation Asset Management The Role of Engineering Economic Analysis Presented by: Eric Gabler Economist, Office of Asset Management Federal Highway Administration Introduction The mission of the

More information

MINITAB ASSISTANT WHITE PAPER

MINITAB ASSISTANT WHITE PAPER MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

More information

Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques

Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques Robert Rohde Lead Scientist, Berkeley Earth Surface Temperature 1/15/2013 Abstract This document will provide a simple illustration

More information

A Quantitative Decision Support Framework for Optimal Railway Capacity Planning

A Quantitative Decision Support Framework for Optimal Railway Capacity Planning A Quantitative Decision Support Framework for Optimal Railway Capacity Planning Y.C. Lai, C.P.L. Barkan University of Illinois at Urbana-Champaign, Urbana, USA Abstract Railways around the world are facing

More information

PUBLIC HEALTH OPTOMETRY ECONOMICS. Kevin D. Frick, PhD

PUBLIC HEALTH OPTOMETRY ECONOMICS. Kevin D. Frick, PhD Chapter Overview PUBLIC HEALTH OPTOMETRY ECONOMICS Kevin D. Frick, PhD This chapter on public health optometry economics describes the positive and normative uses of economic science. The terms positive

More information

Security-Aware Beacon Based Network Monitoring

Security-Aware Beacon Based Network Monitoring Security-Aware Beacon Based Network Monitoring Masahiro Sasaki, Liang Zhao, Hiroshi Nagamochi Graduate School of Informatics, Kyoto University, Kyoto, Japan Email: {sasaki, liang, nag}@amp.i.kyoto-u.ac.jp

More information

Detecting MAC Layer Misbehavior in Wifi Networks By Co-ordinated Sampling of Network Monitoring

Detecting MAC Layer Misbehavior in Wifi Networks By Co-ordinated Sampling of Network Monitoring Detecting MAC Layer Misbehavior in Wifi Networks By Co-ordinated Sampling of Network Monitoring M.Shanthi 1, S.Suresh 2 Dept. of Computer Science and Engineering, Adhiyamaan college of Engineering, Hosur,

More information

SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND

SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND K. Adjenughwure, Delft University of Technology, Transport Institute, Ph.D. candidate V. Balopoulos, Democritus

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

Machine Learning Approach for Estimating Sensor Deployment Regions on Satellite Images

Machine Learning Approach for Estimating Sensor Deployment Regions on Satellite Images Machine Learning Approach for Estimating Sensor Deployment Regions on Satellite Images 1 Enes ATEŞ, 2 *Tahir Emre KALAYCI, 1 Aybars UĞUR 1 Faculty of Engineering, Department of Computer Engineering Ege

More information

Self-organized Collaboration of Distributed IDS Sensors

Self-organized Collaboration of Distributed IDS Sensors Self-organized Collaboration of Distributed IDS Sensors KarelBartos 1 and Martin Rehak 1,2 and Michal Svoboda 2 1 Faculty of Electrical Engineering Czech Technical University in Prague 2 Cognitive Security,

More information

Cloud ITS: Reducing Congestion & Saving Lives

Cloud ITS: Reducing Congestion & Saving Lives Cloud ITS: Reducing Congestion & Saving Lives In 2008, for the first time in human history, the proportion of the worlds population based in urban areas was greater than 50 percent. *IBM Report: Transportation

More information

www.ryansolutions.eu BUSINESS MONITORING SYSTEM for BANKS

www.ryansolutions.eu BUSINESS MONITORING SYSTEM for BANKS BUSINESS MONITORING SYSTEM for BANKS BUSINESS MONITORING SYSTEM BUSINESS MONITORING SYSTEM SOVA is unique software for monitoring and managing key business activities in large organization. Single point

More information

each college c i C has a capacity q i - the maximum number of students it will admit

each college c i C has a capacity q i - the maximum number of students it will admit n colleges in a set C, m applicants in a set A, where m is much larger than n. each college c i C has a capacity q i - the maximum number of students it will admit each college c i has a strict order i

More information

Introduction to Scheduling Theory

Introduction to Scheduling Theory Introduction to Scheduling Theory Arnaud Legrand Laboratoire Informatique et Distribution IMAG CNRS, France arnaud.legrand@imag.fr November 8, 2004 1/ 26 Outline 1 Task graphs from outer space 2 Scheduling

More information

CELL PHONE TRACKING. Index. Purpose. Description. Relevance for Large Scale Events. Options. Technologies. Impacts. Integration potential

CELL PHONE TRACKING. Index. Purpose. Description. Relevance for Large Scale Events. Options. Technologies. Impacts. Integration potential CELL PHONE TRACKING Index Purpose Description Relevance for Large Scale Events Options Technologies Impacts Integration potential Implementation Best Cases and Examples 1 of 10 Purpose Cell phone tracking

More information

Using Business Intelligence to Mitigate Graduation Delay Issues

Using Business Intelligence to Mitigate Graduation Delay Issues Using Business Intelligence to Mitigate Graduation Delay Issues Khaled Almgren PhD Candidate Department of Computer science and Engineering University of Bridgeport Abstract Graduate master students usually

More information

Public Works Financing

Public Works Financing Public Works Financing Published monthly since 1988 by editor William G. Reinhardt PWFinance@aol.com Reprinted from February, 2011 Volume 257 Why TIFIA Matters For Transportation By Fred Kessler, Nossaman

More information

Eastern RTMC. www.dot.state.pa.us

Eastern RTMC. www.dot.state.pa.us Eastern RTMC Regional Traffic Management Centers Agenda District 6 0 TIMS Program Overview Freeway and Arterial ITS Deployments Ongoing/Upcoming Projects Future Concepts TIMS Program Timeline 1993 TMC

More information

An Empirical Approach - Distributed Mobility Management for Target Tracking in MANETs

An Empirical Approach - Distributed Mobility Management for Target Tracking in MANETs An Empirical Approach - Distributed Mobility Management for Target Tracking in MANETs G.Michael Assistant Professor, Department of CSE, Bharath University, Chennai, TN, India ABSTRACT: Mobility management

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Understanding and Optimizing BGP Peering Relationships with Advanced Route and Traffic Analytics

Understanding and Optimizing BGP Peering Relationships with Advanced Route and Traffic Analytics Understanding and Optimizing BGP Peering Relationships with Advanced Route and Traffic Analytics WHITE PAPER Table of Contents Introduction 3 Route-Flow Fusion 4 BGP Policy Visibility 5 Traffic Visibility

More information

Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation

Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation Huibo Bi and Erol Gelenbe Intelligent Systems and Networks Group Department of Electrical and Electronic Engineering Imperial College

More information

Visualizing Data: Scalable Interactivity

Visualizing Data: Scalable Interactivity Visualizing Data: Scalable Interactivity The best data visualizations illustrate hidden information and structure contained in a data set. As access to large data sets has grown, so has the need for interactive

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 9, September 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com An Experimental

More information

Load Balancing in Periodic Wireless Sensor Networks for Lifetime Maximisation

Load Balancing in Periodic Wireless Sensor Networks for Lifetime Maximisation Load Balancing in Periodic Wireless Sensor Networks for Lifetime Maximisation Anthony Kleerekoper 2nd year PhD Multi-Service Networks 2011 The Energy Hole Problem Uniform distribution of motes Regular,

More information

Investment Analysis using the Portfolio Analysis Machine (PALMA 1 ) Tool by Richard A. Moynihan 21 July 2005

Investment Analysis using the Portfolio Analysis Machine (PALMA 1 ) Tool by Richard A. Moynihan 21 July 2005 Investment Analysis using the Portfolio Analysis Machine (PALMA 1 ) Tool by Richard A. Moynihan 21 July 2005 Government Investment Analysis Guidance Current Government acquisition guidelines mandate the

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

Application of Adaptive Probing for Fault Diagnosis in Computer Networks 1

Application of Adaptive Probing for Fault Diagnosis in Computer Networks 1 Application of Adaptive Probing for Fault Diagnosis in Computer Networks 1 Maitreya Natu Dept. of Computer and Information Sciences University of Delaware, Newark, DE, USA, 19716 Email: natu@cis.udel.edu

More information

Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm

Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm , pp. 99-108 http://dx.doi.org/10.1457/ijfgcn.015.8.1.11 Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm Wang DaWei and Wang Changliang Zhejiang Industry Polytechnic College

More information

The equivalence of logistic regression and maximum entropy models

The equivalence of logistic regression and maximum entropy models The equivalence of logistic regression and maximum entropy models John Mount September 23, 20 Abstract As our colleague so aptly demonstrated ( http://www.win-vector.com/blog/20/09/the-simplerderivation-of-logistic-regression/

More information

Integrated Marketing Performance Using Analytic Controls and Simulation (IMPACS SM )

Integrated Marketing Performance Using Analytic Controls and Simulation (IMPACS SM ) WHITEPAPER Integrated Performance Using Analytic Controls and Simulation (IMPACS SM ) MAY 2007 Don Ryan Senior Partner 35 CORPORATE DRIVE, SUITE 100, BURLINGTON, MA 01803 T 781 494 9989 F 781 494 9766

More information