The Monitoring of The Network Traffic Based on Queuing Theory


 Gilbert Fletcher
 2 years ago
 Views:
Transcription
1 The Moitorig of The Networ Traffic Based o Queuig Theory A roject Thesis Submitted by alash Sahoo Roll No: 49MA7 I partial fulfillmet of the requiremets For the award of the degree Of MASTER OF SIENE IN MATHEMATIS Uder the supervisio of rof. S. Saha Ray DEARTMENT OF MATHEMATIS NATIONAL INSTITUTE OF TEHNOLOGY, ROURKELA, ORISSA7698
2 ERTIFIATE This is to certify that the roject Thesis etitled The Moitorig Of The Networ Traffic Based O Queuig Theory" submitted by alash Sahoo, Roll o: 49MA7 for the partial fulfilmet of the requiremets of M.Sc. degree i Mathematics from Natioal Istitute of Techology, Rourela, is a boafide record of review wor carried out by him uder my supervisio ad guidace. The cotet of this dissertatio, i full or i parts, has ot bee submitted to ay other Istitute or Uiversity for the award of ay degree or diploma. Dr. S. Saha Ray Associate rofessor Departmet of Mathematics Natioal Istitute of Techology, Rourela Rourela Orissa, Idia
3 DELARATION I declare that the topic `The Moitorig of the Networ Traffic Based o Queuig Theory' for my M.Sc. degree has ot bee submitted i ay other istitutio or uiversity for the award of ay other degree or diploma. lace: Date: alash Sahoo Roll.No. 49MA7 Departmet of Mathematics Natioal Istitute of Techology Rourela7698 Orissa, Idia
4 AKNOWLEDGEMENT I would lie to warmly acowledge ad express my deep sese of gratitude ad idebtedess to my supervisor Dr. S. Saha Ray, Associate rofessor, Departmet of Mathematics, Natioal istitute of Techology, Rourela, Orissa, for his ee guidace, costat ecouragemet ad prudet suggestios durig the course of my study ad preparatio of the fial mauscript of this roject. I would lie to tha the faculty members of Departmet of Mathematics for allowig me to wor for this roject i the computer laboratory ad for their cooperatio. My heartfelt thas to all my frieds ad seiors for their ivaluable cooperatio ad costat ispiratio durig my project wor. I owe a special debt gratitude to my guruji sri sri Aadamurtijii ad my revered parets for their blessigs ad ispiratios. Rourela, 7698 May, alash Sahoo Roll No: 49MA7 Departmet of Mathematics Natioal Istitute of Techology Rourela7698 Orissa, Idia
5 Abstract Networ traffic moitorig is a importat way for etwor performace aalysis ad moitor. The curret project wor explores how to build the basic model of etwor traffic aalysis based o Queuig Theory. I the preset wor, two queuig models M/M/: +/FFS ad M/M/: +/FFS have bee applied to determie the forecast way for the stable cogestio rate of the etwor traffic. Usig this we ca obtai the etwor traffic forecastig ways ad the stable cogestio rate formula. ombiig the geeral etwor traffic moitor parameters, we ca realize the estimatio ad moitor process for the etwor traffic ratioally.
6 otets age o. hapter Itroductio hapter  Model : The queuig model with oe server M/M/: +/FFS 4 hapter  Queueig Theory ad the etwor traffic moitor 9 hapter 4 Model : The queuig model with additioal oe server M/M/: +/FFS hapter 5 oclusio 9 Bibliography
7 hapter  Itroductio Networ traffic moitorig is a importat way for etwor performace aalysis ad moitor. The research wor sees to explore how to build the basic model of etwor traffic aalysis based o Queuig Theory []. Usig this, we ca obtai the etwor traffic forecastig ways ad the stable cogestio rate formula, combiig the geeral etwor traffic moitor parameters. osequetly we ca realize the estimatio ad moitio process for the etwor traffic ratioally. Queuig Theory, also called radom service theory, is a brach of Operatio Research i the field of Applied Mathematics. It is a subject which aalyze the radom regulatio of queuig pheomeo, ad builds up the mathematical model by aalyzig the date of the etwor. Through the predictio of the system, we ca reveal the regulatio about the queuig probability ad choose the optimal method for the system. Adoptig Queuig Theory to estimate the etwor traffic, it becomes the importat ways of etwor performace predictio, aalysis ad estimatio ad, through this way, we ca imitate the true etwor, it is useful ad reliable for orgaizig, moitorig ad defedig the etwor. age
8 The mathematical model of the queuig theory I etwor commuicatio, from sedig, trasferrig to receivig data ad the proceedig of the data codig, decodig ad sedig to the higher layer, i all these process, we ca fid a simple queuig model. Accordig to the Queuig Theory, this correspod procedure ca be abstracted as Queuig theory model [], lie figure. osiderig this id of simple data trasmittig system satisfies the queue model []. Nq T s T N Decodig Dispatchig Hadlig T J T D T From the above figure, Figure :The abstract model of commuicatio process : T N : : N q : : Sedig rate of the seder. Trasportatio delay time. Arrivig speed of the data pacets Quatity of data pacets stored i the buffer temporary storage. acets rate which have mistae i sedig from receiver i.e. lost rate of the receiver. a g e
9 T s : Service time of data pacets i the server where T s =T J +T D +T, T J: T D : T : Decodig time Dispatchig time alculatig time or, evaluatig time or hadlig time. a g e
10 hapter Model: The Queuig model with oe server M/M/:+:FFS I model M/M/, the two M represet the sedig process of the seder ad the receivig process of the receiver separately. They both follow the Marov rocess [4], also eep to oisso Distributio, while the umber stads for the chael. Let Nt= be the legth of the queue at the momet of t. So the probability of the queue whose legth is be I this model, t prob [Nt= ] We have the trasitio rate diagram, = Rate of arrival ito the state =Rate of departure from the state.... Figure: State trasitio diagram 4 a g e
11 The system of differetial differece equatio is. d dt { t t} t t t, for d dt Ad t t ; I model M/M/, we let t Ad Where λ ad µ are costats. for = The ad reduces to d t t t dt t d dt ; for Ad t t ; t for = Here, λ is cosidered as the arrival rate while µ as the service rate. I the steady state coditio Lt t t d Ad Lt { t} t dt Hece from ad whe t we get 4 Ad r, 5 a g e
12 From 4 whe =, we get or I geeral or, where ad is called server utilizatio factor or traffic itesity. We ow, Also This implies that or, or,, where < Hece, =,,, 5 Suppose, L stads for the legth of the queue uder the steady state coditio. It icludes the average volume of all the data pacets which eter the processig module ad store i the buffer. 6 a g e
13 L Hece L 6 Also L sice, 7 If N q shows the average volume of the buffers data pacets. N q L 8 Also N q If the processig module is regarded as a closed regio, the parameter is brought ito the formula 8. Usig the Little s law, we have = average service time of the server = Ts Ts ad here 9 Usig 9, 8 reduces to N q or, Ts Nq Ts 7 a g e ' or, T T N N, sice, s s q q
14 From the above equatio we coclude that, amog three variables viz. T s service time Sedig rate N q Quatity of data pacets stored i the buffer. If we ow ay two variables it is easy to obtai the umerical value of the third oe. So, these three variables are ey parameters for measurig the performace of the trasmissio system. 8 a g e
15 hapter Queuig theory ad the etwor traffic moitor Forecastig the etwor traffic usig Queuig Theory The etwor traffic is very commo [5], The system will be i worse coditio, whe the traffic becomes uder extreme situatio, i which leads to the etwor cogestio [6]. There are a great deal of research about moitorig the cogestio at preset,besides, the documets which mae use of Queuig Theory to research the traffic rate appear more ad more. For forecastig the traffic rate, we ofte test the data disposal fuctio of the router used i the etwor. osiderig a router s arrival rate of data flow i groups is, ad the average time which the routers use to dispose each group is, the buffer of the routers is, if a certai group arrives, the waitig legth of the queue i groups has already reached, so the group has to be lost. Whe the arrivig time of group timeouts, the group has to resed. Suppose, the group s average waitig time is. We idetify i t to be the arrival probability of the queue legth for the routers group at the momet of t, supposig the queue legth is i: t = t, t,..., i t, i =,,...,+. The the queuig system of the router s date groups satisfies simple Marov rocess [7], accordig to Marov rocess, we ca fid the diversio stregth of matrix of model as follow: 9 a g e
16 Networ ogestio Rate Networ cogestio rate is chagig all the time [8]. The istataeous cogestio rate ad the stable cogestio rate are ofte used to aalysis the etwor traffic i etwor moitor. The istataeous rate A c t is the cogestio rate at the momet of t. The A c t ca be obtaied by solvig the system legth of the queue s probability distributig, which is called c+ t. Let tk=,,...,+ to be the arrival probability of the queue legth for the routers group at the momet of t by cosiderig the queue legth is. The the queuig system of the router s date groups satisfies simple Marov rocess. Accordig to Marov rocess, t satisfies the followig system of differetial differece equatios. Let, a g e t = prob { o. of data pacets preset i the system i time t }
17 ad t+ t = prob { o. of data pacets preset i the system i time t + t } ase : For t+ t = rob { o. of data pacets preset i the system at time t } prob { o data pacets arrival i time t } prob {o data pacet departure i time t } + rob {  o. of data pacets preset i the system at time t } prob { data pacet arrival i time t } prob { o data pacet departure i time t } + prob { + o. of data pacets preset i the system at time t } prob { o data pacets arrival i time t } prob { data pacet departure i time t }+... t t t { t o t} { t o t} t{ t o t} { t o } t + t { t o t} { t o t} o t t t t t t t t t t o t Dividig both sides by t ad taig limit as t d dt { t a g e t} t t
18 o t Sice, lim t t Here i state data pacet arrival is i.e., Also i state data pacet departure is i.e., Hece reduces to d dt { t t} t { } t, where =,,, ase : For =, we have t+ t = prob {o data pacet preset i the system i time t+ t } = prob {o data pacet preset i time t } prob { o data pacet arrival i time t } + prob {oe data pacet preset i time t} prob {o data pacet arrival I time t } prob { oe data pacet departure i time t }. = t t { t o t} t { t o t} { t o } t t t t t t o a g e
19 Dividig both sides by t ad taig limit as t, we get d { t} t t, for = dt sice, Ad ase : For =+, we have + t+ t = prob { + o. of data pacet preset i the system i time t+ t } = prob { o. of data pacet preset i time t } prob { data pacet arrival i time t } prob { o data pacet departure i time t } + rob { + o of data pacets preset i time t } prob { o data pacet departure i time t } = t { t o t} { t o t} t { t o t} t t t t o t t Dividig both sides by t ad taig limit as t we get d dt d { t} t t dt { t t} t Sice, 4 By solvig this differetial equatio system, we ca get the istataeous cogestio rate A as t a g e A t t e t
20 The istataeous cogestio rate ca ot be used to measure the stable operatig coditio of the system, so we must obtai the stable cogestio rate of the system. The socalled stable cogestio rate meas it will ot chage with the time chagig, whe the system wors i a stable operatig coditio. The defiitio of the stable cogestio rate is A lim A t t osiderig, lim t as the distributig of the stable legth of the queue ad as t the buffer of the router, the stable cogestio rate ca be obtaied i two ways: firstly, we obtai the istataeous cogestio rate,the mae its limit out. Accordig to its defiitio, it ca be obtaied with the distributig of the legth of the queue. Secodly, accordig to the Marov rocess, we ow that the distributig of the stable legth of queue ca be get through system of steady state equatios. From,,4, we have the system of differetial differece equatios as follows d dt d dt d dt { t t} t { } t for =,,,.., 5 { t t} t for = 6 { t t} t for =+ 7 4 a g e
21 Accordig to some properties of Marov process, we ow that i t i=,,,,+ satisfies the above differetial equatio. Here t [ t, t,..., ] t [,,..., ],,,..., d For steady state coditio lim t t dt ad lim t t Uder steady state coditio,5,6,7 trasform to followig balace equatios. = { } for =,,,, 8, for = 9 for =+ The above system of steady state equatios ca be writte i matrix from as Q i i Where,,..., ad 5 a g e
22 For =, From 9 we get Also, Solvig ad we get Hece A For =, Also, From we get, 6 a g e
23 From 5 we get sice, 7 Usig equatio 6 we get ] [ From 7 we get Hece, A For =, 8 9 Also 7 a g e..
24 From 8 we get ad From 9 we get From we get From we get Hece, A For =, we have a g e
25 6 4 7 From 6 we get Ad From we get From 4 we get From 7 we get 4 Also, 4 9 a g e
26 Hece, 4 A O the aalogy of this, we coclude that,the stable cogestio rate is } { A A A A, for age
27 hapter4 Model : The Queuig Model with additioal oe server M/M/ : +/FFS I this model, umber of servers or chaels are two ad these are arrage i parallel. Here, arrival distributio is poissio distributio with mea rate per uit time. The service time is expoetioal with mea rate per uit time. Each server are idetical i.e. each server gives idetically service with mea rate per uit time.the overall service rate ca be obtaied i two situatios. If there are umbers of data pacets are preset i the system. ase For < There will be o queue. Therefore  server will remai idle ad the combied service rate will be ase For, < The all the servers will busy. So, maximum  + umber of data pacets preset i the queue. The combied service rate will be a g e,
28 Hece combiig case ad case we get., for all,,,, Figure : State trasitio rate diagram The steady state equatios are,, for = 8, for = 9 { }, for 4, for =+ 4 The above system of steady state balace equatios ca be writte i matrix form as Q a g e ad i i
29 Where,,..., ad For = we have 4 Also, 4 From 4 we get The 4 becomes Hece A For = 44 a g e
30 45 46 Also, 47 From 44 we get say ad From 46 we get Sice ] [ Therefore, 4 a g e
31 Ad Hece A For = Also, 5 From 48, we get ad From 49 we get [ sice, ], 5 a g e
32 From 5 we get 4 [Usig the value of ] Sice or, ] 4 [ 4 4 Hece } 4 A For = a g e
33 4 57 From 5 we get Ad From 54 we get From 55 we get ] [ 4 From 57 we get 4 7 a g e
34 8 Also, 4 ] 8 4 [ Hece A O the aalogy of this, we coclude that, the stable cogestio rate is } { A A A A for 8 age
35 hapter 5 oclusio This research program cites the aalysis of the etwor traffic model through Queuig Theory. I the preset aalysis, we describe that how we ca mae a queuig model o the basis of queuig theory ad subsequetly we derive the estimatio after aalyzig the etwor traffic through queuig theory models. I the preset wor two queuig models M/M/: +/FFS ad M/M/:+/FFS have bee applied. These two models are used to determie the forecast way for the stable cogestio rate of the etwor traffic. Usig the Queuig Theory models, it is coveiet ad simple way for calculatig ad moitorig the etwor traffic properly i the etwor commuicatio system. We ca moitor the etwor efficietly, i the view of the ormal, optimal ad or eve for the high overhead etwor maagemet, by moitorig ad aalyzig the etwor traffic rate. Fially, we ca say that etwor traffic rate ca have a importat role i the etwor commuicatio system. 9 a g e
36 Bibliography [] Joh N. Daigle, Queueig Theory with Applicatios to acet Telecommuicatio, ISBN: , Spriger, Bosto, USA, 5. [] Ver axso, Sally Floyd. Why we do t ow how to simulate the iteret. I: proceedig of the 997 witer simulatio coferece.usa: AM,997. [] Re Xiagai, Ziog QiBag. A Applicatio Of Mobile Aget For I Networ Traffic Maagemet, omputer Egierig,,. [4] Li DaQi, She JuYi. Queuig Theory Supervisig KMeas lusterig Algorithm ad ITS applicatio i optimized desig of TT etwor. Joural Of Astroautics,7, [5] Wag eifa, Zhag Shiwei, Li Ju. The Applicatio ad Achievemet of SVG i Networ Netflow Moitor Field. Microelectroics & omputer, 5, 4 [6] Wag Tig, Wag Yu. Survey o a Queue Theory Based Hadover Scheme for UAVS ommuicatio Networ. hiese Joural of Sesors ad Actuators, 7, 4 [7] Guther N. The ractical erformace Aalyst. New Yor: McGrawHill, 998 [8] Ha Jig, Guo Fag, Shi JiHua. Research o the traffic moitorig of the distributed etwor based o huma immue algorithm. Microcomputer Iformatio, 7, 8 age
http://www.ejournalofscience.org Monitoring of Network Traffic based on Queuing Theory
VOL., NO., November ISSN XXXXXXXX ARN Joural of Sciece a Techology  ARN Jourals. All righs reserve. hp://www.ejouralofsciece.org Moiorig of Newor Traffic base o Queuig Theory S. Saha Ray,. Sahoo Naioal
More informationQueuing Systems: Lecture 1. Amedeo R. Odoni October 10, 2001
Queuig Systems: Lecture Amedeo R. Odoi October, 2 Topics i Queuig Theory 9. Itroductio to Queues; Little s Law; M/M/. Markovia BirthadDeath Queues. The M/G/ Queue ad Extesios 2. riority Queues; State
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationA Study for the (μ,s) n Relation for Tent Map
Applied Mathematical Scieces, Vol. 8, 04, o. 60, 3009305 HIKARI Ltd, www.mhikari.com http://dx.doi.org/0.988/ams.04.4437 A Study for the (μ,s) Relatio for Tet Map Saba Noori Majeed Departmet of Mathematics
More informationMultiserver Optimal Bandwidth Monitoring for QoS based Multimedia Delivery Anup Basu, Irene Cheng and Yinzhe Yu
Multiserver Optimal Badwidth Moitorig for QoS based Multimedia Delivery Aup Basu, Iree Cheg ad Yizhe Yu Departmet of Computig Sciece U. of Alberta Architecture Applicatio Layer Request receptio coectio
More informationConfidence Intervals for One Mean with Tolerance Probability
Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationThe second difference is the sequence of differences of the first difference sequence, 2
Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for
More informationCOMPARISON OF THE EFFICIENCY OF SCONTROL CHART AND EWMAS 2 CONTROL CHART FOR THE CHANGES IN A PROCESS
COMPARISON OF THE EFFICIENCY OF SCONTROL CHART AND EWMAS CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More informationResearch Article Sign Data Derivative Recovery
Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationThe analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
More information*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationMARKOV MODEL M/M/M/K IN CONTACT CENTER
MARKOV MODEL M/M/M/K IN CONTACT CENTER Erik CHROMY 1, Ja DIEZKA 1, Matej KAVACKY 1 1 Istitute of Telecommuicatios, Faculty of Electrical Egieerig ad Iformatio Techology, Slovak Uiversity of Techology Bratislava,
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More informationAutomatic Tuning for FOREX Trading System Using Fuzzy Time Series
utomatic Tuig for FOREX Tradig System Usig Fuzzy Time Series Kraimo Maeesilp ad Pitihate Soorasa bstract Efficiecy of the automatic currecy tradig system is time depedet due to usig fixed parameters which
More informationINVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology
Adoptio Date: 4 March 2004 Effective Date: 1 Jue 2004 Retroactive Applicatio: No Public Commet Period: Aug Nov 2002 INVESTMENT PERFORMANCE COUNCIL (IPC) Preface Guidace Statemet o Calculatio Methodology
More informationA Gentle Introduction to Algorithms: Part II
A Getle Itroductio to Algorithms: Part II Cotets of Part I:. Merge: (to merge two sorted lists ito a sigle sorted list.) 2. Bubble Sort 3. Merge Sort: 4. The BigO, BigΘ, BigΩ otatios: asymptotic bouds
More informationCharacterizing EndtoEnd Packet Delay and Loss in the Internet
Characterizig EdtoEd Packet Delay ad Loss i the Iteret JeaChrysostome Bolot Xiyu Sog Preseted by Swaroop Sigh Layout Itroductio Data Collectio Data Aalysis Strategy Aalysis of packet delay Aalysis of
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationEvaluating Model for B2C E commerce Enterprise Development Based on DEA
, pp.180184 http://dx.doi.org/10.14257/astl.2014.53.39 Evaluatig Model for B2C E commerce Eterprise Developmet Based o DEA Weli Geg, Jig Ta Computer ad iformatio egieerig Istitute, Harbi Uiversity of
More informationINVESTMENT PERFORMANCE COUNCIL (IPC)
INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationThe Euler Totient, the Möbius and the Divisor Functions
The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship
More informationStudy on the application of the software phaselocked loop in tracking and filtering of pulse signal
Advaced Sciece ad Techology Letters, pp.3135 http://dx.doi.org/10.14257/astl.2014.78.06 Study o the applicatio of the software phaselocked loop i trackig ad filterig of pulse sigal Sog Wei Xia 1 (College
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationData Analysis and Statistical Behaviors of Stock Market Fluctuations
44 JOURNAL OF COMPUTERS, VOL. 3, NO. 0, OCTOBER 2008 Data Aalysis ad Statistical Behaviors of Stock Market Fluctuatios Ju Wag Departmet of Mathematics, Beijig Jiaotog Uiversity, Beijig 00044, Chia Email:
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationResource Based Pricing Framework for Integrated Services Networks
36 JOURNAL OF NETWORKS, VOL., NO. 3, JUNE 007 Resource Based Pricig Framework for Itegrated Services Networks Mostafa H. Dahsha Uiversity of Oklahoma/Electrical ad omputer Egieerig, Tulsa, OK, U.S.A Email:
More informationADAPTIVE NETWORKS SAFETY CONTROL ON FUZZY LOGIC
8 th Iteratioal Coferece o DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a i a, M a y 25 27, 2 6 ADAPTIVE NETWORKS SAFETY CONTROL ON FUZZY LOGIC Vadim MUKHIN 1, Elea PAVLENKO 2 Natioal Techical
More informationDefinition. Definition. 72 Estimating a Population Proportion. Definition. Definition
7 stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio
More informationEstimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
More informationRecursion and Recurrences
Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationHypothesis Tests Applied to Means
The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationARITHMETIC AND GEOMETRIC PROGRESSIONS
Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives
More informationFourier Series and the Wave Equation Part 2
Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries
More informationCONTROL CHART BASED ON A MULTIPLICATIVEBINOMIAL DISTRIBUTION
www.arpapress.com/volumes/vol8issue2/ijrras_8_2_04.pdf CONTROL CHART BASED ON A MULTIPLICATIVEBINOMIAL DISTRIBUTION Elsayed A. E. Habib Departmet of Statistics ad Mathematics, Faculty of Commerce, Beha
More informationDomain 1: Designing a SQL Server Instance and a Database Solution
Maual SQL Server 2008 Desig, Optimize ad Maitai (70450) 18004186789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More informationSPC for Software Reliability: Imperfect Software Debugging Model
IJCSI Iteratioal Joural of Computer Sciece Issues, Vol. 8, Issue 3, o., May 0 ISS (Olie: 694084 www.ijcsi.org 9 SPC for Software Reliability: Imperfect Software Debuggig Model Dr. Satya Prasad Ravi,.Supriya
More informationReliability Analysis in HPC clusters
Reliability Aalysis i HPC clusters Narasimha Raju, Gottumukkala, Yuda Liu, Chokchai Box Leagsuksu 1, Raja Nassar, Stephe Scott 2 College of Egieerig & Sciece, Louisiaa ech Uiversity Oak Ridge Natioal Lab
More informationLEASEPURCHASE DECISION
Public Procuremet Practice STANDARD The decisio to lease or purchase should be cosidered o a caseby case evaluatio of comparative costs ad other factors. 1 Procuremet should coduct a cost/ beefit aalysis
More informationCME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More informationDivide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016
CS 6, Lecture 3 Divide ad Coquer, Solvig Recurreces, Iteger Multiplicatio Scribe: Juliaa Cook (05, V Williams Date: April 6, 06 Itroductio Today we will cotiue to talk about divide ad coquer, ad go ito
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationMODELING SERVER USAGE FOR ONLINE TICKET SALES
Proceedigs of the 2011 Witer Simulatio Coferece S. Jai, R.R. Creasey, J. Himmelspach, K.P. White, ad M. Fu, eds. MODELING SERVER USAGE FOR ONLINE TICKET SALES Christie S.M. Currie Uiversity of Southampto
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationConfidence Intervals and Sample Size
8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGrawHill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 71 Cofidece Itervals for the
More informationGregory Carey, 1998 Linear Transformations & Composites  1. Linear Transformations and Linear Composites
Gregory Carey, 1998 Liear Trasformatios & Composites  1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio
More informationSolving DivideandConquer Recurrences
Solvig DivideadCoquer Recurreces Victor Adamchik A divideadcoquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationB1. Fourier Analysis of Discrete Time Signals
B. Fourier Aalysis of Discrete Time Sigals Objectives Itroduce discrete time periodic sigals Defie the Discrete Fourier Series (DFS) expasio of periodic sigals Defie the Discrete Fourier Trasform (DFT)
More informationLearning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr.
Algorithms ad Data Structures Algorithm efficiecy Learig outcomes Able to carry out simple asymptotic aalysisof algorithms Prof. Dr. Qi Xi 2 Time Complexity Aalysis How fast is the algorithm? Code the
More informationProblem Set 1 Oligopoly, market shares and concentration indexes
Advaced Idustrial Ecoomics Sprig 2016 Joha Steek 29 April 2016 Problem Set 1 Oligopoly, market shares ad cocetratio idexes 1 1 Price Competitio... 3 1.1 Courot Oligopoly with Homogeous Goods ad Differet
More informationLecture Notes CMSC 251
We have this messy summatio to solve though First observe that the value remais costat throughout the sum, ad so we ca pull it out frot Also ote that we ca write 3 i / i ad (3/) i T () = log 3 (log ) 1
More information3. Continuous Random Variables
Statistics ad probability: 31 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay
More information3. Greatest Common Divisor  Least Common Multiple
3 Greatest Commo Divisor  Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
More informationEstimating the Mean and Variance of a Normal Distribution
Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationSecond Order Linear Partial Differential Equations. Part III
Secod Order iear Partial Differetial Equatios Part III Oedimesioal Heat oductio Equatio revisited; temperature distributio of a bar with isulated eds; ohomogeeous boudary coditios; temperature distributio
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More information8.1 Arithmetic Sequences
MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first
More informationFactors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
More informationSearching Algorithm Efficiencies
Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay
More informationOnline Banking. Internet of Things
Olie Bakig & The Iteret of Thigs Our icreasigly iteretcoected future will mea better bakig ad added security resposibilities for all of us. FROM DESKTOPS TO SMARTWATCHS Just a few years ago, Americas coducted
More informationGrade 7. Strand: Number Specific Learning Outcomes It is expected that students will:
Strad: Number Specific Learig Outcomes It is expected that studets will: 7.N.1. Determie ad explai why a umber is divisible by 2, 3, 4, 5, 6, 8, 9, or 10, ad why a umber caot be divided by 0. [C, R] [C]
More informationCapacity of Wireless Networks with Heterogeneous Traffic
Capacity of Wireless Networks with Heterogeeous Traffic Migyue Ji, Zheg Wag, Hamid R. Sadjadpour, J.J. GarciaLuaAceves Departmet of Electrical Egieerig ad Computer Egieerig Uiversity of Califoria, Sata
More informationArithmetic of Triangular Fuzzy Variable from Credibility Theory
Vol., Issue 3, August 0 Arithmetic of Triagular Fuzzy Variable from Credibility Theory Ritupara Chutia (Correspodig Author) Departmet of Mathematics Gauhati Uiversity, Guwahati, Assam, Idia. Rituparachutia7@rediffmail.com
More informationReview of Fourier Series and Its Applications in Mechanical Engineering Analysis
ME 3 Applied Egieerig Aalysis Chapter 6 Review of Fourier Series ad Its Applicatios i Mechaical Egieerig Aalysis TaiRa Hsu, Professor Departmet of Mechaical ad Aerospace Egieerig Sa Jose State Uiversity
More informationA Guide to the Pricing Conventions of SFE Interest Rate Products
A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios
More informationPROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
More informationif A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S,
Lecture 5: Borel Sets Topologically, the Borel sets i a topological space are the σalgebra geerated by the ope sets. Oe ca build up the Borel sets from the ope sets by iteratig the operatios of complemetatio
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More informationLOCATIONAL MARGINAL PRICING FRAMEWORK IN SECURED DISPATCH SCHEDULING UNDER CONTINGENCY CONDITION
IJRET: Iteratioal Joural of Research i Egieerig ad Techology eissn: 23191163 pissn: 23217308 LOCATIONAL MARGINAL PRICING FRAMEWORK IN SECURED DISPATCH SCHEDULING UNDER CONTINGENCY CONDITION R.Maiamda
More informationSolving Inequalities
Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK12
More informationExample Consider the following set of data, showing the number of times a sample of 5 students check their per day:
Sectio 82: Measures of cetral tedecy Whe thikig about questios such as: how may calories do I eat per day? or how much time do I sped talkig per day?, we quickly realize that the aswer will vary from day
More informationHandout: How to calculate time complexity? CSE 101 Winter 2014
Hadout: How to calculate time complexity? CSE 101 Witer 014 Recipe (a) Kow algorithm If you are usig a modied versio of a kow algorithm, you ca piggyback your aalysis o the complexity of the origial algorithm
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More informationLECTURE 13: Crossvalidation
LECTURE 3: Crossvalidatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Threeway data partitioi Itroductio to Patter Aalysis Ricardo GutierrezOsua Texas A&M
More informationReview for College Algebra Final Exam
Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 14. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i
More information