Synergistic Sensor Location for Cost-Effective Traffic Monitoring

Size: px
Start display at page:

Download "Synergistic Sensor Location for Cost-Effective Traffic Monitoring"

Transcription

1 Synergistic Sensor Location for Cost-Effective Traffic Monitoring ManWo Ng, Ph.D. Assistant Professor Department of Modeling, Simulation and Visualization Engineering & Department of Civil and Environmental Engineering Web: April 10, 2012

2 Synergistic Sensor Location: The Idea Given that we are interested in monitoring traffic in an entire region (e.g. CBD, city, etc.), do we need to monitor all locations? Answer: Generally, yes. The answer can be no, provided that we can live with inferred traffic conditions. How do we make use of this fundamental notion of flow conservation to determine the minimum number of locations to monitor in an entire network?

3 Outline Some small examples to illustrate the methodology. Details are quite technical and, hence, omitted. Problem variations. Summary. Questions/ feedback.

4 Synergistic Sensor Location : A Simple Example S S i i i S S Vehicular flow conservation. Hence, in order to determine all 7 link flows, we ONLY need to measure 4 (v A,v R1,v R2,v R3 ). FHWA s ramp balancing/ ramp counting procedure.

5 Our Contribution: Generalization FHWA s ramp counting procedure is limited to very special network topologies. We developed a generalization of the ramp counting procedure applicable for arbitrary network topologies. Cost-savings are now within reach: What if instead of 400 locations (say) in our road network, we only need to monitor 200 locations (say), preserving the same amount of information?

6 A More Complicated Example 14 links

7 One Possible Solution? How about we monitor the traffic at the blue arcs/ links? Can we infer the uncounted red arcs/links from them?

8 How about this Solution? Hence, choosing wisely is critical!

9 Two Remarks In both suggested solutions, it was assumed that 9 links to be monitored. It can be shown that this is the minimum number of links possible. The details of the methodology are highly technical (involves abstract concepts from linear algebra), and hence, not discussed here.

10 A Last Example 20 links network How many links/ locations do we need to monitor? What is the minimum number and locations?

11 Another Solution? Hence, there are multiple optimal monitoring strategies. That is, there is flexibility for us to choose. E.g. if we must monitor location x Finally, we CANNOT count less than 14 locations/ links.

12 Large-Scale Implementation Ready These toy networks were relatively easy to address. How about for huge, real-world networks? How to determine the minimum number of monitoring locations (and where they are) is far from trivial for large-scale networks. Our research group has developed an efficient algorithm that makes it possible to address transportation networks of realistic size.

13 Other Variations of the Problem Variation 1: Given that we can monitor at most n locations (e.g. due to budgetary constraints), what locations should we choose in order to maximize the amount of info we gain? Variation 2: How do we combine this technique with existing sensor equipment on the road to maximize the monitoring coverage? Variation 3: Given that we need to observe traffic at m given/ specified locations, what is the minimum number of locations to monitor and where are they? Etc.

14 Summary The presented technique is able to determine: The minimum number of locations to be counted. Where these locations are. Consequently, it has the potential to save $$. Exact savings depend on: Network topology. Number of locations observable Number of sensors installed Budget Synergy increases with the number of monitored locations. Other traffic info, e.g. turning ratios, route flows (e.g. via blue tooth technology) can possibly be incorporated too.

15 Actual Deployment Practice-ready. (Thanks to Frank Hickman and his team for valuable feedback!) Technique is independent of sensor technology (blue tooth, camera s, loop detectors etc.). Currently looking for opportunities to have this technique implemented.

16 Thank you! Questions/ Thoughts?

Efficient Discovery of Load-Balanced Paths. Alistair King al@bellstreet.co.nz

Efficient Discovery of Load-Balanced Paths. Alistair King al@bellstreet.co.nz Efficient Discovery of Load-Balanced Paths Alistair King al@bellstreet.co.nz Load-Balancer Traceroute Gives confidence that the complete topology has been discovered. Probes each TTL repeatedly to discover

More information

Green driving strategies based on intervehicle communications: theoretical formulation and smartphone implementation

Green driving strategies based on intervehicle communications: theoretical formulation and smartphone implementation Green driving strategies based on intervehicle communications: theoretical formulation and smartphone implementation ITS America Webinar October 31, 2012 Wenlong Jin University of California, Irvine 1

More information

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Nil Items included with

More information

OVERVIEW OF MOTORWAY NETWORK TRAFFIC CONTROL STRATEGIES

OVERVIEW OF MOTORWAY NETWORK TRAFFIC CONTROL STRATEGIES OVERVIEW OF MOTORWAY NETWORK TRAFFIC CONTROL STRATEGIES Apostolos Kotsialos, and Markos Papageorgiou Dynamic Systems and Simulation Laboratory Technical University of Crete, Greece E-mail: appie@dssl.tuc.gr,

More information

We shall turn our attention to solving linear systems of equations. Ax = b

We shall turn our attention to solving linear systems of equations. Ax = b 59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system

More information

How cloud-based systems and machine-driven big data can contribute to the development of autonomous vehicles

How cloud-based systems and machine-driven big data can contribute to the development of autonomous vehicles How cloud-based systems and machine-driven big data can contribute to the development of autonomous vehicles David Fidalgo- Altran Senior Business Manager CONTENTS I. Altran Group/ Intelligence Systems

More information

EMERGING FRONTIERS AND FUTURE DIRECTIONS FOR PREDICTIVE ANALYTICS, VERSION 4.0

EMERGING FRONTIERS AND FUTURE DIRECTIONS FOR PREDICTIVE ANALYTICS, VERSION 4.0 EMERGING FRONTIERS AND FUTURE DIRECTIONS FOR PREDICTIVE ANALYTICS, VERSION 4.0 ELINOR L. VELASQUEZ Dedicated to the children and the young people. Abstract. This is an outline of a new field in predictive

More information

A RFID Data-Cleaning Algorithm Based on Communication Information among RFID Readers

A RFID Data-Cleaning Algorithm Based on Communication Information among RFID Readers , pp.155-164 http://dx.doi.org/10.14257/ijunesst.2015.8.1.14 A RFID Data-Cleaning Algorithm Based on Communication Information among RFID Readers Yunhua Gu, Bao Gao, Jin Wang, Mingshu Yin and Junyong Zhang

More information

1 Definitions. Supplementary Material for: Digraphs. Concept graphs

1 Definitions. Supplementary Material for: Digraphs. Concept graphs Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.

More information

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s). Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,

More information

10/14/11. Big data in science Application to large scale physical systems

10/14/11. Big data in science Application to large scale physical systems Big data in science Application to large scale physical systems Large scale physical systems Large scale systems with spatio-temporal dynamics Propagation of pollutants in air, Water distribution networks,

More information

The Basics of Graphical Models

The Basics of Graphical Models The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures

More information

Integrating Systems Engineering Concepts into Transportation Research, Education, and Practice

Integrating Systems Engineering Concepts into Transportation Research, Education, and Practice Integrating Systems Engineering Concepts into Transportation Research, Education, and Practice John Collura, Ph.D., P.E. Professor of Civil and Environmental Engineering University of Massachusetts at

More information

Load Balancing in Structured Peer to Peer Systems

Load Balancing in Structured Peer to Peer Systems Load Balancing in Structured Peer to Peer Systems DR.K.P.KALIYAMURTHIE 1, D.PARAMESWARI 2 Professor and Head, Dept. of IT, Bharath University, Chennai-600 073 1 Asst. Prof. (SG), Dept. of Computer Applications,

More information

Load Balancing in Structured Peer to Peer Systems

Load Balancing in Structured Peer to Peer Systems Load Balancing in Structured Peer to Peer Systems Dr.K.P.Kaliyamurthie 1, D.Parameswari 2 1.Professor and Head, Dept. of IT, Bharath University, Chennai-600 073. 2.Asst. Prof.(SG), Dept. of Computer Applications,

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

VDI 2206 Prof. Dr. Magdy M. Abdelhameed

VDI 2206 Prof. Dr. Magdy M. Abdelhameed Course Code: MDP 454, Course Name:, Second Semester 2014 VDI 2206 Mechatronics System Design The mechatronic design methodology is based on a concurrent (instead of sequential) approach to discipline design,

More information

URBAN MOBILITY IN CLEAN, GREEN CITIES

URBAN MOBILITY IN CLEAN, GREEN CITIES URBAN MOBILITY IN CLEAN, GREEN CITIES C. G. Cassandras Division of Systems Engineering and Dept. of Electrical and Computer Engineering and Center for Information and Systems Engineering Boston University

More information

Vehicular Cloud. Fan Zhang

Vehicular Cloud. Fan Zhang Vehicular Cloud Fan Zhang Outline VANET Cloud computing Vehicular cloud: motivation and concept Application scenarios Challenges: architecture/security Data forwarding Questions VANET Deliver timely information

More information

{p t [D1t(p t ) + D2t(p t )]}. Proposition 1. With a dynamic centralized pricing mechanism, p cen

{p t [D1t(p t ) + D2t(p t )]}. Proposition 1. With a dynamic centralized pricing mechanism, p cen On Profitability and Efficiency of Wireless Mesh Networks Fang Fang, College of Business Administration, Cal State San Marcos, fangfang@csusm.edu; Lili Qiu, Department of Computer Science, The Univ of

More information

CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS

CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 137 CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 8.1 CONCLUSION In this thesis, efficient schemes have been designed and analyzed to control congestion and distribute the load in the routing process of

More information

Enhancing BoD Services based on Virtual Network Topology Control

Enhancing BoD Services based on Virtual Network Topology Control NTT Network Service Systems Laboratories Enhancing BoD Services based on Virtual Network Topology Control T. Miyamura E. Oki I. Inoue K. Shiomoto NTT Network Service Systems Labs. Today s BoD service application

More information

Dynamic Vehicle Routing in MATSim

Dynamic Vehicle Routing in MATSim Poznan University of Technology Department of Motor Vehicles and Road Transport ZPSiTD Dynamic Vehicle Routing in MATSim Simulation and Optimization Michal Maciejewski michal.maciejewski@put.poznan.pl

More information

Universal Life Insurance

Universal Life Insurance Universal Life Insurance Lecture: Weeks 11-12 Thanks to my friend J. Dhaene, KU Leuven, for ideas here drawn from his notes. Lecture: Weeks 11-12 (STT 456) Universal Life Insurance Spring 2015 - Valdez

More information

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n. ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

More information

Evaluation of a New Method for Measuring the Internet Degree Distribution: Simulation Results

Evaluation of a New Method for Measuring the Internet Degree Distribution: Simulation Results Evaluation of a New Method for Measuring the Internet Distribution: Simulation Results Christophe Crespelle and Fabien Tarissan LIP6 CNRS and Université Pierre et Marie Curie Paris 6 4 avenue du président

More information

Custom Web Development Guidelines

Custom Web Development Guidelines Introduction Custom Web Development Guidelines Unlike shrink wrap software, custom software development involves a partnership between the architect/programmer/developer (SonicSpider) and the owner/testers/users

More information

Some issues in Cross-Layer Architecture in Mobile Ad Hoc Networks

Some issues in Cross-Layer Architecture in Mobile Ad Hoc Networks Some issues in Cross-Layer Architecture in Mobile Ad Hoc Networks Navid Nikaein and Rolf Winter Institut Eurecom Freie Universität Berlin http://manet.eurecom.fr June 31, 2005 1 Importance of a Good Architectural

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

A Tool For Active FLEET Management and Analysis of Activities of a Snow PlowING and a Road Salting Fleet

A Tool For Active FLEET Management and Analysis of Activities of a Snow PlowING and a Road Salting Fleet A Tool For Active FLEET Management and Analysis Activities a Snow PlowING and a Road Salting Fleet Rok Strašek, Tina Vukasović Abstract - Current economic crisis combined with increasing fuel costs rises

More information

Tools and Operational Data Available. 15.12.2015 1 st RESOLUTE Workshop, Florence

Tools and Operational Data Available. 15.12.2015 1 st RESOLUTE Workshop, Florence Tools and Operational Data Available Athens Transport Tools and Operational Data Operations Control Center (OCC): mimic panels, operations modi (full, downgraded, manual) Metro Security Systems: sensors

More information

Network analysis and dimensioning course project

Network analysis and dimensioning course project Network analysis and dimensioning course project Alexander Pyattaev March 10, 2014 Email: alexander.pyattaev@tut.fi 1 Project description Your task in this project is to be a network architect. You will

More information

A SIMULATION STUDY FOR T0/T1 DATA REPLICATION AND PRODUCTION ACTIVITIES. Iosif C. Legrand *

A SIMULATION STUDY FOR T0/T1 DATA REPLICATION AND PRODUCTION ACTIVITIES. Iosif C. Legrand * A SIMULATION STUDY FOR T0/T1 DATA REPLICATION AND PRODUCTION ACTIVITIES Iosif C. Legrand * Ciprian Mihai Dobre**, Ramiro Voicu**, Corina Stratan**, Catalin Cirstoiu**, Lucian Musat** * California Institute

More information

INVESTIGATION OF ASIM 29X, CANOGA, RTMS, SAS-1, SMARTSENSOR, TIRTL & OTHER SENSORS FOR AUTOMATIC VEHICLE CLASSIFICATION

INVESTIGATION OF ASIM 29X, CANOGA, RTMS, SAS-1, SMARTSENSOR, TIRTL & OTHER SENSORS FOR AUTOMATIC VEHICLE CLASSIFICATION INVESTIGATION OF ASIM 29X, CANOGA, RTMS, SAS-1, SMARTSENSOR, TIRTL & OTHER SENSORS FOR AUTOMATIC VEHICLE CLASSIFICATION RESEARCH NEED This research will add to the national and local state-of-the-art on

More information

Eighth Annual Student Research Forum

Eighth Annual Student Research Forum Eighth Annual Student Research Forum February 18, 2011 COMPUTER SCIENCE AND COMPUTATIONAL SCIENCE PRESENTATION SCHEDULE Session Chair: Dr. George Miminis Head, Computer Science: Dr. Edward Brown Director,

More information

Joint Optimization of Routing and Radio Configuration in Fixed Wireless Networks

Joint Optimization of Routing and Radio Configuration in Fixed Wireless Networks Joint Optimization of Routing and Radio Configuration in Fixed Wireless Networks David Coudert, Napoleão Nepomuceno, Hervé Rivano Projet Mascotte, I3S(CNRS-UNSA) INRIA Réunion Mascotte, March 2009 MASCOTTE

More information

Lecture notes 1: Introduction to linear and (mixed) integer programs

Lecture notes 1: Introduction to linear and (mixed) integer programs Lecture notes 1: Introduction to linear and (mixed) integer programs Vincent Conitzer 1 An example We will start with a simple example. Suppose we are in the business of selling reproductions of two different

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

https://runtimeverification.com Grigore Rosu Founder, President and CEO Professor of Computer Science, University of Illinois

https://runtimeverification.com Grigore Rosu Founder, President and CEO Professor of Computer Science, University of Illinois https://runtimeverification.com Grigore Rosu Founder, President and CEO Professor of Computer Science, University of Illinois Runtime Verification, Inc. (RV): startup company aimed at bringing the best

More information

Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

More information

Security-Aware Beacon Based Network Monitoring

Security-Aware Beacon Based Network Monitoring Security-Aware Beacon Based Network Monitoring Masahiro Sasaki, Liang Zhao, Hiroshi Nagamochi Graduate School of Informatics, Kyoto University, Kyoto, Japan Email: {sasaki, liang, nag}@amp.i.kyoto-u.ac.jp

More information

Transportation Asset Management

Transportation Asset Management Transportation Asset Management The Role of Engineering Economic Analysis Presented by: Eric Gabler Economist, Office of Asset Management Federal Highway Administration Introduction The mission of the

More information

Detecting MAC Layer Misbehavior in Wifi Networks By Co-ordinated Sampling of Network Monitoring

Detecting MAC Layer Misbehavior in Wifi Networks By Co-ordinated Sampling of Network Monitoring Detecting MAC Layer Misbehavior in Wifi Networks By Co-ordinated Sampling of Network Monitoring M.Shanthi 1, S.Suresh 2 Dept. of Computer Science and Engineering, Adhiyamaan college of Engineering, Hosur,

More information

Self-organized Collaboration of Distributed IDS Sensors

Self-organized Collaboration of Distributed IDS Sensors Self-organized Collaboration of Distributed IDS Sensors KarelBartos 1 and Martin Rehak 1,2 and Michal Svoboda 2 1 Faculty of Electrical Engineering Czech Technical University in Prague 2 Cognitive Security,

More information

INTERACTIVE TRAINING SOFTWARE FOR OPTIMUM TRAVEL ROUTE ANALYSIS APPLICATIONS IN RAILWAY NETWORKS

INTERACTIVE TRAINING SOFTWARE FOR OPTIMUM TRAVEL ROUTE ANALYSIS APPLICATIONS IN RAILWAY NETWORKS 1. Uluslar arası Raylı Sistemler Mühendisliği Çalıştayı (IWRSE 12), 11-13 Ekim 2012, Karabük, Türkiye INTERACTIVE TRAINING SOFTWARE FOR OPTIMUM TRAVEL ROUTE ANALYSIS APPLICATIONS IN RAILWAY NETWORKS Abstract

More information

EFFICIENT DETECTION IN DDOS ATTACK FOR TOPOLOGY GRAPH DEPENDENT PERFORMANCE IN PPM LARGE SCALE IPTRACEBACK

EFFICIENT DETECTION IN DDOS ATTACK FOR TOPOLOGY GRAPH DEPENDENT PERFORMANCE IN PPM LARGE SCALE IPTRACEBACK EFFICIENT DETECTION IN DDOS ATTACK FOR TOPOLOGY GRAPH DEPENDENT PERFORMANCE IN PPM LARGE SCALE IPTRACEBACK S.Abarna 1, R.Padmapriya 2 1 Mphil Scholar, 2 Assistant Professor, Department of Computer Science,

More information

Real Time Traffic Monitoring With Bayesian Belief Networks

Real Time Traffic Monitoring With Bayesian Belief Networks Real Time Traffic Monitoring With Bayesian Belief Networks Sicco Pier van Gosliga TNO Defence, Security and Safety, P.O.Box 96864, 2509 JG The Hague, The Netherlands +31 70 374 02 30, sicco_pier.vangosliga@tno.nl

More information

CELL PHONE TRACKING. Index. Purpose. Description. Relevance for Large Scale Events. Options. Technologies. Impacts. Integration potential

CELL PHONE TRACKING. Index. Purpose. Description. Relevance for Large Scale Events. Options. Technologies. Impacts. Integration potential CELL PHONE TRACKING Index Purpose Description Relevance for Large Scale Events Options Technologies Impacts Integration potential Implementation Best Cases and Examples 1 of 10 Purpose Cell phone tracking

More information

SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND

SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND K. Adjenughwure, Delft University of Technology, Transport Institute, Ph.D. candidate V. Balopoulos, Democritus

More information

Public Works Financing

Public Works Financing Public Works Financing Published monthly since 1988 by editor William G. Reinhardt PWFinance@aol.com Reprinted from February, 2011 Volume 257 Why TIFIA Matters For Transportation By Fred Kessler, Nossaman

More information

Introduction to Scheduling Theory

Introduction to Scheduling Theory Introduction to Scheduling Theory Arnaud Legrand Laboratoire Informatique et Distribution IMAG CNRS, France arnaud.legrand@imag.fr November 8, 2004 1/ 26 Outline 1 Task graphs from outer space 2 Scheduling

More information

Eastern RTMC. www.dot.state.pa.us

Eastern RTMC. www.dot.state.pa.us Eastern RTMC Regional Traffic Management Centers Agenda District 6 0 TIMS Program Overview Freeway and Arterial ITS Deployments Ongoing/Upcoming Projects Future Concepts TIMS Program Timeline 1993 TMC

More information

Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation

Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation Huibo Bi and Erol Gelenbe Intelligent Systems and Networks Group Department of Electrical and Electronic Engineering Imperial College

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 9, September 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com An Experimental

More information

Using Big Data and Efficient Methods to Capture Stochasticity for Calibration of Macroscopic Traffic Simulation Models

Using Big Data and Efficient Methods to Capture Stochasticity for Calibration of Macroscopic Traffic Simulation Models CIVIL AND ENVIRONMENTAL ENGINEERING Using Big Data and Efficient Methods to Capture Stochasticity for Calibration of Macroscopic Traffic Simulation Models Sandeep Mudigonda 1, Kaan Ozbay 2 1 Department

More information

The equivalence of logistic regression and maximum entropy models

The equivalence of logistic regression and maximum entropy models The equivalence of logistic regression and maximum entropy models John Mount September 23, 20 Abstract As our colleague so aptly demonstrated ( http://www.win-vector.com/blog/20/09/the-simplerderivation-of-logistic-regression/

More information

Analysis of Distributed Algorithms for Density Estimation in VANETs (Poster)

Analysis of Distributed Algorithms for Density Estimation in VANETs (Poster) 2012 IEEE Vehicular Networking Conference (VNC) Analysis of Distributed Algorithms for Density Estimation in VANETs (Poster) Nabeel Akhtar, Sinem Coleri Ergen and Oznur Ozkasap Department of Computer Engineering

More information

Relational Database Design

Relational Database Design Relational Database Design To generate a set of relation schemas that allows - to store information without unnecessary redundancy - to retrieve desired information easily Approach - design schema in appropriate

More information

Application of Adaptive Probing for Fault Diagnosis in Computer Networks 1

Application of Adaptive Probing for Fault Diagnosis in Computer Networks 1 Application of Adaptive Probing for Fault Diagnosis in Computer Networks 1 Maitreya Natu Dept. of Computer and Information Sciences University of Delaware, Newark, DE, USA, 19716 Email: natu@cis.udel.edu

More information

Doppler Traffic Flow Sensor For Traveler Information Systems. October, 2007 1

Doppler Traffic Flow Sensor For Traveler Information Systems. October, 2007 1 Doppler Traffic Flow Sensor For Traveler Information Systems October, 2007 1 Traffic congestion costs $70B a year Road construction can t keep up with demand Congestion spreading to smaller cities Many

More information

CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING

CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH RESEARCH ARTICLE CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING R.Kohila

More information

The Business of Enrollment Management: Focus on Transfer Students. By: Tom von Gunden, Ph.D., corporate strategy lead, Hyland Software

The Business of Enrollment Management: Focus on Transfer Students. By: Tom von Gunden, Ph.D., corporate strategy lead, Hyland Software The Business of Enrollment Management: Focus on Transfer Students By: Tom von Gunden, Ph.D., corporate strategy lead, Hyland Software TABLE OF CONTENTS INTRODUCTION... 3 THE NEED FOR SPEED... 4 STAYING

More information

Adaptive Probing: A Monitoring-Based Probing Approach for Fault Localization in Networks

Adaptive Probing: A Monitoring-Based Probing Approach for Fault Localization in Networks Adaptive Probing: A Monitoring-Based Probing Approach for Fault Localization in Networks Akshay Kumar *, R. K. Ghosh, Maitreya Natu *Student author Indian Institute of Technology, Kanpur, India Tata Research

More information

Flexible mobility management strategy in cellular networks

Flexible mobility management strategy in cellular networks Flexible mobility management strategy in cellular networks JAN GAJDORUS Department of informatics and telecommunications (161114) Czech technical university in Prague, Faculty of transportation sciences

More information

GMO WHITE PAPER. The Capacity of an Equity Strategy. Defining and Estimating the Capacity of a Quantitative Equity Strategy. What Is Capacity?

GMO WHITE PAPER. The Capacity of an Equity Strategy. Defining and Estimating the Capacity of a Quantitative Equity Strategy. What Is Capacity? GMO WHITE PAPER March 2006 The Capacity of an Equity Strategy Defining and Estimating the Capacity of a Quantitative Equity Strategy Marco Vangelisti Product Manager Capacity is an intuitive but ill-defined

More information

Integrated Marketing Performance Using Analytic Controls and Simulation (IMPACS SM )

Integrated Marketing Performance Using Analytic Controls and Simulation (IMPACS SM ) WHITEPAPER Integrated Performance Using Analytic Controls and Simulation (IMPACS SM ) MAY 2007 Don Ryan Senior Partner 35 CORPORATE DRIVE, SUITE 100, BURLINGTON, MA 01803 T 781 494 9989 F 781 494 9766

More information

Outline. EE 122: Interdomain Routing Protocol (BGP) BGP Routing. Internet is more complicated... Ion Stoica TAs: Junda Liu, DK Moon, David Zats

Outline. EE 122: Interdomain Routing Protocol (BGP) BGP Routing. Internet is more complicated... Ion Stoica TAs: Junda Liu, DK Moon, David Zats Outline EE 22: Interdomain Routing Protocol (BGP) Ion Stoica TAs: Junda Liu, DK Moon, David Zats http://inst.eecs.berkeley.edu/~ee22/fa9 (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues

More information

Traffic Monitoring and Control Systems and Tools

Traffic Monitoring and Control Systems and Tools Traffic Monitoring and Control Systems and Tools Roberto Horowitz Professor Mechanical Engineering PATH Director Pravin Varaiya Professor in the Graduate School EECS Carlos Canudas de Wit Director of Research

More information

Combinational Controllability Controllability Formulas (Cont.)

Combinational Controllability Controllability Formulas (Cont.) Outline Digital Testing: Testability Measures The case for DFT Testability Measures Controllability and observability SCOA measures Combinational circuits Sequential circuits Adhoc techniques Easily testable

More information

Performance Management in relation to Fire Safety

Performance Management in relation to Fire Safety Performance Management in relation to Fire Safety 9-10-2015 Prof. dr. ir. G. Reniers Delft University of Technology Challenge the future Presentation outline 3. PM visualisation 4. Required information

More information

A Novel Multi Ring Forwarding Protocol for Avoiding the Void Nodes for Balanced Energy Consumption

A Novel Multi Ring Forwarding Protocol for Avoiding the Void Nodes for Balanced Energy Consumption International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-4, Issue-4 E-ISSN: 2347-2693 A Novel Multi Ring Forwarding Protocol for Avoiding the Void Nodes for Balanced Energy

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

Traffic Monitoring Guide May 1, 2001. Traffic Volume Monitoring

Traffic Monitoring Guide May 1, 2001. Traffic Volume Monitoring Traffic Volume Monitoring SECTION 3 CONTENTS Section Page CHAPTER 1 INTRODUCTION...3-1 Traffic Volume Data Collection...3-1 Objectives of the Traffic Volume Monitoring Program...3-2 Organization of This

More information

Scaling 10Gb/s Clustering at Wire-Speed

Scaling 10Gb/s Clustering at Wire-Speed Scaling 10Gb/s Clustering at Wire-Speed InfiniBand offers cost-effective wire-speed scaling with deterministic performance Mellanox Technologies Inc. 2900 Stender Way, Santa Clara, CA 95054 Tel: 408-970-3400

More information

Automating Performance Tests: Tips to Maximize Value and Minimize Effort. Test Automation Day. Scott Barber

Automating Performance Tests: Tips to Maximize Value and Minimize Effort. Test Automation Day. Scott Barber Automating Performance Tests: Tips to Maximize Value and Minimize Effort Created for: Test Automation Day Zeist, NE 23 June, 2011 Scott Barber Chief Technologist PerfTestPlus, Inc. Automating Performance

More information

Christian Bettstetter. Mobility Modeling, Connectivity, and Adaptive Clustering in Ad Hoc Networks

Christian Bettstetter. Mobility Modeling, Connectivity, and Adaptive Clustering in Ad Hoc Networks Christian Bettstetter Mobility Modeling, Connectivity, and Adaptive Clustering in Ad Hoc Networks Contents 1 Introduction 1 2 Ad Hoc Networking: Principles, Applications, and Research Issues 5 2.1 Fundamental

More information

Router Scheduling Configuration Based on the Maximization of Benefit and Carried Best Effort Traffic

Router Scheduling Configuration Based on the Maximization of Benefit and Carried Best Effort Traffic Telecommunication Systems 24:2 4, 275 292, 2003 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Router Scheduling Configuration Based on the Maximization of Benefit and Carried Best Effort

More information

TESTING FOR PEAK PERFORMANCE:

TESTING FOR PEAK PERFORMANCE: Leading the Evolution WHITE PAPER TESTING FOR PEAK PERFORMANCE: How Cloud-based testing ensures that your applications can handle peak demand The business challenge of unavailable applications Thousands

More information

Using Generalized Forecasts for Online Currency Conversion

Using Generalized Forecasts for Online Currency Conversion Using Generalized Forecasts for Online Currency Conversion Kazuo Iwama and Kouki Yonezawa School of Informatics Kyoto University Kyoto 606-8501, Japan {iwama,yonezawa}@kuis.kyoto-u.ac.jp Abstract. El-Yaniv

More information

On the Interaction and Competition among Internet Service Providers

On the Interaction and Competition among Internet Service Providers On the Interaction and Competition among Internet Service Providers Sam C.M. Lee John C.S. Lui + Abstract The current Internet architecture comprises of different privately owned Internet service providers

More information

Faculty of Environment Institute for Transport Studies. University Academic Fellow Big Data and Transport Modelling

Faculty of Environment Institute for Transport Studies. University Academic Fellow Big Data and Transport Modelling Faculty of Environment Institute for Transport Studies University Academic Fellow Big Data and Transport Modelling With a vision and drive to develop a prestigious internationally competitive research

More information

A Hierarchical Structure based Coverage Repair in Wireless Sensor Networks

A Hierarchical Structure based Coverage Repair in Wireless Sensor Networks A Hierarchical Structure based Coverage Repair in Wireless Sensor Networks Jie Wu Computer Science & Engineering Department Florida Atlantic University Boca Raton, FL 3343, USA E-mail: jie@cse.fau.edu

More information

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility

More information

LOAD BALANCING AND EFFICIENT CLUSTERING FOR IMPROVING NETWORK PERFORMANCE IN AD-HOC NETWORKS

LOAD BALANCING AND EFFICIENT CLUSTERING FOR IMPROVING NETWORK PERFORMANCE IN AD-HOC NETWORKS LOAD BALANCING AND EFFICIENT CLUSTERING FOR IMPROVING NETWORK PERFORMANCE IN AD-HOC NETWORKS Saranya.S 1, Menakambal.S 2 1 M.E., Embedded System Technologies, Nandha Engineering College (Autonomous), (India)

More information

Testing Intelligent Device Communications in a Distributed System

Testing Intelligent Device Communications in a Distributed System Testing Intelligent Device Communications in a Distributed System David Goughnour (Triangle MicroWorks), Joe Stevens (Triangle MicroWorks) dgoughnour@trianglemicroworks.com United States Smart Grid systems

More information

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT

More information

From Big Data to Smart Data How to improve public transport through modelling and simulation.

From Big Data to Smart Data How to improve public transport through modelling and simulation. From Big Data to Smart Data How to improve public transport through modelling and simulation. Dr. Alex Erath, Pieter Fourie, Sergio Ordó ~ nez, Artem Chakirov FCL Research Module: Mobility and Transportation

More information

On real-time delay monitoring in software-defined networks

On real-time delay monitoring in software-defined networks On real-time delay monitoring in software-defined networks Victor S. Altukhov Lomonosov Moscow State University Moscow, Russia victoralt@lvk.cs.msu.su Eugene V. Chemeritskiy Applied Research Center for

More information

CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs

CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs CHAPTER 6 VOICE COMMUNICATION OVER HYBRID MANETs Multimedia real-time session services such as voice and videoconferencing with Quality of Service support is challenging task on Mobile Ad hoc Network (MANETs).

More information

Recommendations in Mobile Environments. Professor Hui Xiong Rutgers Business School Rutgers University. Rutgers, the State University of New Jersey

Recommendations in Mobile Environments. Professor Hui Xiong Rutgers Business School Rutgers University. Rutgers, the State University of New Jersey 1 Recommendations in Mobile Environments Professor Hui Xiong Rutgers Business School Rutgers University ADMA-2014 Rutgers, the State University of New Jersey Big Data 3 Big Data Application Requirements

More information

A Quantitative Decision Support Framework for Optimal Railway Capacity Planning

A Quantitative Decision Support Framework for Optimal Railway Capacity Planning A Quantitative Decision Support Framework for Optimal Railway Capacity Planning Y.C. Lai, C.P.L. Barkan University of Illinois at Urbana-Champaign, Urbana, USA Abstract Railways around the world are facing

More information

IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks

IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks Zhibin Wu, Sachin Ganu and Dipankar Raychaudhuri WINLAB, Rutgers University 2006-11-16 IAB Research Review, Fall 2006 1 Contents

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

The Decision Management Manifesto

The Decision Management Manifesto An Introduction Decision Management is a powerful approach, increasingly used to adopt business rules and advanced analytic technology. The Manifesto lays out key principles of the approach. James Taylor

More information

Preactor Planning and Scheduling Software for Enterprise Application

Preactor Planning and Scheduling Software for Enterprise Application Preactor Planning and Scheduling Software for Enterprise Application Gregory Quinn President, Quinn & Associates Inc Vice President North America, Preactor International Ltd. Introduction The scope of

More information

Big Data in Transportation Engineering

Big Data in Transportation Engineering Big Data in Transportation Engineering Nii Attoh-Okine Professor Department of Civil and Environmental Engineering University of Delaware, Newark, DE, USA Email: okine@udel.edu IEEE Workshop on Large Data

More information

An Efficient Hybrid Data Gathering Scheme in Wireless Sensor Networks

An Efficient Hybrid Data Gathering Scheme in Wireless Sensor Networks An Efficient Hybrid Data Gathering Scheme in Wireless Sensor Networks Ayon Chakraborty 1, Swarup Kumar Mitra 2, and M.K. Naskar 3 1 Department of CSE, Jadavpur University, Kolkata, India 2 Department of

More information

A Catechistic Method for Traffic Pattern Discovery in MANET

A Catechistic Method for Traffic Pattern Discovery in MANET A Catechistic Method for Traffic Pattern Discovery in MANET R. Saranya 1, R. Santhosh 2 1 PG Scholar, Computer Science and Engineering, Karpagam University, Coimbatore. 2 Assistant Professor, Computer

More information