# Computers in teaching science: To simulate or not to simulate?

Save this PDF as:

Size: px
Start display at page:

## Transcription

5 9 8 Class A - simulation (N=79) Class B - simulation (N=67) Class C - paper/pencil (N=83) 9 8 Class D - simulation (N=12) Class E - paper/pencil (N=132) percent correct percent correct a: v-t graph (air resist) b: v-t graph (fric) c: concep d: concep exam item e1: quan e2: quan a: v-t graph (air resist) b: v-t graph (fric) c: concep d: concep exam item e1: quan e2: quan Figure 4. Percentage of students answering each part of the exam question in Fig. 3 correctly. Results are for classes A, B, and C. Exam question was administered on a midterm 2 weeks after the air resistance tutorial. Figure 5. Percentage of students answering each part of the exam question in Fig. 3 correctly. Results are for two classes different than those listed in Table 1. Exam question was administered on a final 8 weeks after the air resistance tutorial. suggests that the difference in performance of students from the two versions of the tutorials is very small. IV. Simulations and understanding science As was the case with many other implementations of active-engagement computer-based instructional materials, 1 an air resistance tutorial using a computer simulation seemed to result in reasonably good student understanding of the subject matter. However, material administered in the same spirit without a simulation yielded nearly identical results on a common exam question. This result suggests that the student success is not simply tied to the simulation. Figs. 4 and 5 show student success rates on conceptual and quantitative problems. There are also other dimensions of student learning that are not so easily quantified with a histogram. For example, helping students understand what science is and what it means to do an experiment is also important. Obviously running a computer simulation is very different than doing a physical experiment. 14 I described how students interacted differently with the air resistance simulation than they did with the paper and pencil activities. Are we encouraging students to think that the process of doing science consists only of extracting the right answer from some all-knowing source? This would support a very narrow perspective of what it means to do science. However, if we ignore the critical role of computers to current scientists and engineers we would be doing a great disservice to our students. For example, students should know that simulations make it possible to explore new domains, make predictions, design experiments and interpret results. Unfortunately, many simulations used in teaching introductory physics are just about demonstrating the end product of physics to the student. There is no opportunity for the student to use the computer as a tool while participating in the scientific process. 15 Instructional computer simulations and other applications of the computer in the classroom will appropriately continue to be an integral part of teaching physics. As part of the process of improving classroom instruction, the physics education community will hopefully continue to try to make sense of what and how students learn. V. Acknowledgments I am indebted to the National Academy of Education and the NAE Spencer Postdoctoral Fellowship Program for sponsoring this work and for supporting my interests in trying to make sense of how students learn. This research was conducted while I was a member of the Physics Education Research Group at the University of Maryland. I thank the director of the group, Joe Redish, for all his support ranging from curriculum development to comments on this paper. I am also grateful to Mel Sabella and Rebecca Lippmann for logistic support and intellectual feedback. I thank the instructors of the participating classes for their cooperation. 7/16/6 5 Steinberg

6 1 For example, R. Beichner, L. Bernold, E. Burniston, P. Dail, R. Felder, J. Gastineau, M. Gjersten, and J. Risley, Case study of the physics componenet of an integrated curriculum, Phys. Ed. Res. Suppl. 1 to Am. J. Phys. 67, S16-S24 (1999); D.R. Sokoloff and R.K. Thornton, Using interactive lecture demonstrations to create an active learning environment, Phys. Teach. 35, (1997); E.F. Redish, J.M. Saul, and R.N. Steinberg, On the effectiveness of active-engagement microcomputer-based laboratories, Am. J. Phys (1997); R.N. Steinberg, G.E. Oberem, and L.C. McDermott, Development of a computer-based tutorial on the photoelectric effect, Am. J. Phys. 64, (1996). 2 For a documented case, see K. Cummings, J. Marx, R. Thornton, and D. Kuhl, Phys. Ed. Res. Suppl. 1 to Am. J. Phys. 67, S38-S44 (1999). 3 Interactive Physics (Knowledge Revolution, San Mateo, CA). 4 David Trowbridge and Bruce Sherwood, EM Field (Physics Academic Software, American Institute of Physics, College Park, MD). 5 Edward F. Redish, Jack M. Wilson, and Ian D. Johnston, The M.U.P.P.E.T. Utilities, AIRRES1 (Physics Academic Software, American Institute of Physics, College Park, MD). 6 L. C. McDermott, P. S. Shaffer, and M. D. Somers, Research as a guide for teaching introductory mechanics: An illustration in the context of the Atwood s machine, Am. J. Phys. 62, (1994). 7 L.C. McDermott, P.S. Shaffer, and the Physics Education Group at the University of Washington, Tutorials in introductory physics (Prentice Hall, New York NY, 1998). 8 In addition to ref. 1, see E.F. Redish and R.N. Steinberg, Teaching physics: Figuring out what works, Phys. Today 52(1), 24-3 (1999). 9 Tutorials, videotapes of the classroom, and an overview of instructional strategies are available at 1 D. Hestenes, M. Wells, and G. Swackhammer, Force concept inventory, Phys. Teach. 3, (1992). 11 E.F. Redish, J.M. Saul, and R.N. Steinberg, Student Expectations in introductory physics, Am. J. Phys (1998). 12 Edward F. Redish, Jack M. Wilson, and Ian D. Johnston, The M.U.P.P.E.T. Utilities, THERMO (Physics Academic Software, American Institute of Physics, College Park, MD). 13 D. Hammer, Epistemological beliefs in introductory physics, Cognition and Instruction 12(2), (1994); D. Hammer, Two approaches to learning physics, Phys. Teach. 27, (1989). 14 In a separate project, I have found that introductory students from a predominantly computer-based laboratory class have difficulties conducting and interpreting simple hands-on experiments on subject matter that they just studied. 15 In a recent Reference Frame in Physics Today (July, 1999) James Langer, referring to current research in physics, notes the need to think of numerical simulation not as an end in itself, but as a way to probe more deeply than ever before into what is happening inside complex systems. 7/16/6 6 Steinberg

### Real Time Physics and Interactive Lecture Demonstration Dissemination Project - Evaluation Report

Real Time Physics and Interactive Lecture Demonstration Dissemination Project - Evaluation Report Michael C. Wittmann Department of Physics University of Maryland College Park MD 20742-4111 I. Introduction

### Jean Chen, Assistant Director, Office of Institutional Research University of North Dakota, Grand Forks, ND 58202-7106

Educational Technology in Introductory College Physics Teaching and Learning: The Importance of Students Perception and Performance Jean Chen, Assistant Director, Office of Institutional Research University

### Kinematics 1D ~ Lab. 4. What was the average speed of the truck for the six seconds? show your work here.

Kinematics 1D ~ Lab Name: Instructions: Using a pencil, answer the following questions. The lab is marked based on clarity of responses, completeness, neatness, and accuracy. Do your best! Part 1: Graphing

### The Effect of Animation on Students' Responses to Conceptual Questions

The Effect of Animation on Students' Responses to Conceptual Questions Melissa Dancy: North Carolina State University mhdancy@unity.ncsu.edu Aaron Titus: North Carolina A&T State University titus@ncat.edu

### The relationship between mathematics preparation and conceptual learning gains in physics: a possible hidden variable in diagnostic pretest scores

Addendum to: The relationship between mathematics preparation and conceptual learning gains in physics: a possible hidden variable in diagnostic pretest scores David E. Meltzer Department of Physics and

### Using Interactive Demonstrations at Slovak Secondary Schools

Using Interactive Demonstrations at Slovak Secondary Schools Zuzana Mackovjaková 1 ; Zuzana Ješková 2 1 GymnáziumJ.A. Raymana, Mudroňova 20, 080 01 Prešov, Slovakia, 2 Faculty of Science, University of

### MILLERSVILLE UNIVERSITY. PHYS 231, Physics I with Calculus Fall Semester 2009

MILLERSVILLE UNIVERSITY PHYS 231, Physics I with Calculus Fall Semester 2009 Instructor: Dr. Mehmet I. Goksu Office: Caputo 241 Phone: 872-3770 Email: mehmet.goksu@millersville.edu Lecture Time and Location:

### Name Partners Date. Energy Diagrams I

Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy

### On the effectiveness of active-engagement microcomputer-based laboratories

On the effectiveness of active-engagement microcomputer-based laboratories Edward F. Redish, Jeffery M. Saul, and Richard N. Steinberg Department of Physics, University of Maryland, College Park, MD 2742

### LAB 1 Graphing techniques and the acceleration of objects in free fall on Planet 'X'- by R.E.Tremblay

Purpose: To learn how to make position and velocity verses time graphs when given the position of an object at various times. You will also learn how to determine initial velocity and acceleration from

### HOMEWORK FOR UNIT 5-1: FORCE AND MOTION

Name Date Partners HOMEWORK FOR UNIT 51: FORCE AND MOTION 1. You are given ten identical springs. Describe how you would develop a scale of force (ie., a means of producing repeatable forces of a variety

### Physics Kinematics Model

Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

### Online Courses for High School Students 1-888-972-6237

Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,

### Comparing Students Performance with Physical and Virtual Manipulatives in a Simple Machines Curriculum

Comparing Students Performance with Physical and Virtual Manipulatives in a Simple Machines Curriculum Jacquelyn J. Chini, Adrian Carmichael, N. Sanjay Rebello and Elizabeth Gire Kansas State University

### Motion in One-Dimension

This test covers one-dimensional kinematics, including speed, velocity, acceleration, motion graphs, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. A rock is released

### Designing a PER-Based Introductory Physics Lab. Nick Corak Honors Thesis Defense Presentation 12/2/10

Designing a PER-Based Introductory Physics Lab Nick Corak Honors Thesis Defense Presentation 12/2/10 Acknowledgements PER Groups UMd UC-Boulder UW UMinn Honors Committee Dr. Black Dr. Davis Dr. Kubasko

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### A research-based approach to improving student understanding of the vector nature of kinematical concepts

A research-based approach to improving student understanding of the vector nature of kinematical concepts Peter S. Shaffer and Lillian C. McDermott Department of Physics, University of Washington, Seattle,

### Introduction to SCALE-UP : Student-Centered Activities for Large Enrollment University Physics

Introduction to SCALE-UP : Student-Centered Activities for Large Enrollment University Physics Robert J. Beichner, Jeffery M. Saul, Rhett J. Allain, Duane L. Deardorff, David S. Abbott North Carolina State

### Preparing teachers to teach physics and physical science by inquiry

TEACHING PHYSICS Preparing teachers to teach physics and physical science by inquiry Lillian C McDermott, Peter S Shaffer and C P Constantinou Department of Physics, University of Washington, Seattle,

### Introduction to graphs and trajectories

Introduction to graphs and trajectories Sample Modelling Activities with Excel and Modellus ITforUS (Information Technology for Understanding Science) 2007 IT for US - The project is funded with support

### PHYSICS MIDTERM REVIEW

1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Exam #1 PHYSICS 211 Monday June 29 th, 2009 Please write down your name also on the back page of this exam

Exam #1 PHYSICS 211 Monday June 29 th, 2009 NME Please write down your name also on the back page of this exam 1. particle moves along a circular path in the counter-clockwise direction, as indicated in

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### ACCELERATION DUE TO GRAVITY

EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities

### Forces. Lecturer: Professor Stephen T. Thornton

Forces Lecturer: Professor Stephen T. Thornton Reading Quiz: Which of Newton s laws refers to an action and a reaction acceleration? A) First law. B) Second law. C) Third law. D) This is a trick question.

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### First Semester Learning Targets

First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Clicker Question. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road.

A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road. A. positive. B. negative. C. zero. Clicker Question The total work done on the

### LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

### Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

### LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

### SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr.

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr. Neil Basescu NAME OF COURSE: College Physics 1 with Lab 3. CURRENT DATE: 4/24/13

### Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

### charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

### Research, Innovation and Reform in Physics Education

Research, Innovation and Reform in Physics Education David E. Meltzer Department of Physics and Astronomy Iowa State University Supported in part by the National Science Foundation Collaborator Mani K.

### 04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.

Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that

### Chapter 4. Kinematics - Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction

Chapter 4 Kinematics - Velocity and Acceleration 4.1 Purpose In this lab, the relationship between position, velocity and acceleration will be explored. In this experiment, friction will be neglected.

### Salem Community College Course Syllabus. Course Title: Physics I. Course Code: PHY 101. Lecture Hours: 2 Laboratory Hours: 4 Credits: 4

Salem Community College Course Syllabus Course Title: Physics I Course Code: PHY 101 Lecture Hours: 2 Laboratory Hours: 4 Credits: 4 Course Description: The basic principles of classical physics are explored

### Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

### ACTIVITY 1: Gravitational Force and Acceleration

CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

### 1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### Equations of Motion Introduction: Objectives: Methods:

Equations of Motion Introduction: The equations of motion are used to describe various components of a moving object. Displacement, velocity, time and acceleration are the kinematic variables that can

### AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

### Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

### Unit (Section 3) Represent and analyze the motion of an object graphically. Analyze the speed of two objects in terms of distance and time

Curriculum: Physics A Curricular Unit: One Dimensional Kinematics Instructional Unit: A. Describe the relationship of an object s position, velocity and acceleration over time when it moves in one dimension

### 2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

### Kinetic Friction. Experiment #13

Kinetic Friction Experiment #13 Joe Solution E01234567 Partner- Jane Answers PHY 221 Lab Instructor- Nathaniel Franklin Wednesday, 11 AM-1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this

### AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

### 1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

### Laws of Motion, Velocity, Displacement, and Acceleration

Physical Science, Quarter 1, Unit 1.1 Laws of Motion, Velocity, Displacement, and Acceleration Overview Number of instructional days: 13 (1 day = 53 minutes) Content to be learned Add distance and displacement

### Phys 111 Fall P111 Syllabus

Phys 111 Fall 2012 Course structure Five sections lecture time 150 minutes per week Textbook Physics by James S. Walker fourth edition (Pearson) Clickers recommended Coursework Complete assignments from

### Summary Notes. to avoid confusion it is better to write this formula in words. time

National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

### AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same

A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall that

### KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD

KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD 1. DISCIPLINE AND COURSE NUMBER: PHYS C111 2. COURSE TITLE: Mechanics 3. SHORT BANWEB TITLE: Mechanics 4. COURSE AUTHOR:

### TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

### Lab 3 - Projectile Motion Scientific Data Collection and Analysis (with some experimental design)

Partner 1: Lab 3 - Scientific Data Collection and Analysis (with some experimental design) Purpose: This Minilab is designed help you apply the skills you learned in the homework; that is, to collect data

### AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law.

1. A mixed martial artist kicks his opponent in the nose with a force of 200 newtons. Identify the action-reaction force pairs in this interchange. (A) foot applies 200 newton force to nose; nose applies

### Lecture 9. Friction in a viscous medium Drag Force Quantified

Lecture 9 Goals Describe Friction in Air (Ch. 6) Differentiate between Newton s 1 st, 2 nd and 3 rd Laws Use Newton s 3 rd Law in problem solving Assignment: HW4, (Chap. 6 & 7, due 10/5) 1 st Exam Thurs.,

### Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

### Chapter 12 - Forces and Motion

Chapter 12 - Forces and Motion A. What is a force? 1. It is a push or pull. 2. Force can cause resting objects to move. 3. Force can cause acceleration by changing the object s speed or direction. 4. Newtons

### Evaluation Novelty in Modeling-Based and Interactive Engagement Instruction

Eurasia Journal of Mathematics, Science & Technology Education, 2007, 3(3), 231-237 Evaluation Novelty in Modeling-Based and Interactive Engagement Instruction Funda Örnek Balıkesir Üniversitesi, Balıkesir,

### 5 Day 5: Newton s Laws and Kinematics in 1D

5 Day 5: Newton s Laws and Kinematics in 1D date Friday June 28, 2013 Readings Knight Ch 2.4-7, Ch 4.6, 4.8 Notes on Newton s Laws For next time: Knight 5.3-8 lecture demo car on a track, free-fall in

### How to Pass Physics 212

How to Pass Physics 212 Physics is hard. It requires the development of good problem solving skills. It requires the use of math, which is also often difficult. Its major tenets are sometimes at odds with

### AP Physics C: Syllabus

AP Physics C: Syllabus Personal Philosophy Physics is the oldest and most fundamental branch of science. I feel that physics connects to all aspects of our daily lives through the explanations of motion,

### Two-Body System: Two Hanging Masses

Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to well-defined rules. The book Philosophiae

### Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

### Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

### Physics-1 Recitation-3

Physics-1 Recitation-3 The Laws of Motion 1) The displacement of a 2 kg particle is given by x = At 3/2. In here, A is 6.0 m/s 3/2. Find the net force acting on the particle. (Note that the force is time

### People s Physics book 3e Ch 25-1

The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate

### CHAPTER 2 TEST REVIEW -- ANSWER KEY

AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST

### Explaining Motion:Forces

Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application

### MOTION AND FORCE: DYNAMICS

MOTION AND FORCE: DYNAMICS We ve been dealing with the fact that objects move. Velocity, acceleration, projectile motion, etc. WHY do they move? Forces act upon them, that s why! The connection between

### Support of Physics-Education Research as a Subfield of Physics: Proposal to the NSF Physics Division

Support of Physics-Education Research as a Subfield of Physics: Proposal to the NSF Physics Division December 14, 1995 Submitted on behalf of the Physics Education Research Community by: Robert Beichner

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### Prerequisites: Successful completion of Earth Science, Living Environment, & Chemistry.

Physics Honors Course Honors Physics Overview of Course Physics H 4410 Full Year 1 credit Grades 11, 12 Prerequisites: Successful completion of Earth Science, Living Environment, & Chemistry. Honors policy

### Comparing three methods for teaching Newton s third law

PHYSICAL REVIEW SPECIAL TOPICS - PHYSICS EDUCATION RESEARCH 3, 020105 2007 Comparing three methods for teaching Newton s third law Trevor I. Smith and Michael C. Wittmann Department of Physics and Astronomy,

### Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

### How to Write a Formal Lab Report

Union College Physics and Astronomy How to Write a Formal Lab Report A formal lab report is essentially a scaled-down version of a scientific paper, reporting on the results of an experiment that you and

### Physics 11 Chapter 4 HW Solutions

Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction

### A course on integrated approaches in physics education p. 1 of 13

A course on integrated approaches in physics education p. 1 of 13 Integrated approaches in physics education: A graduate level course in physics, pedagogy, and education research Michael C. Wittmann and

### Kinematics. Demonstrated Through. Projectile Launcher

Kinematics Demonstrated Through Projectile Launcher E. El-Zammar Physics 420: Demonstration Physics Department of Physics University of British Columbia Vancouver,B.C. Canada V6T 1Z1 October 28 th, 2008

### Experiment 2 Free Fall and Projectile Motion

Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

### University of Nicosia, Cyprus

University of Nicosia, Cyprus Course Code Course Title ECTS Credits MENG-492 Capstone Design Project II 6 Department Semester Prerequisites Engineering Fall, Spring Senior Standing and Approval by the

### PHYSICS 161 ADVANCED PRINCIPLES OF PHYSICS SPRING 2015 QUESTIONNAIRE MATH COURSES TAKEN IN LAST TWO YEARS (INCLUDING THIS TERM)

PHYSICS 161 ADVANCED PRINCIPLES OF PHYSICS SPRING 2015 Prof. Gene Bickers QUESTIONNAIRE Please complete and turn in the following: NAME (printed) NAME (signed) USC IDENTIFICATION NUMBER MAJOR MATH COURSES

### Newton s Law of Motion

chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

### What assumptions are being made by modelling an object as a projectile? Time (t seconds)

Galileo s projectile model In this activity you will validate Galileo s model for the motion of a projectile, by comparing the results predicted by the model with results from your own experiment. Information

### AP Physics C: Mechanics: Syllabus 1

AP Physics C: Mechanics: Syllabus 1 Scoring Components Page(s) SC1 The course covers instruction in kinematics. 3, 5 SC2 The course covers instruction in Newton s laws of 3 4 motion. SC3 The course covers

### Newton s Laws of Motion

Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 7_8_2016 Goals for Chapter 4

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting