The accuracy of digital elevation models of the Antarctic continent

Size: px
Start display at page:

Download "The accuracy of digital elevation models of the Antarctic continent"

Transcription

1 Earth and Planetary Science Letters 237 (200) The accuracy of digital elevation models of the Antarctic continent Jonathan Bamber *, Jose Luis Gomez-Dans Centre for Polar Observations and Modelling, School of Geographical Sciences, University of Bristol, UK Received 9 December 2004; received in revised form 9 June 200; accepted 9 June 200 Available online 9 August 200 Editor: E. Boyle Abstract The accuracy of two widely used digital elevation models of Antarctica was assessed using data from the Geoscience Laser Altimeter System onboard ICESat. The digital elevation models were derived from satellite radar altimeter and terrestrial data sets. The first, termed JLB97, was produced predominantly from ERS-1 data while the second, termed, RAMPv2 included other sources of data in areas of high relief and poor coverage by ERS-1. The accuracy of the models was examined as a function of surface slope and original data source. Large errors, in excess of 100 m, were ubiquitous in both models in areas where terrestrially-derived elevation data had been used but were more extensive in RAMPv2. Elsewhere, the systematic error (bias) was found to be a monotonic function of slope for JLB97, with a more complex, less predictable bias for RAMPv2. The magnitude of the global, slope-dependent, bias ranged from less than a metre to slightly over 10 m but with much larger regional deviations. The random error ranged from about 1 m to over 100 m depending on the DEM and slope. The random error was consistently over a factor two larger for RAMPv2 compared to JLB97. D 200 Elsevier B.V. All rights reserved. Keywords: Antarctica; digital elevation model; satellite altimetry; ICESat 1. Introduction Ice sheet surface topography is an important data set for a wide range of applications from field planning to numerical modelling studies. It can, for example, be used to validate the ability of a model to reproduce the present-day geometry of the ice sheet. * Corresponding author. Tel.: ; fax: address: j.bamber@bristol.ac.uk (J. Bamber). It can also be used as an input boundary condition for modelling. Another application that has become increasingly important in recent years is in interferometric synthetic aperture radar (InSAR) processing, which has been used to derive mass balance estimates from ice flux divergence calculations [1,2]. Here, two SAR images are acquired at different times and slightly different locations in space and combined to produce an interference pattern (or interferogram), which is a combination of phase differences due to the motion of the ice surface and its topography [3]. Accurate information on the latter, in the form of a X/$ - see front matter D 200 Elsevier B.V. All rights reserved. doi: /j.epsl

2 J. Bamber, J.L. Gomez-Dans / Earth and Planetary Science Letters 237 (200) digital elevation model (DEM), can be used to remove the (unwanted) topographic signal [3]. Errors in the DEM, however, introduce errors in the estimated motion field and, hence the resultant mass balance. Also required for this type of mass balance study is an estimate of the catchment area or drainage basin for a particular glacier. Again, this information comes from a DEM of the ice sheet [4]. For these and other applications, it is important not only to have accurate topographic information, but also to have knowledge of the errors in the topography. In this paper, we use spatially extensive, decimetre accuracy spot measurements from a satellite laser altimeter (the Geoscience Laser Altimeter System, GLAS, onboard ICESat) to assess the accuracy, both globally and regionally, for the two most ubiquitous and up to date DEMs of Antarctica. 2. Data sets Until the launch of the first European Remote Sensing Satellite, ERS-1, in 1991, the topography of the Antarctic ice sheet was poorly known, with errors of hundreds of metres and a paucity of measurements []. ERS-1 carried onboard a radar altimeter that provided range estimates at 33 m spacing in the along-track direction. In April 1994, the satellite was placed in its geodetic phase comprising a single 336- day cycle, which provided across-track spacing at 608 S of about 4 km. The radar altimeter (RA) data from this geodetic phase were used to derive a DEM with km postings for all areas where there was adequate coverage. South of the latitudinal limit of the satellite (81.8 S), and in areas of steep relief, terrestriallyderived data sets were used [6]. This DEM has been used in a range of modelling and remote sensing studies and was made available through the National Snow and Ice Data Center ( and will be referred to as the JLB97 DEM henceforward. As part of a project to produce a SAR mosaic for the whole of the Antarctic continent, known as the RADARSAT Antarctic Mapping Project, RAMP [7], a second DEM was produced using the same ERS-1 RA data but with a different set of processing algorithms [8]. In addition to using ERS-1 RA data for areas with a slope below 0.88, the RAMPv2 DEM includes data from a number of other sources, such as GPS, airborne radar, and large scale cartography [9]. These sources were selected to provide a better spatial sampling, and have been used instead of the ERS-1 RA data where available. In areas with slopes up to 1.08, where no alternative data were available, ERS-1 RA data were used. In areas with higher relief than this, data from the Antarctica Digital Database (ADD) [10] were added. This will henceforward be referred to as the RAMPv2 DEM. Although, both DEMs utilise the same RA data, different processing methodologies were used to extract elevation estimates [11 1], which has led to substantial differences between the two DEMs, even in areas where only RA data are present. To examine the accuracy of the two DEMs described above, we employed data from the GLAS sensor, launched onboard ICESat in January 2003 [16]. The satellite was initially placed in an 8-day repeat cycle before being moved to a 91-day repeat in October Originally, it was planned to place ICESat in a 186-day repeat cycle, which would have provided dense coverage of both the Greenland and Antarctic ice sheets up to 868 latitude. Due to a degenerative failure of the three laser sub-systems, the mission operation plan was changed and, in general, GLAS has been switched on for a nominal 33 days of each 91-day cycle. This has provided an across-track spacing of around 4 km at 608 latitude and an along-track spacing of 170 m. The ice sheet elevation product (called GLA12) distributed by the National Snow and Ice Data Center, Boulder, Colorado was used in this study [16]. We used release 18 1 of GLA12 covering two time periods: the laser 1 8- day repeat period from to and days of laser 2a from to Before undertaking the comparison a number of processing and filtering steps were necessary. First, the GLAS data were referenced with respect to the WGS84 ellipsoid. The data were then filtered to remove samples that might have been contaminated by cloud cover or other atmospheric interference. Data quality flags in the GLA12 product were used to remove data with gross errors, which test for attitude 1 We use release 18 as more data were available than for release 21, which is probably the final release for laser 2a. Our statistics were nearly identical for both releases for the same orbital time periods.

3 18 J. Bamber, J.L. Gomez-Dans / Earth and Planetary Science Letters 237 (200) control, minimum reflectivity and single peak waveforms. Geophysical filters were then applied. The RAMPv2 and JLB97 DEMs were bilinearly interpolated to estimate the elevation of each DEM at every GLAS sample location. If the difference between both DEMs and the GLAS sample was larger than 400 m, the GLAS sample was discarded. A number of clearly erroneous points were still visible in the resulting data, so a second, statistical criterion was applied. A 3r filter was performed on the GLAS data. This was done by calculating the mean and standard deviation, r, of GLAS samples over a -km grid, and discarding points that were more than three standard deviations away from the mean. Finally, some of the parameters in the GLA12 product can be used as an indicator of abnormal data. It was noted that the GLAS-derived surface roughness parameter was a good indicator of abnormal points over flat surfaces such as ice shelves. The filtering criteria used for this parameter were: if (slope N0.88) use sample if (slopeb0.28) and (number of GLAS points in grid cell N3): edit if roughness N3.0 m if (slopeb0.28) and (number of GLAS points in grid cell b=3): edit if roughness N8.0 m if (0.2 b slope b 0.88) edit if roughness N8.0 m. 3. Methods To assess the internal accuracy (i.e. ignoring any potential geographically-correlated biases) we examined cross-over differences between ascending and descending tracks of GLAS data. In order to find the difference in heights at the crossover points, the track values were interpolated using a first order polynomial. The results are slope dependent, degrading with increasing slope, but it was found that the mean difference was close to zero with a standard deviation of less than 0. m for slopes of 18. The results broadly agree with those reported by the GLAS engineering team and, based on this analysis, we assume that errors in the GLAS data are negligible compared with the DEMs. Differences between GLAS data and the DEMs studied here will, therefore, be assumed, henceforward, to be due to either the influence of sub-grid scale topography on the bilinear interpolation used or errors in the DEMs. There is, however, also an approximate 10-yr time interval between the acquisition of the GLAS and RA data, which could result in differences in elevation due to a height change over the time interval. We note, however, that elevation changes, derived from two -yr periods of ERS RA data suggests that, except for one region of West Antarctica, the differences, at a regional scale, are on the order of a few centimetres per year [17,18]. We conclude, therefore, that the time interval will increase the random error of the differences by about 20 0 cm, depending on location as the elevation changes are not uniform with slope [18]. This is a Difference [m] FWHM [m] Std Dev [m] GLAS-RAMPv2 GLAS-JLB97 a) GLAS-RAMPv2 GLAS-JLB97 b) GLAS-RAMPv2 GLAS-JLB97 c) Slope [deg] Fig. 1. Statistics of the comparison of GLAS data with the JLB97 and RAMPv2 digital elevation models of Antarctica as a function of surface slope for the region covered by ERS-1 radar altimeter data (north of 81.8). (a) Mean difference (GLAS-DEM). (b) Full width half maximum for the histograms of differences. (c) Standard deviation of the histograms of differences. The solid line in the plots shows the cumulative percentage ice sheet area with slope %Area %Area %Area

4 J. Bamber, J.L. Gomez-Dans / Earth and Planetary Science Letters 237 (200) small effect compared to the calculated random errors presented later. Even in the areas of greatest elevation change, the mean difference is likely to be no more than about 1. m. The elevation of the DEM at the precise location of a GLAS footprint on the ground was obtained using bilinear interpolation. This implicitly assumes a planar surface. Where this is not the case (i.e. where the second derivative of elevation is non-zero) this will increase the random error of the differences, particularly in the higher slope, greater relief regions of the ice sheet. The differences were examined both in terms of their spatial pattern and as a function of surface slope, which was calculated from the RAMPv2 DEM over a 10-km distance for both DEMs. 4. Results Fig. 1 shows the mean difference (or as defined above, the systematic error or bias), full width half maximum (FWHM), and standard deviation, r, of GLAS-JLB97 and GLAS-RAMPv2, plotted as a function of surface slope (at intervals) for the region covered by ERS RA data (everywhere north of 81.8 S). The errors south of this latitude are not included in the statistics presented in Fig. 1 and Table 1 as they are not representative of the rest of the ice sheet. FWHM was plotted, in addition to r, as the histograms of differences do not have a Gaussian distribution (Fig. 2). As a consequence r is not necessarily an appropriate metric for the random error. We believe the reason for the non-gaussian distribution of errors may be due to the fact that the RA ranges to the top of small-scale (sub-kilometre) undulations, while GLAS can bseeq down into the troughs and other small-scale features such as rifts and crevasses. This would explain the negative tail in the distributions (i.e. points where GLAS is below the DEM) and is also the explanation for the systematic trend in the bias for JLB97 (Fig. 1a), as discussed later. It is interesting to note that there is a marked increase in FWHM for RAMPv2 at slopes above about At slopes greater than this value, much of the data used in RAMPv2 came from sources other than RA data. These sources appear to provide lower accuracy overall, as shown later. Table 1 Statistics of the elevation differences for the two digital elevation models as a function of the regional surface slope Slope (deg) JLB97 RAMPv2 N Mean difference FWHM Std Dev Mean difference FWHM Std Dev Note that the statistics were calculated for a 0.08 slope interval for the table but a interval for Fig. 1 so the values are not identical, in particular for FWHM.

5 20 J. Bamber, J.L. Gomez-Dans / Earth and Planetary Science Letters 237 (200) Count Elevation difference Fig. 2. Histograms of the difference (GLAS-DEM) for the surface slope interval The black line is for GLAS-JLB97 and the grey line is for GLAS-RAMPv2. A small number of both positive and negative outliers are apparent in Fig. 2. These are probably due to a combination of erroneous GLAS data that have not been removed during filtering, errors in the DEMs and geophysically related artefacts due to sub-grid scale features such as crevasses and rifts, which are detected by the relatively small GLAS footprint (60 m) compared with the RA footprint, which is typically around 2 3 km over undulating terrain. The mean bias between GLAS and, in particular, RAMPv2 is also evident in Fig. 2. The full statistics of the comparison are tabulated in Table 1 using a slope interval of 0.08, where N is the number of samples for a given slope interval. It is evident that at the lowest slopes (less than 0.28, which accounts for over half the ice sheet area), the biases are below about 2 m and the FWHMs are less than and 9.4 m, respectively (see Table 1). A contribution to the FWHM is due to real topographic variation within a -km DEM grid cell, which is not an error but a function of the spatial resolution of the DEM. There is a monotonic increase in the bias (as well as random error) between GLAS and JLB97 with increasing slope. This is expected, and was also noted for a similar study in Greenland [19]. There is, by contrast, no obvious trend in the bias for RAMPv2. The solid line in Fig. 1 indicates the cumulative percentage area covered as a function of slope. About 60% of the ice sheet has a slope less than 0.28, covering all of the ice shelves and high elevation ice sheet interior. Fig. 1 is a summary of the global trends as a function of surface slope. It does not indicate the spatial pattern of the errors, however, which show marked regional trends (Fig. 3a and b). The most obvious feature is the area of large errors south of the latitudinal limit of the RA data (81.8 S). Here, only sparse, low accuracy, terrestrially-derived, data were available and the errors are therefore large and similar in both DEMs. The central, plateau region of East Antarctica is a low slope area where the FWHM in JLB97 is on the order of 1 2 m with a bias of around 0 cm. Toward the margins, where surface slopes Fig. 3. Plots of the spatial pattern of GLAS minus (a) JLB97 and (b) RAMPv2, scaled between F20 m. The green square indicates the colour of a zero elevation difference.

6 J. Bamber, J.L. Gomez-Dans / Earth and Planetary Science Letters 237 (200) increase, the differences are larger and, in general, negative (i.e. DEM higher than the GLAS data). In the case of RAMPv2 the bias over the plateau is slightly higher (at around 2 3 m) and positive (see also Fig. 1a and Table 1). In addition, there are both positive and negative biases near the margin and the larger errors (blues and reds) cover a greater proportion of the coastal area compared with JLB97. The non-monotonic characteristic of the bias in RAMPv2 is reflected by much higher random errors for larger slopes, exceeding 100 m for slopes greater than 0.78, for example. The scale in Fig. 3 is F20 m to illustrate the spatial pattern of errors in the DEMs over most of the ice sheet. Some of the differences are, however, considerably larger than 20 m and the plot is, therefore, bsaturatedq in places. Fig. 4 shows the errors on a scale of F100 m to illustrate the distribution of these larger errors. Not surprisingly, they are ubiquitous throughout the region south of 81.8 but are also apparent along the Transantarctic Mountains and parts of the Antarctic Peninsula. It is evident, also, that RAMPv2 contains a greater area of these larger errors compared to JLB97 and it is notable that many of these regions are areas where cartographic sources were used to supplement the RA data [9]. Detailed examination of the DEMs shows that these areas in RAMPv2 possess information at higher spatial resolution compared to JLB97 but, seemingly, at the cost of a poorer vertical accuracy. Most of the marginal areas of the ice sheet appear to have errors on the order of 100 m in RAMPv2 (Fig. 4b) with both positive and negative differences.. Discussion The random errors (both FWHM and r) show a fairly linear trend with slope as was found in Greenland [13,19] but the values for Antarctica are higher. This is most probably due to the -km resolution of the DEMs used here (for Greenland a 1-km DEM was available) combined with the effect of using bilinear interpolation over this length scale. In addition, the time difference between the radar and laser measurements, as discussed earlier, will increase the random errors marginally. The result for the bias as a function of surface slope (Fig. 1a) for JLB97 is not unexpected and is similar in behaviour and magnitude to that observed for RA data analysed using similar methods, and an airborne laser data set, over Greenland [13,19]. It has been hypothesised previously that this effect is due to the use of the relocation method for slope correction, which relocates RA measurements to the nearest point on the surface. This results in a clustering of observations towards the peaks of undulations and away from the troughs [12]. As a consequence, the sampling of the surface by the RA is biased towards higher points. This may appear to be a disadvantage of the relocation method, but it reflects the true sampling behaviour of the RA, which does not uniformly sample all parts of the surface. In addition, the bias this introduces can be easily characterised and is a wellbehaved function of slope unlike other methods for slope correction, which have an unpredictable and noisy error distribution [12,19]. As the amplitude of Fig. 4. As for Fig. 3 but with a scale of F100 m.

7 22 J. Bamber, J.L. Gomez-Dans / Earth and Planetary Science Letters 237 (200) GLAS variation DEM difference 10km 3 Mean Height Difference [m] Slope [deg] Fig.. Plot of a measure of the amplitude of surface roughness within a -km grid cell as a function of regional surface slope (in bins) compared with the bias estimate for GLAS-JLB97 shown in Fig. 1a (solid line). The error bars indicate the standard deviation of the amplitude estimates for all grid cells that lie in each slope bin used. the peaks and troughs increases, we expect the bias in the relocation method to increase. The amplitude of undulations is, in part, a function of ice thickness, which, in turn is a function of surface slope [20]. To examine this relationship quantitatively, we estimated the amplitude of undulations within a -km grid cell by identifying all GLAS data that were located within the cell, fitting a plane to them, and calculating the standard deviation of the residuals. The standard deviation was taken as a proxy for the amplitude of undulations. Fig. is a plot of the amplitude of undulations versus slope, calculated in this way. There is a monotonic increase in the undulation amplitude proxy with slope. The JLB97 bias, estimated from Fig. 1a, is also shown for comparison. The two agree remarkably well up to a slope of about 0.68 at which point the bias appears to level off while the undulation amplitude continues to increase. The divergence in behaviour above 0.68 may be due to increased errors in estimating slopes over a 10-km scale in areas of high relief and to the inclusion of non-glaciated terrain at higher slopes. When the slopes were estimated over a shorter distance 2, for example, the trend in the JLB97 DEM bias was found to have less variability at higher slopes. 6. Conclusions We have used data from the GLAS instrument onboard the ICESat satellite to assess the accuracy of the two, currently, most up to date, and commonly used, DEMs of the Antarctic ice sheet. The accuracy of both DEMs, south of the coverage of ERS-1 RA data, was relatively poor, with errors in excess of 100 m. Over the central, low-slope plateau area of East Antarctica, the JLB97 DEM had a bias between 0. and 1.6 m and random error of between 1. and 4 m. The RAMPv2 DEM had a regionally varying bias of between 1.4 and 2 To do this, we used a new but, at the time of writing, unpublished, 1-km resolution DEM that is a combination of GLAS and ERS data, which draws on the analysis presented here to correct for biases between GLAS and ERS data.

8 J. Bamber, J.L. Gomez-Dans / Earth and Planetary Science Letters 237 (200) m and a slightly higher random error. Biases and random errors increased with local slope with a monotonic trend for JLB97 and a complex, unpredictable trend for RAMPv2. The former consistently had over a factor two lower random error compared with the latter. This, we believe, was due to the method employed for slope correcting the RA data used in the RAMPv2 DEM, which introduces significant errors for surfaces with a non-zero second derivative [12] (i.e. for surfaces with curvature). By fitting a function, such as a second order polynomial, to the bias observed for JLB97 it is possible to reduce the bias to around a metre for all slopes up to 18, as was done for a DEM of Greenland [13]. We conclude that the RA processing chain used to generate JLB97 produces lower noise and, with addition of the correction described, a lower bias than the method used to process the RA data used in RAMPv2 [1]. The former have been, as a consequence, combined with GLAS data, to produce a new DEM of Antarctica that is both more accurate, particularly near the margins and south of 81.8, and higher resolution. A true spatial resolution of close to 1 km is achievable (dependent largely on latitude), due to the smaller footprint size of GLAS (60 m) compared to the ERS-1 RA, which produces elevation estimates that are typically correlated over distances of about 4 km over ice sheet terrain. Acknowledgements This work was funded by UK NERC contract for the Centre for Polar Observations and Modelling. We would like to thank NSIDC for providing the GLAS data and advise on processing and Robert Thomas for providing comments on a draft version of the paper. References [1] E. Rignot, Mass balance of East Antarctic glaciers and ice shelves from satellite data, Ann. Glaciol. 34 (2002) [2] E. Rignot, R.H. Thomas, Mass balance of polar ice sheets, Science 297 (86) (2002) [3] I. Joughin, R. Kwok, M. Fahnestock, Estimation of icesheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland, J. Glaciol. 42 (142) (1996) [4] D.G. Vaughan, J.L. Bamber, M. Giovinetto, J. Russell, A.P.R. Cooper, Reassessment of net surface mass balance in Antarctica, J. Climate 12 (4) (1999) [] J.L. Bamber, A digital elevation model of the Antarctic ice sheet derived from ERS-1 altimeter data and comparison with terrestrial measurements, Ann. Glaciol. 20 (1994) [6] J.L. Bamber, R.A. Bindschadler, An improved elevation data set for climate and ice sheet modelling: validation with satellite imagery, Ann. Glaciol. 2 (1997)1993. [7] K.C. Jezek, H.G. Sohn, K.F. Noltimier, The radarsat Antarctic mapping project, in: Ti Stein (Ed.), 1998 International Geoscience and Remote Sensing Symposium (IGARSS 98) on Sensing and Managing the EnvironmentSEATTLE, WA, 6 10 Jul 1998IEEE Service Center, Piscataway, Nj, 1998, pp Hoes Lane, Po Box 1331, [8] H.J. Zwally, A.C. Brenner, J.P. DiMarzio, T. Seiss, Ice sheet topography from retracked ERS-1 altimetry, Proc. 2nd ERS-1 Symp. Space at Service of Our Environment SP-361, European Space Agency, Hamburg, 1994, pp [9] H.X. Liu, K.C. Jezek, B.Y. Li, Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: a geographic information system based approach, J. Geophys. Res. 104 (B10) (1999) [10] BAS, SPRI, WCMC, Antarctic Digital Database User s Guide and Reference Manual, Scientific Committee on Antarctic Research, Cambridge, [11] A.C. Brenner, R.A. Bindschadler, R.H. Thomas, H.J. Zwally, Slope-induced errors in radar altimetry over continental ice sheets, J. Geophys. Res. 88 (C3) (1983) [12] J.L. Bamber, Ice sheet altimeter processing scheme, Int. J. Remote Sens. 14 (4) (1994) [13] J.L. Bamber, S. Ekholm, W.B. Krabill, A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data, J. Geophys. Res. 106 (B4) (2001) [14] R.A. Bindschadler, H.J. Zwally, J.A. Major, A.C. Brenner, Surface Topography of the Greenland Ice Sheet from Satellite Radar Altimetry, NASA, [1] H.J. Zwally, A. Brenner, J.A. Major, T.V. Martin, R.A. Bindschadler, Satellite Radar Altimetry over Ice, Volume 1 Processing and Corrections of Seasat Data over Greenland, NASA, [16] H.J. Zwally, B. Schutz, W. Abdalati, J. Abshire, C. Bentley, A. Brenner, J. Bufton, J. Dezio, D. Hancock, D. Harding, T. Herring, B. Minster, K. Quinn, S. Palm, J. Spinhirne, R. Thomas, ICESat s laser measurements of polar ice, atmosphere, ocean, and land, J. Geodyn. 34 (3 4) (2002) [17] D.J. Wingham, A.J. Ridout, R. Scharroo, R.J. Arthern, C.K. Shum, Antarctic elevation change from 1992 to 1996, Science 282 (388) (1998) [18] C.H. Davis, A.C. Ferguson, Elevation change of the Antarctic ice sheet, , from ERS-2 satellite radar altimetry, T. Geos. Rem. Sens., vol. 42(11), 2004, pp [19] J.L. Bamber, S. Ekholm, W.B. Krabill, The accuracy of satellite radar altimeter data over the Greenland ice sheet determined from airborne laser data, Geophys. Res. Lett. 2 (16) (1998) [20] S. Ekholm, J.L. Bamber, W.B. Krabill, The use of airborne laser data to calibrate satellite radar altimetry data over ice sheets, J. Geodyn. 34 (2001)

AUTOMATED DEM VALIDATION USING ICESAT GLAS DATA INTRODUCTION

AUTOMATED DEM VALIDATION USING ICESAT GLAS DATA INTRODUCTION AUTOMATED DEM VALIDATION USING ICESAT GLAS DATA Mary Pagnutti Robert E. Ryan Innovative Imaging and Research Corp. Building 1103, Suite 140C Stennis Space Center, MS 39529 mpagnutti@i2rcorp.com rryan@i2rcorp.com

More information

National Snow and Ice Data Center

National Snow and Ice Data Center National Snow and Ice Data Center This data set (NSIDC-0484), part of the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Program, provides the first comprehensive, high-resolution,

More information

TerraSAR X and TanDEM X satellite missions update & other activities Dana Floricioiu German Aerospace Center (DLR), Remote Sensing Technology

TerraSAR X and TanDEM X satellite missions update & other activities Dana Floricioiu German Aerospace Center (DLR), Remote Sensing Technology TerraSAR X and TanDEM X satellite missions update & other activities Dana Floricioiu German Aerospace Center (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, Germany PSTG 2 12 14 June 2012

More information

LiDAR for vegetation applications

LiDAR for vegetation applications LiDAR for vegetation applications UoL MSc Remote Sensing Dr Lewis plewis@geog.ucl.ac.uk Introduction Introduction to LiDAR RS for vegetation Review instruments and observational concepts Discuss applications

More information

Notable near-global DEMs include

Notable near-global DEMs include Visualisation Developing a very high resolution DEM of South Africa by Adriaan van Niekerk, Stellenbosch University DEMs are used in many applications, including hydrology [1, 2], terrain analysis [3],

More information

Future needs of remote sensing science in Antarctica and the Southern Ocean: A report to support the Horizon Scan activity of COMNAP and SCAR

Future needs of remote sensing science in Antarctica and the Southern Ocean: A report to support the Horizon Scan activity of COMNAP and SCAR Future needs of remote sensing science in Antarctica and the Southern Ocean: A report to support the Horizon Scan activity of COMNAP and SCAR Thomas Wagner (thomas.wagner@nasa.gov) Charles Webb NASA Cryospheric

More information

Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product

Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Michael J. Lewis Ph.D. Student, Department of Earth and Environmental Science University of Texas at San Antonio ABSTRACT

More information

What has 16 years of Satellite Radar Altimetry given us towards Global monitoring of the Earth s inland water resources?

What has 16 years of Satellite Radar Altimetry given us towards Global monitoring of the Earth s inland water resources? What has 16 years of Satellite Radar Altimetry given us towards Global monitoring of the Earth s inland water resources? P.A.M Berry (1), R.G.Smith (1), J.A.Freeman (1) 1. EAPRS Laboratory, De Montfort

More information

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere Master s Thesis: ANAMELECHI, FALASY EBERE Analysis of a Raster DEM Creation for a Farm Management Information System based on GNSS and Total Station Coordinates Duration of the Thesis: 6 Months Completion

More information

Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF.

Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF. Case Study Australia Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia Chair UN-GGIM-AP WG1 Chair APREF Page 1 Overview 1. Australian height system Australian Height Datum

More information

Antarctica s Pine Island Glacier:

Antarctica s Pine Island Glacier: Keywords: Climate Change at www.scilinks.org Enter code: TST101301 Antarctica s Pine Island Glacier: A Climate Canary? Using atmospheric and oceanic processes and the poles to teach the climate system

More information

Slope correction for ocean radar altimetry

Slope correction for ocean radar altimetry JGeod DOI 10.1007/s00190-014-070-1 ORIGINAL ARTICLE Slope correction for ocean radar altimetry David T. Sandwell Walter H. F. Smith Received: 30 October 013 / Accepted: 8 April 014 Springer-Verlag Berlin

More information

Information Contents of High Resolution Satellite Images

Information Contents of High Resolution Satellite Images Information Contents of High Resolution Satellite Images H. Topan, G. Büyüksalih Zonguldak Karelmas University K. Jacobsen University of Hannover, Germany Keywords: satellite images, mapping, resolution,

More information

Development of new hybrid geoid model for Japan, GSIGEO2011. Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI

Development of new hybrid geoid model for Japan, GSIGEO2011. Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI Development of new hybrid geoid model for Japan, GSIGEO2011 11 Development of new hybrid geoid model for Japan, GSIGEO2011 Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI (Published online: 26 December 2014)

More information

How To Monitor Sea Level With Satellite Radar

How To Monitor Sea Level With Satellite Radar Satellite Altimetry Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München email: bosch@dgfi.badw.de Objectives You shall recognize satellite altimetry as an operational remote sensing

More information

Radiative effects of clouds, ice sheet and sea ice in the Antarctic

Radiative effects of clouds, ice sheet and sea ice in the Antarctic Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea

More information

Determining the Antarctic Ice Sheet Grounding Line with Photoclinometry using LANDSAT Imagery and ICESat Laser Altimetry

Determining the Antarctic Ice Sheet Grounding Line with Photoclinometry using LANDSAT Imagery and ICESat Laser Altimetry Determining the Antarctic Ice Sheet Grounding Line with Photoclinometry using LANDSAT Imagery and ICESat Laser Altimetry Jamika Baltrop, MyAsia Reid Mentor: Dr. Malcolm LeCompte 1704 Weeksville Road, Box

More information

Satellite Altimetry Missions

Satellite Altimetry Missions Satellite Altimetry Missions SINGAPORE SPACE SYMPOSIUM 30 TH SEPTEMBER 2015 AUTHORS: LUCA SIMONINI/ ERICK LANSARD/ JOSE M GONZALEZ www.thalesgroup.com Table of Content General Principles and Applications

More information

Near Real Time Blended Surface Winds

Near Real Time Blended Surface Winds Near Real Time Blended Surface Winds I. Summary To enhance the spatial and temporal resolutions of surface wind, the remotely sensed retrievals are blended to the operational ECMWF wind analyses over the

More information

Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques

Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques Robert Rohde Lead Scientist, Berkeley Earth Surface Temperature 1/15/2013 Abstract This document will provide a simple illustration

More information

Virtual Met Mast verification report:

Virtual Met Mast verification report: Virtual Met Mast verification report: June 2013 1 Authors: Alasdair Skea Karen Walter Dr Clive Wilson Leo Hume-Wright 2 Table of contents Executive summary... 4 1. Introduction... 6 2. Verification process...

More information

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University

More information

Two decades of inland water monitoring using satellite radar altimetry

Two decades of inland water monitoring using satellite radar altimetry Two decades of inland water monitoring using satellite radar altimetry P.A.M. Berry (1) (1) De Montfort University, Faculty of Computer Sciences and Engineering, Leicester LE1 9BH, United Kingdom ABSTRACT

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

GNSS Reflectometry at GFZ: ocean altimetry and land surface monitoring

GNSS Reflectometry at GFZ: ocean altimetry and land surface monitoring GNSS Reflectometry at GFZ: ocean altimetry and land surface monitoring M. Semmling 1 S. Vey 1 J. Beckheinrich 1 V. Leister 1,2 J. Saynisch 1 J. Wickert 1 1 Research Centre for Geoscience GFZ, Potsdam 2

More information

Monitoring a Changing Environment with Synthetic Aperture Radar. Alaska Satellite Facility National Park Service Don Atwood

Monitoring a Changing Environment with Synthetic Aperture Radar. Alaska Satellite Facility National Park Service Don Atwood Monitoring a Changing Environment with Synthetic Aperture Radar Don Atwood Alaska Satellite Facility 1 Entering the SAR Age 2 SAR Satellites RADARSAT-1 Launched 1995 by CSA 5.6 cm (C-Band) HH Polarization

More information

DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7

DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 Contents GIS and maps The visualization process Visualization and strategies

More information

Focus Earth The Velingara Circular Structure A meteorite impact crater?

Focus Earth The Velingara Circular Structure A meteorite impact crater? Focus Earth The Velingara Circular Structure A meteorite impact crater? S. Wade Institut des Sciences de la Terre, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Sénégal M.

More information

Daily High-resolution Blended Analyses for Sea Surface Temperature

Daily High-resolution Blended Analyses for Sea Surface Temperature Daily High-resolution Blended Analyses for Sea Surface Temperature by Richard W. Reynolds 1, Thomas M. Smith 2, Chunying Liu 1, Dudley B. Chelton 3, Kenneth S. Casey 4, and Michael G. Schlax 3 1 NOAA National

More information

GSA Data Repository 2016022 An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica

GSA Data Repository 2016022 An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica GSA Data Repository 2016022 An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica Stewart S.R. Jamieson 1,*, Neil Ross 2, Jamin S. Greenbaum 3, Duncan A. Young 3, Alan

More information

Two primary advantages of radars: all-weather and day /night imaging

Two primary advantages of radars: all-weather and day /night imaging Lecture 0 Principles of active remote sensing: Radars. Objectives: 1. Radar basics. Main types of radars.. Basic antenna parameters. Required reading: G: 8.1, p.401-40 dditional/advanced reading: Online

More information

COMPARISON OF SRTM AND 25K TOPOGRAPHIC MAPS IN TURKEY

COMPARISON OF SRTM AND 25K TOPOGRAPHIC MAPS IN TURKEY COMPARISON OF SRTM AND 25K TOPOGRAPHIC MAPS IN TURKEY Oztug Bildirici 1, Aydin Ustun, Necla Ulugtekin 2, H. Zahit Selvi 1, Alpay Abbak 1, Ilkay Bugdayci 1, A. Ozgur Dogru 2 1 Selcuk University, Faculty

More information

Classification of CryoSat-2 radar echoes

Classification of CryoSat-2 radar echoes Classification of CryoSat-2 radar echoes Robert Ricker, Stefan Hendricks, Veit Helm, Rüdiger Gerdes Abstract Sea-ice thickness at global scale is an important variable in the polar climate system. Only

More information

Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites

Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites Hans C. Graber RSMAS

More information

Terrain-Related Gravimetric Quantities Computed for the Next EGM

Terrain-Related Gravimetric Quantities Computed for the Next EGM Terrain-Related Gravimetric Quantities Computed for the Next EGM Nikolaos K. Pavlis 1, John K. Factor 2, and Simon A. Holmes 1 1 SGT, Inc., 7701 Greenbelt Road, Suite 400, Greenbelt, Maryland 20770, USA,

More information

EO based glacier monitoring

EO based glacier monitoring EO based glacier monitoring THEMES 1. WGMS & GLIMS within GTN G: strategic set up 2. GlobGlacier & Glaciers_cci: EO based products 3. LDCM & Sentinel 2: future monitoring perspectives Frank Paul* Department

More information

Jason-2 GDR Quality Assessment Report. Cycle 059 07-02-2010 / 17-02-2010. M. Ablain, CLS. P. Thibaut, CLS

Jason-2 GDR Quality Assessment Report. Cycle 059 07-02-2010 / 17-02-2010. M. Ablain, CLS. P. Thibaut, CLS Jason-2 GDR Quality Assessment Report Cycle 059 07-02-2010 / 17-02-2010 Prepared by : S. Philipps, CLS M. Ablain, CLS P. Thibaut, CLS Accepted by : Approved by : DT/AQM, CLS E. Bronner, CNES Edition 01.0,

More information

Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites

Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites Hans C. Graber RSMAS

More information

A new approach to rail asset management.

A new approach to rail asset management. A new approach to rail asset management. Geotechnical and structural monitoring via satellite for the rail industry. With mounting pressures on the UK s ageing infrastructure networks from ever increasing

More information

Lidar Remote Sensing for Forestry Applications

Lidar Remote Sensing for Forestry Applications Lidar Remote Sensing for Forestry Applications Ralph O. Dubayah* and Jason B. Drake** Department of Geography, University of Maryland, College Park, MD 0 *rdubayah@geog.umd.edu **jasdrak@geog.umd.edu 1

More information

Earth Coordinates & Grid Coordinate Systems

Earth Coordinates & Grid Coordinate Systems Earth Coordinates & Grid Coordinate Systems How do we model the earth? Datums Datums mathematically describe the surface of the Earth. Accounts for mean sea level, topography, and gravity models. Projections

More information

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

NASA Earth System Science: Structure and data centers

NASA Earth System Science: Structure and data centers SUPPLEMENT MATERIALS NASA Earth System Science: Structure and data centers NASA http://nasa.gov/ NASA Mission Directorates Aeronautics Research Exploration Systems Science http://nasascience.nasa.gov/

More information

The Map Grid of Australia 1994 A Simplified Computational Manual

The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones

More information

Climate and Global Dynamics e-mail: swensosc@ucar.edu National Center for Atmospheric Research phone: (303) 497-1761 Boulder, CO 80307

Climate and Global Dynamics e-mail: swensosc@ucar.edu National Center for Atmospheric Research phone: (303) 497-1761 Boulder, CO 80307 Sean C. Swenson Climate and Global Dynamics P.O. Box 3000 swensosc@ucar.edu National Center for Atmospheric Research (303) 497-1761 Boulder, CO 80307 Education Ph.D. University of Colorado at Boulder,

More information

Ice flow across the grounding line of the East Antarctic Ice Sheet between 80 E and 130 E

Ice flow across the grounding line of the East Antarctic Ice Sheet between 80 E and 130 E Ice flow across the grounding line of the East Antarctic Ice Sheet between 80 E and 130 E Chad A. Greene December 1, 2012 Abstract Ice thickness, velocity, and bed elevation along the grounding line of

More information

ASCAT tandem coverage

ASCAT tandem coverage Ocean and Sea Ice SAF ASCAT tandem coverage Jeroen Verspeek Ad Stoffelen Version 0.8 2009-04-22 1 Introduction In order to examine the coverage of a system of two identical satellite scatterometers, a

More information

On the Positional Accuracy of the GoogleEarth Imagery

On the Positional Accuracy of the GoogleEarth Imagery On the Positional Accuracy of the GoogleEarth Imagery Kazimierz BECEK and KHAIRUNNISA Ibrahim, Brunei Darussalam Keywords: GoogleEarth, positional accuracy, satellite imagery SUMMARY The ubiquitous GoogleEarth

More information

The USGS Landsat Big Data Challenge

The USGS Landsat Big Data Challenge The USGS Landsat Big Data Challenge Brian Sauer Engineering and Development USGS EROS bsauer@usgs.gov U.S. Department of the Interior U.S. Geological Survey USGS EROS and Landsat 2 Data Utility and Exploitation

More information

Gravitational potential

Gravitational potential Gravitational potential Let s assume: A particle of unit mass moving freely A body of mass M The particle is attracted by M and moves toward it by a small quantity dr. This displacement is the result of

More information

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and

More information

Radar Interferometric and Polarimetric Possibilities for Determining Sea Ice Thickness

Radar Interferometric and Polarimetric Possibilities for Determining Sea Ice Thickness Radar Interferometric and Polarimetric Possibilities for Determining Sea Ice Thickness by Scott Hensley, Ben Holt, Sermsak Jaruwatanadilok, Jeff Steward, Shadi Oveisgharan Delwyn Moller, Jim Reis, Andy

More information

Measuring Line Edge Roughness: Fluctuations in Uncertainty

Measuring Line Edge Roughness: Fluctuations in Uncertainty Tutor6.doc: Version 5/6/08 T h e L i t h o g r a p h y E x p e r t (August 008) Measuring Line Edge Roughness: Fluctuations in Uncertainty Line edge roughness () is the deviation of a feature edge (as

More information

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

More information

Map World Forum Hyderabad, India Introduction: High and very high resolution space images: GIS Development

Map World Forum Hyderabad, India Introduction: High and very high resolution space images: GIS Development Very high resolution satellite images - competition to aerial images Dr. Karsten Jacobsen Leibniz University Hannover, Germany jacobsen@ipi.uni-hannover.de Introduction: Very high resolution images taken

More information

3D Visualization of Seismic Activity Associated with the Nazca and South American Plate Subduction Zone (Along Southwestern Chile) Using RockWorks

3D Visualization of Seismic Activity Associated with the Nazca and South American Plate Subduction Zone (Along Southwestern Chile) Using RockWorks 3D Visualization of Seismic Activity Associated with the Nazca and South American Plate Subduction Zone (Along Southwestern Chile) Using RockWorks Table of Contents Figure 1: Top of Nazca plate relative

More information

THE UPWARD SHIFT OF THE DRY SNOW LINE ON THE NORTHERN ANTARCTIC PENINSULA

THE UPWARD SHIFT OF THE DRY SNOW LINE ON THE NORTHERN ANTARCTIC PENINSULA THE UPWARD SHIFT OF THE DRY SNOW LINE ON THE NORTHERN ANTARCTIC PENINSULA Frank Rau Department of Physical Geography, University of Freiburg, Werderring 4, D-79085 Freiburg, Germany Phone: +49-(0)761-2033550

More information

Survey using autonomous precise GPS beacons

Survey using autonomous precise GPS beacons CRACICE (Cooperative Research into Antarctic Calving and Icebergs Evolution) Benoît Legrésy, Lydie Lescarmontier, Sara fleury, Fernando Nino, Pascal Lacroix, Laurent Testut., Clément Mayet LEGOS Richard

More information

Adaptation of High Resolution Ikonos Images to Googleearth for Zonguldak Test Field

Adaptation of High Resolution Ikonos Images to Googleearth for Zonguldak Test Field Adaptation of High Resolution Ikonos Images to Googleearth for Zonguldak Test Field Umut G. SEFERCIK, Murat ORUC and Mehmet ALKAN, Turkey Key words: Image Processing, Information Content, Image Understanding,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/311/5768/1747/dc1 Supporting Online Material for Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea- Level Rise Jonathan T. Overpeck,* Bette L. Otto-Bliesner,

More information

Optimal Cell Towers Distribution by using Spatial Mining and Geographic Information System

Optimal Cell Towers Distribution by using Spatial Mining and Geographic Information System World of Computer Science and Information Technology Journal (WCSIT) ISSN: 2221-0741 Vol. 1, No. 2, -48, 2011 Optimal Cell Towers Distribution by using Spatial Mining and Geographic Information System

More information

DEM products from TerraSAR-X & TanDEM-X. Nora Meyer zu Erpen // 25.01.2011

DEM products from TerraSAR-X & TanDEM-X. Nora Meyer zu Erpen // 25.01.2011 DEM products from TerraSAR- & TanDEM- Nora Meyer zu Erpen // 25.01.2011 GEO-Information Services within Astrium and EADS Airbus Eurocopter Cassidian Astrium Turnover 2009: 4.8 billion Staff 2009: 15,000*

More information

The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements

The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off meeting held in Brasilia, 20 22 November 2002). IAHS Publ. 309, 2007. 129 The current status of global river discharge monitoring

More information

Chapter 5: Working with contours

Chapter 5: Working with contours Introduction Contoured topographic maps contain a vast amount of information about the three-dimensional geometry of the land surface and the purpose of this chapter is to consider some of the ways in

More information

Assessment of Camera Phone Distortion and Implications for Watermarking

Assessment of Camera Phone Distortion and Implications for Watermarking Assessment of Camera Phone Distortion and Implications for Watermarking Aparna Gurijala, Alastair Reed and Eric Evans Digimarc Corporation, 9405 SW Gemini Drive, Beaverton, OR 97008, USA 1. INTRODUCTION

More information

1 laser altimeter. Background & Instructions. exploration extension. Instructions. Background

1 laser altimeter. Background & Instructions. exploration extension. Instructions. Background extension 1 laser altimeter Background & First 3-D view of the north pole of Mars from MOLA (Image credit: MOLA science Team/NASA/GSFC SVS) Background A laser altimeter is a device used aboard planet-orbiting

More information

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices SURVEYING WITH GPS Key Words: Static, Fast-static, Kinematic, Pseudo- Kinematic, Real-time kinematic, Receiver Initialization, On The Fly (OTF), Baselines, Redundant baselines, Base Receiver, Rover GPS

More information

White Paper. PlanetDEM 30. PlanetObserver 25/11/2014 - Update

White Paper. PlanetDEM 30. PlanetObserver 25/11/2014 - Update White Paper PlanetDEM 30 PlanetObserver 25/11/2014 - Update PlanetObserver France www.planetobserver.com msat@planetobserver.com Tel. +33 4 73 44 19 00 1. Introduction PlanetObserver presents PlanetDEM

More information

River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models

River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models Steven M. de Jong & Raymond Sluiter Utrecht University Corné van der Sande Netherlands Earth Observation

More information

Using advanced InSAR techniques as a remote tool for mine site monitoring

Using advanced InSAR techniques as a remote tool for mine site monitoring The Southern African Institute of Mining and Metallurgy Slope Stability 2015 D. Colombo and B. MacDonald Using advanced InSAR techniques as a remote tool for mine site monitoring D. Colombo* and B. MacDonald

More information

A remote sensing instrument collects information about an object or phenomenon within the

A remote sensing instrument collects information about an object or phenomenon within the Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information

More information

Radar images Università di Pavia Fabio Dell Acqua Gruppo di Telerilevamento

Radar images Università di Pavia Fabio Dell Acqua Gruppo di Telerilevamento Radar images Radar images radar image DNs linked to backscattered field Backscattered field depends on wave-target interaction, with different factors relevant to it: within-pixel coherent combination

More information

How To Write A Call To Action For Terrasar-X

How To Write A Call To Action For Terrasar-X Doc.: TX-PGS-PL-4127 TerraSAR-X Announcement of Opportunity: Utilization of the TerraSAR-X Archive 1 Page: 2 of 11 TABLE OF CONTENTS TERRASAR-X... 1 ANNOUNCEMENT OF OPPORTUNITY: UTILIZATION OF THE TERRASAR-X

More information

TerraColor White Paper

TerraColor White Paper TerraColor White Paper TerraColor is a simulated true color digital earth imagery product developed by Earthstar Geographics LLC. This product was built from imagery captured by the US Landsat 7 (ETM+)

More information

Cartographic Challenges in Antarctica: Mapping in Support of Environmental Management for the US Antarctic Program

Cartographic Challenges in Antarctica: Mapping in Support of Environmental Management for the US Antarctic Program Cartographic Challenges in Antarctica: Mapping in Support of Environmental Management for the US Antarctic Program Katharina Lorenz*, Dr Colin M Harris* * Environmental Research & Assessment, Cambridge,

More information

Model Virginia Map Accuracy Standards Guideline

Model Virginia Map Accuracy Standards Guideline Commonwealth of Virginia Model Virginia Map Accuracy Standards Guideline Virginia Information Technologies Agency (VITA) Publication Version Control Publication Version Control: It is the user's responsibility

More information

PLOTTING SURVEYING DATA IN GOOGLE EARTH

PLOTTING SURVEYING DATA IN GOOGLE EARTH PLOTTING SURVEYING DATA IN GOOGLE EARTH D M STILLMAN Abstract Detail surveys measured with a total station use local coordinate systems. To make the data obtained from such surveys compatible with Google

More information

Learning about GPS and GIS

Learning about GPS and GIS Learning about GPS and GIS Standards 4.4 Understand geographic information systems (G.I.S.). B12.1 Understand common surveying techniques used in agriculture (e.g., leveling, land measurement, building

More information

Evaluating GCM clouds using instrument simulators

Evaluating GCM clouds using instrument simulators Evaluating GCM clouds using instrument simulators University of Washington September 24, 2009 Why do we care about evaluation of clouds in GCMs? General Circulation Models (GCMs) project future climate

More information

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model 7 th FIG Regional Conference TS 1C Advances in GNSS Positioning and Applications I Volker Schwieger 1, Jürgen

More information

Remote Sensing an Introduction

Remote Sensing an Introduction Remote Sensing an Introduction Seminar: Space is the Place Referenten: Anica Huck & Michael Schlund Remote Sensing means the observation of, or gathering information about, a target by a device separated

More information

Global environmental information Examples of EIS Data sets and applications

Global environmental information Examples of EIS Data sets and applications METIER Graduate Training Course n 2 Montpellier - february 2007 Information Management in Environmental Sciences Global environmental information Examples of EIS Data sets and applications Global datasets

More information

Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al.

Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al. Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al. Anonymous Referee #1 (Received and published: 20 October 2010) The paper compares CMIP3 model

More information

Description of Simandou Archaeological Potential Model. 13A.1 Overview

Description of Simandou Archaeological Potential Model. 13A.1 Overview 13A Description of Simandou Archaeological Potential Model 13A.1 Overview The most accurate and reliable way of establishing archaeological baseline conditions in an area is by conventional methods of

More information

Data Processing Flow Chart

Data Processing Flow Chart Legend Start V1 V2 V3 Completed Version 2 Completion date Data Processing Flow Chart Data: Download a) AVHRR: 1981-1999 b) MODIS:2000-2010 c) SPOT : 1998-2002 No Progressing Started Did not start 03/12/12

More information

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne

More information

Jitter Measurements in Serial Data Signals

Jitter Measurements in Serial Data Signals Jitter Measurements in Serial Data Signals Michael Schnecker, Product Manager LeCroy Corporation Introduction The increasing speed of serial data transmission systems places greater importance on measuring

More information

Data source, type, and file naming convention

Data source, type, and file naming convention Exercise 1: Basic visualization of LiDAR Digital Elevation Models using ArcGIS Introduction This exercise covers activities associated with basic visualization of LiDAR Digital Elevation Models using ArcGIS.

More information

5. GIS, Cartography and Visualization of Glacier Terrain

5. GIS, Cartography and Visualization of Glacier Terrain 5. GIS, Cartography and Visualization of Glacier Terrain 5.1. Garhwal Himalayan Glaciers 5.1.1. Introduction GIS is the computer system for capturing, storing, analyzing and visualization of spatial and

More information

2. D ata and Method 2.1 A long-track processing

2. D ata and Method 2.1 A long-track processing 1Dynamic thinning of Antarctic glaciers from along-track repeat radar 2altimetry 3 4 5Thomas Flament, LEGOS, 14 Avenue E. Belin, 31400 Toulouse France 6Frédérique Rémy, LEGOS, 14 Avenue E. Belin, 31400

More information

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners

More information

CASE STUDY LANDSLIDE MONITORING

CASE STUDY LANDSLIDE MONITORING Introduction Monitoring of terrain movements (unstable slopes, landslides, glaciers, ) is an increasingly important task for today s geotechnical people asked to prevent or forecast natural disaster that

More information

3D Capabilities of SPOT 6

3D Capabilities of SPOT 6 3D Capabilities of SPOT 6 P. Nonin, D. Decluseau, L. Gabet, M. Bernard* ASTRIUM GEO-Information Services, France Abstract. On September 9th, 2012 a new optical satellite, SPOT 6, was successfully launched

More information

Geoscience Laser Altimeter System (GLAS) TIDAL CORRECTIONS

Geoscience Laser Altimeter System (GLAS) TIDAL CORRECTIONS Geoscience Laser Altimeter System (GLAS) Algorithm Theoretical Basis Document Version 2.0 TIDAL CORRECTIONS Prepared by: Helen A. Phillips, Jeff R. Ridgway, Jean-Bernard Minster Institute of Geophysics

More information

The relationships between Argo Steric Height and AVISO Sea Surface Height

The relationships between Argo Steric Height and AVISO Sea Surface Height The relationships between Argo Steric Height and AVISO Sea Surface Height Phil Sutton 1 Dean Roemmich 2 1 National Institute of Water and Atmospheric Research, New Zealand 2 Scripps Institution of Oceanography,

More information

LANDSAT 8 Level 1 Product Performance

LANDSAT 8 Level 1 Product Performance Réf: IDEAS-TN-10-QualityReport LANDSAT 8 Level 1 Product Performance Quality Report Month/Year: January 2016 Date: 26/01/2016 Issue/Rev:1/9 1. Scope of this document On May 30, 2013, data from the Landsat

More information

IMPACT OF REDUCED SEA ICE CONCENTRATION ON THE ANTARCTIC MASS BALANCE. Ian Simmonds

IMPACT OF REDUCED SEA ICE CONCENTRATION ON THE ANTARCTIC MASS BALANCE. Ian Simmonds 39 IMPACT OF REDUCED SEA ICE CONCENTRATION ON THE ANTARCTIC MASS BALANCE Ian Simmonds 1. INTRODUCTION The study of climate in polar regions is complicated by the existence of sea ice. Associated with this

More information

GPS accuracy: Hand-held versus RTK

GPS accuracy: Hand-held versus RTK GPS accuracy GPS accuracy: Hand-held versus RTK Kevin W. Hall, Joanna K. Cooper, and Don C. Lawton ABSTRACT Source and receiver points for seismic lines recorded during the geophysics field school near

More information

RECOMMENDATION ITU-R P.1546-1. Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz

RECOMMENDATION ITU-R P.1546-1. Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz Rec. ITU-R P.546- RECOMMENDATION ITU-R P.546- Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz (200-2003) The ITU Radiocommunication Assembly, considering

More information

Global Positioning System

Global Positioning System B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins Global Positioning System Theory and Practice Third, revised edition Springer-Verlag Wien New York Contents Abbreviations Numerical constants xix xxiii

More information