Big Data 101: Harvest Real Value & Avoid Hollow Hype

Size: px
Start display at page:

Download "Big Data 101: Harvest Real Value & Avoid Hollow Hype"

Transcription

1 Big Data 101: Harvest Real Value & Avoid Hollow Hype

2 2 Executive Summary Odds are you are hearing the growing hype around the potential for big data to revolutionize our ability to assimilate and act on information. It is equally probable that you are struggling with the challenges of crafting and perhaps even executing a strategy to capitalize on big data opportunities. As recently as 2000, only 25 percent of the world s information was digital; today, 98 percent of the world s information is digital 1. With this ever increasing diversity and abundance of data (1,200 exabytes worth 2 ) bursting from the digital age, your ability to harvest real value from big data and avoid the pitfalls of hollow hype will determine your organization s success. The big data market is poised to reach $16.9 billion by 2015 and the broader market of business analytics solutions is forecast to reach $50.7 billion in Yet interestingly enough, only four percent of the 400 global companies surveyed by Bain & Company in 2013 believed that they are converting their investments in big data tools into meaningful business insights that improve decision making and financial performance. 3 From Atigeo s customer implementation experience, we believe success depends on your approach. Big data requires adoption of revolutionary technology that evolves faster than most companies can keep pace. However, many companies still attempt to use traditional IT planning, where migration to a new paradigm is slow and technology components are adopted in piecemeal fashion. This approach takes several years to complete and does not have any guarantee of ROI until the new solution is in production. By that time, it is very difficult to iterate to improve results or even change course. This whitepaper provides suggestions on how to select big data analytic solutions for your enterprise, introduces Atigeo s xpatterns platform, and provides xpatterns deployment examples. The U.S. will face a deficit of over 1.5 million data analysts 4 to help bridge the gaps. This shortage is already triggering a cascade of failed attempts at big data analytics using traditional approaches. Meanwhile, data growth already outstrips the ability for people and 20th Century technology to make sense of it all. Success in big data is no longer about data collection or data hoarding, which through commodity storage is easy for any enterprise to implement. The real return on any big data investment depends on analytical performance. This will determine how enterprises deliver differentiating and actionable insights and useful applications for end users (internal or external end to the enterprise). Data itself is not useful unless it is applied correctly to solve real business problems. Designing a great product has not changed even though data availability has; it is still about knowing and understanding users needs. Most important is correctly identifying when big data solutions are needed vs. conventional approaches. 1 The Rise of Big Data, Foreign Affairs, June, The Rise of Big Data, Foreign Affairs, June Big Data, Big Choices, Bain & Co., November Big data: The next frontier for innovation, competition, and productivity, McKinsey Global Institute, May 2011

3 3 Here are three key questions enterprises should ask about their end- users: 1. Does the end user understand the difference between BI and advanced analytics? 2. Does the end user need to control the output (expert knowledge) or let the data identify insights without expert knowledge? 3. Does the end user care about exactness of the output as a trade- off of detail level insights? The figures below show how enterprises should determine the type of analytics that should be applied to their big data to satisfy end users needs. There are situations where optimizing an existing business intelligence solution has value, but a transition to a big data approach adds new layers of insight. For example, a growing concern in healthcare is population health management (PHM) which is concerned with the health of individuals in a group and how health outcomes are distributed in a group. A hospital can use conventional BI techniques on insurance claims data to generate historical reports of health outcomes. However, a big data approach based on the same data can produce forward- looking predictive analytics as well as more detailed inferences. This type of result would be valuable in PHM and many other enterprises, but represents a big change to the conventional, historically focused approach. Thus, big data analytics greatly enhance BI and enterprises should carefully examine the impact and potential of metric and reporting changes in order to adopt them. At Atigeo, we recommend enterprises build big data solutions through an iterative process to improve analytics models over time and provide compelling evidence of improvement in order to gain end user trust. This is a key example of why Atigeo s xpatterns is an ideal platform for enterprises to build models that automatically learn over time. Introducing Atigeo xpatterns What is xpatterns? As the only "end to end" big data analytics platform available today, xpatterns allows you to utilize your existing resources with a secure, enterprise- ready system that requires no datacenter build- out. With xpatterns you can seamlessly create a scalable, private virtual cloud and through xpatterns patented collection of intelligent algorithms you can access all of your data in real- time, leading to measurably better and faster answers.

4 4 xpatterns has a novel architecture that integrates state- of- the- art components across three logical layers: Infrastructure, Analytics, and Applications. xpatterns can act as a virtual abstraction layer across any IT system, extracting value from both legacy and new technologies immediately extending the life, value, and intelligence of an ecosystem. The Infrastructure layer offers remarkably fast integration without requiring a costly data warehouse implementation. It can quickly adapt to new technologies, allowing you to leverage and extend existing IT investments. xpatterns delivers managed cloud services and safeguards the privacy of your data, satisfying a broad range of regulatory, financial and legal requirements. The Analytics layer consists of a wealth of proprietary advance analytics algorithms that automatically build the best model for the questions being asked. This unique ability is made possible through the xpatterns Cooperative Distributed Inferencing (CDI) engine. In addition, xpatterns learns over time, self- optimizing through a hybrid approach of optimizing hard rules and soft rules, both supervised and unsupervised. For data scientists, who like to design their own model and run experiments, xpatterns provides easy to use analytics, automated experimentation and feature generation tools and many

5 5 other ready to use components to make modeling and experimenting in a distributed environment effortless. The Application layer includes visualization tools that allow enterprises to immediately visualize their big data in xpatterns platform and publish applications, all without integrating with any other software. The full workflow of building your own big data application can be done right from xpatterns Management Console in the cloud. Design Tenets xpatterns is the fastest, best- performing, and lowest- risk big data intelligence platform available today: All- inclusive: A complete platform for building applications and running advanced analytics on very large datasets. It provides integrated software across all three layers required for big data analytics: data ingestion, analytics and application development. Cutting- edge analytics: Includes a wide range of advanced intelligence components that run the gamut from market- tested to beta to just- out- of- research. Components include: machine learning, data mining, natural language understanding, dynamic ontologies, search, inference, and other analytics components. Intelligence technology R&D is Atigeo s prime directive, and we innovate continuously in this space. Cloud- based: Delivered via the cloud, meaning no hardware needs to be installed. Storage and compute capacity are managed by the platform, and can scale up and down easily. Fastest- to- market: From ramp- up time for new adopters of an xpatterns solution to delivery time via the cloud, all xpatterns design considerations are made to enable users to get their business results fastest to market. Enterprise- grade: Designed to build production- quality, line- of- business applications, the platform meets the following quality attributes: performance, scalability, high availability, reliability, security, manageability, extensibility, modularity, interoperability, testability, documentation, instrumentation and monitoring, backup and restore, disaster recovery and diagnostic tools. Compliant: Security, privacy, compliance and audit are built into the platform. In addition to software compliance, Atigeo s procedures for managing the cloud and our teams in charge of carrying them out also adhere to a corresponding set of compliance requirements. We enable cloud applications for the highest compliance standards, including HIPAA. Integrator: Includes a toolbox of choices for the infrastructure, analytics and application layers. Since different problems require different solutions, each customer leverages a subset of the tools that best fits their needs. The toolbox includes open source, commercial and Atigeo- designed components. Developer- ready: Currently, the APIs number over 100, covering the gamut from data ingestion to analytical processing, data updates, real- time queries and configuration. The APIs are authenticated over a secure channel, using standard Internet authentication protocols. The APIs are scalable, instrumented and monitored. API access is role- based, and roles can be configured for both developers and applications.

6 6 Fully- managed: Operates the cloud environment for you. Customers can rely on Atigeo s expertise to launch production applications quickly, at a known cost, without having to ramp up their IT, committing to long- term consulting engagements, or taking risks on the readiness of new technology. Who uses xpatterns? Layer by Layer Each of xpatterns 3 layers was built around business objectives, and align with the different roles and functions in your organization. Over time and via many customer projects, we have found these three roles are required to build end- to- end, intelligent big data applications: Data Analyst/ETL Analyst/Data Integration Engineer: Builds the quality and integration pipelines connecting many corporate systems to an xpatterns cloud. xpatterns tools support editing a data ingestion workflow; testing and scheduling data integration, and monitoring operations. Data Scientist An expert in statistics, machine learning and/or data mining, who uses the data products from the ETL Analyst to model, query and experiment on data. The tools include an integrated development environment (IDE) for creating rankers, classifiers, topics, queries and models. Application Engineer Builds user applications with data and models from the Data Scientist with application- specific tools. For dashboard applications, xpatterns has a turnkey dashboard studio tool. Today s evolving big data infrastructure has many other roles and tools, but we believe many of these will fade away as big data best practices mature. xpatterns abstracts away complexity for our clients by managing the cloud environment for them, and by orchestrating the software and tools according to these two principles: Façade Each person should see an optimized but minimal set of tools, data and software required for their job. Anything more distracts and reduces productivity; under the hood, advanced tools are there for any users who want them. Choice of tools While xpatterns comes with pre- packaged tools, every role should be able to pick their own. For example, if a data scientist prefers SAS or R, they should be able to easily and securely install big data connectors for them within an xpatterns cloud. xpatterns Deployment Examples Infrastructure technology should not drive or constrain applications A Fortune 500 company faced a predictive analytics challenge: make informed business decisions based on 10s of terabytes of data from multiple sources and systems. The company had data assets in the range of 5-10 billion customer behavior records. Their existing technology infrastructure produced conventional BI results: historical charts, tables, and dashboards showing what customers were doing in the past. Worse still, their predictive analytics were able to work on only a sample of the data, using only about 5 million records, or about 0.1% of the total set. The company applied models to their data sample which had become standard for their industry, based on academic research on even smaller datasets of 1,000 to about 100,000 records.

7 7 Adding xpatterns to their existing technology took only a few days of engineering work, rather than the typical months of infrastructure planning, in- house expertise and custom integration required by traditional approaches. Most significantly, with xpatterns the company was able to develop new big data models that leverage their entire data set of 5-10 billion customer behavior records. This produced an improvement over the best available academic model of 75%, creating an invaluable resource out of what had been a burdensome dataset that could only be sampled. Advanced analytics and modeling quality should be bound by computing power, not manual labor by data scientists Another major US- based data company was doing statistical modeling with software packages running on single machines with small data samples. The company s time to market was delayed as data analysts made hard choices partitioning the data. Their products data models changed and caused many further delays based on different data samples and lack of visibility across the many sample datasets also compromised the model s validity. With few data scientists, the company s incorrect data- based assumptions came at a high cost and ROI could not be realized. With the xpatterns analytics optimization engine, this company s data analysts could focus on designing models based on all the data, and most importantly - - run multiple experiments in parallel. The company redesigned their data model and increased computing capacity for a one- week experiment, where they applied xpatterns optimization engine to the entire dataset, running hundreds of concurrent experiments, and producing an optimal production model, that would have otherwise taken months of manual labor to come across. In addition, xpatterns easily allowed them to decommission existing computing clusters. Additionally, with conventional approaches you are forced to clean the data as part of the ETL. However, xpatterns easily handles noisy and dirty data and learns from data that is ingested as is. In this use case, the precision/recall curve below illustrates that with xpatterns the more data is used for training, the more accurate the results % data 40% data 20% data 5% data

8 8 These are two ways that the xpatterns platform increases success of big data initiatives: xpatterns analytics layer has tools to make data scientists as efficient as they can be, and the xpatterns capabilities automate and improve the production model without data scientist intervention. Text analytics should learn: Semantics and learning make a difference A major healthcare company was using slow legacy systems to process large amounts of unstructured text: files with no indication of meaning, subjects, or categorization of the file contents. Nearly all enterprises have unstructured data, which in healthcare includes physicians encounter notes doctors notes taken during examinations. The company needed to improve their long and costly unstructured data processing to augment their bottom line. In their line of business, this means decreasing insurance claims processing time by swiftly and accurately adding standardized medical codes for procedures and diagnoses. Using xpatterns text analytics, the healthcare company was able to add correct medical codes in spite of differences in individual physicians use of language and jargon, and different semantic contexts. Among many other semantic capabilities, xpatterns is able to discern negations ( the patient never broke her leg in childhood ) and able to distinguish the context of a phrase, such as family history and physical exam. xpatterns capabilities also include the correct detection of conditional and hypothetical statements ( if lab results are positive, the diagnosis is kidney failure ). xpatterns also continually learned from what it found in the company s data, basing new inferences on that feedback. This means that xpatterns is able to continue operating successfully as new sources of unstructured data are encountered. Conclusion Companies in all sectors are increasingly realizing that they are effectively big data companies by virtue of their massive enterprise and customer data repositories. While acutely aware of the critical need for analytical insight into both stored and streaming data, a number of factors impede progress toward surfacing intelligent solutions: the state of the data, lack of resources and expertise, lack of infrastructure, state of tools and solutions, and the quality and evaluation of results. If you have a tough data problem, not easily solved by current methodologies, xpatterns can positively impact your organization in widely influential ways, as the fastest, highest performing, and lowest risk way of building intelligent big data applications. By uncovering more relevant connections in data at game- changing speed workflow procedures are streamlined, development cycles are reduced, and customer and patient needs are anticipated more accurately. From healthcare, energy, security and beyond if it requires information to do its job, xpatterns makes it intelligent. As the only "end to end" big data analytics platform available today, xpatterns allows you to utilize your existing resources, and seamlessly create a scalable, private virtual cloud. Through its patented collection of intelligent algorithms, xpatterns advanced analytics gives you access to all of your data in real time, and leads to better, faster answers.

Hadoop in the Hybrid Cloud

Hadoop in the Hybrid Cloud Presented by Hortonworks and Microsoft Introduction An increasing number of enterprises are either currently using or are planning to use cloud deployment models to expand their IT infrastructure. Big

More information

White Paper. Version 1.2 May 2015 RAID Incorporated

White Paper. Version 1.2 May 2015 RAID Incorporated White Paper Version 1.2 May 2015 RAID Incorporated Introduction The abundance of Big Data, structured, partially-structured and unstructured massive datasets, which are too large to be processed effectively

More information

Building Successful Big Data Solutions

Building Successful Big Data Solutions Building Successful Big Data Solutions 2 Executive Summary The decision to invest in and leverage the widespread Big Data 1 revolution, whether you re a large multinational corporation or the smallest

More information

III Big Data Technologies

III Big Data Technologies III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution

More information

THE FUTURE OF CODING IS NOW

THE FUTURE OF CODING IS NOW THE FUTURE OF CODING IS NOW xpatterns Computer-Assisted Coding: Features and Benefits: Automatically generates medical codes directly from clinical encounter notes Maps clinical codes to appropriate billing

More information

Databricks. A Primer

Databricks. A Primer Databricks A Primer Who is Databricks? Databricks was founded by the team behind Apache Spark, the most active open source project in the big data ecosystem today. Our mission at Databricks is to dramatically

More information

Databricks. A Primer

Databricks. A Primer Databricks A Primer Who is Databricks? Databricks vision is to empower anyone to easily build and deploy advanced analytics solutions. The company was founded by the team who created Apache Spark, a powerful

More information

Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes

Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes Highly competitive enterprises are increasingly finding ways to maximize and accelerate

More information

BIG DATA & ANALYTICS. Transforming the business and driving revenue through big data and analytics

BIG DATA & ANALYTICS. Transforming the business and driving revenue through big data and analytics BIG DATA & ANALYTICS Transforming the business and driving revenue through big data and analytics Collection, storage and extraction of business value from data generated from a variety of sources are

More information

Big Data and the Data Lake. February 2015

Big Data and the Data Lake. February 2015 Big Data and the Data Lake February 2015 My Vision: Our Mission Data Intelligence is a broad term that describes the real, meaningful insights that can be extracted from your data truths that you can act

More information

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.

More information

CA Technologies Big Data Infrastructure Management Unified Management and Visibility of Big Data

CA Technologies Big Data Infrastructure Management Unified Management and Visibility of Big Data Research Report CA Technologies Big Data Infrastructure Management Executive Summary CA Technologies recently exhibited new technology innovations, marking its entry into the Big Data marketplace with

More information

White. Paper. EMC Isilon: A Scalable Storage Platform for Big Data. April 2014

White. Paper. EMC Isilon: A Scalable Storage Platform for Big Data. April 2014 White Paper EMC Isilon: A Scalable Storage Platform for Big Data By Nik Rouda, Senior Analyst and Terri McClure, Senior Analyst April 2014 This ESG White Paper was commissioned by EMC Isilon and is distributed

More information

Technical Management Strategic Capabilities Statement. Business Solutions for the Future

Technical Management Strategic Capabilities Statement. Business Solutions for the Future Technical Management Strategic Capabilities Statement Business Solutions for the Future When your business survival is at stake, you can t afford chances. So Don t. Think partnership think MTT Associates.

More information

Turnkey Hardware, Software and Cash Flow / Operational Analytics Framework

Turnkey Hardware, Software and Cash Flow / Operational Analytics Framework Turnkey Hardware, Software and Cash Flow / Operational Analytics Framework With relevant, up to date cash flow and operations optimization reporting at your fingertips, you re positioned to take advantage

More information

Cisco Data Preparation

Cisco Data Preparation Data Sheet Cisco Data Preparation Unleash your business analysts to develop the insights that drive better business outcomes, sooner, from all your data. As self-service business intelligence (BI) and

More information

Accelerating Time to Market with the Power of Cloud-Based Integration

Accelerating Time to Market with the Power of Cloud-Based Integration Accelerating Time to Market with the Power of Cloud-Based Integration Now more than ever before, flat revenue and increased development costs have made time-to-market a crucial factor in profitability

More information

Business Intelligence for Healthcare Benefits

Business Intelligence for Healthcare Benefits Business Intelligence for Healthcare Benefits A whitepaper with technical details on the value of using advanced data analytics to reduce the cost of healthcare benefits for self-insured companies. Business

More information

Get Started on your Journey to the Cloud Retail Industry

Get Started on your Journey to the Cloud Retail Industry Get Started on your Journey to the Cloud Retail Industry Written in collaboration by: Vic Miles Microsoft Retail Solutions Keith Champeau Fujitsu Center of Excellence Published: December 17, 2012 2012

More information

Ten Things You Need to Know About Data Virtualization

Ten Things You Need to Know About Data Virtualization White Paper Ten Things You Need to Know About Data Virtualization What is Data Virtualization? Data virtualization is an agile data integration method that simplifies information access. Data virtualization

More information

Traditional BI vs. Business Data Lake A comparison

Traditional BI vs. Business Data Lake A comparison Traditional BI vs. Business Data Lake A comparison The need for new thinking around data storage and analysis Traditional Business Intelligence (BI) systems provide various levels and kinds of analyses

More information

The 2-Tier Business Intelligence Imperative

The 2-Tier Business Intelligence Imperative Business Intelligence Imperative Enterprise-grade analytics that keeps pace with today s business speed Table of Contents 3 4 5 7 9 Overview The Historical Conundrum The Need For A New Class Of Platform

More information

Data Mining for Successful Healthcare Organizations

Data Mining for Successful Healthcare Organizations Data Mining for Successful Healthcare Organizations For successful healthcare organizations, it is important to empower the management and staff with data warehousing-based critical thinking and knowledge

More information

Advanced Analytics. The Way Forward for Businesses. Dr. Sujatha R Upadhyaya

Advanced Analytics. The Way Forward for Businesses. Dr. Sujatha R Upadhyaya Advanced Analytics The Way Forward for Businesses Dr. Sujatha R Upadhyaya Nov 2009 Advanced Analytics Adding Value to Every Business In this tough and competitive market, businesses are fighting to gain

More information

WHITEPAPER. A Technical Perspective on the Talena Data Availability Management Solution

WHITEPAPER. A Technical Perspective on the Talena Data Availability Management Solution WHITEPAPER A Technical Perspective on the Talena Data Availability Management Solution BIG DATA TECHNOLOGY LANDSCAPE Over the past decade, the emergence of social media, mobile, and cloud technologies

More information

Customer Insight Appliance. Enabling retailers to understand and serve their customer

Customer Insight Appliance. Enabling retailers to understand and serve their customer Customer Insight Appliance Enabling retailers to understand and serve their customer Customer Insight Appliance Enabling retailers to understand and serve their customer. Technology has empowered today

More information

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014 5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for

More information

Big Data for Investment Research Management

Big Data for Investment Research Management IDT Partners www.idtpartners.com Big Data for Investment Research Management Discover how IDT Partners helps Financial Services, Market Research, and Investment Management firms turn big data into actionable

More information

AdTheorent s. The Intelligent Solution for Real-time Predictive Technology in Mobile Advertising. The Intelligent Impression TM

AdTheorent s. The Intelligent Solution for Real-time Predictive Technology in Mobile Advertising. The Intelligent Impression TM AdTheorent s Real-Time Learning Machine (RTLM) The Intelligent Solution for Real-time Predictive Technology in Mobile Advertising Worldwide mobile advertising revenue is forecast to reach $11.4 billion

More information

Information Architecture

Information Architecture The Bloor Group Actian and The Big Data Information Architecture WHITE PAPER The Actian Big Data Information Architecture Actian and The Big Data Information Architecture Originally founded in 2005 to

More information

Predictive Analytics for IT Giving Organizations an Edge in a Rapidly Changing World

Predictive Analytics for IT Giving Organizations an Edge in a Rapidly Changing World Predictive Analytics for IT Giving Organizations an Edge in a Rapidly Changing World EXECUTIVE SUMMARY By Dan Kusnetzky, Distinguished Analyst Organizations find themselves facing a complex mix of applications

More information

WHITEPAPER. Why Dependency Mapping is Critical for the Modern Data Center

WHITEPAPER. Why Dependency Mapping is Critical for the Modern Data Center WHITEPAPER Why Dependency Mapping is Critical for the Modern Data Center OVERVIEW The last decade has seen a profound shift in the way IT is delivered and consumed by organizations, triggered by new technologies

More information

/ WHITEPAPER / THE BIMODAL IT

/ WHITEPAPER / THE BIMODAL IT / WHITEPAPER / THE BIMODAL IT By Melbourne IT Enterprise Services IMPLEMENTING THE DYNAMIC COMPONENT FOR A DIGITAL WORLD Among the IT operational models developed over the years, the recent release of

More information

INTRODUCTION TO CLOUD COMPUTING CEN483 PARALLEL AND DISTRIBUTED SYSTEMS

INTRODUCTION TO CLOUD COMPUTING CEN483 PARALLEL AND DISTRIBUTED SYSTEMS INTRODUCTION TO CLOUD COMPUTING CEN483 PARALLEL AND DISTRIBUTED SYSTEMS CLOUD COMPUTING Cloud computing is a model for enabling convenient, ondemand network access to a shared pool of configurable computing

More information

Big Data Open Source Stack vs. Traditional Stack for BI and Analytics

Big Data Open Source Stack vs. Traditional Stack for BI and Analytics Big Data Open Source Stack vs. Traditional Stack for BI and Analytics Part I By Sam Poozhikala, Vice President Customer Solutions at StratApps Inc. 4/4/2014 You may contact Sam Poozhikala at spoozhikala@stratapps.com.

More information

Data Catalogs for Hadoop Achieving Shared Knowledge and Re-usable Data Prep. Neil Raden Hired Brains Research, LLC

Data Catalogs for Hadoop Achieving Shared Knowledge and Re-usable Data Prep. Neil Raden Hired Brains Research, LLC Data Catalogs for Hadoop Achieving Shared Knowledge and Re-usable Data Prep Neil Raden Hired Brains Research, LLC Traditionally, the job of gathering and integrating data for analytics fell on data warehouses.

More information

Why your business decisions still rely more on gut feel than data driven insights.

Why your business decisions still rely more on gut feel than data driven insights. Why your business decisions still rely more on gut feel than data driven insights. THERE ARE BIG PROMISES FROM BIG DATA, BUT FEW ARE CONNECTING INSIGHTS TO HIGH CONFIDENCE DECISION-MAKING 85% of Business

More information

Sustainable Development with Geospatial Information Leveraging the Data and Technology Revolution

Sustainable Development with Geospatial Information Leveraging the Data and Technology Revolution Sustainable Development with Geospatial Information Leveraging the Data and Technology Revolution Steven Hagan, Vice President, Server Technologies 1 Copyright 2011, Oracle and/or its affiliates. All rights

More information

Modern Data Integration

Modern Data Integration Modern Data Integration Whitepaper Table of contents Preface(by Jonathan Wu)... 3 The Pardigm Shift... 4 The Shift in Data... 5 The Shift in Complexity... 6 New Challenges Require New Approaches... 6 Big

More information

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract W H I T E P A P E R Deriving Intelligence from Large Data Using Hadoop and Applying Analytics Abstract This white paper is focused on discussing the challenges facing large scale data processing and the

More information

CitusDB Architecture for Real-Time Big Data

CitusDB Architecture for Real-Time Big Data CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing

More information

Business Intelligence and Big Data Analytics: Speeding the Cycle from Insights to Action Four Steps to More Profitable Customer Engagement

Business Intelligence and Big Data Analytics: Speeding the Cycle from Insights to Action Four Steps to More Profitable Customer Engagement white paper Business Intelligence and Big Data Analytics: Speeding the Cycle from Insights to Action Four Steps to More Profitable Customer Engagement»» Summary For business intelligence analysts the era

More information

Increased Security, Greater Agility, Lower Costs for AWS DELPHIX FOR AMAZON WEB SERVICES WHITE PAPER

Increased Security, Greater Agility, Lower Costs for AWS DELPHIX FOR AMAZON WEB SERVICES WHITE PAPER Increased Security, Greater Agility, Lower Costs for AWS DELPHIX FOR AMAZON WEB SERVICES TABLE OF CONTENTS Introduction... 3 Overview: Delphix Virtual Data Platform... 4 Delphix for AWS... 5 Decrease the

More information

Big Data for the Rest of Us Technical White Paper

Big Data for the Rest of Us Technical White Paper Big Data for the Rest of Us Technical White Paper Treasure Data - Big Data for the Rest of Us 1 Introduction The importance of data warehousing and analytics has increased as companies seek to gain competitive

More information

SQLstream 4 Product Brief. CHANGING THE ECONOMICS OF BIG DATA SQLstream 4.0 product brief

SQLstream 4 Product Brief. CHANGING THE ECONOMICS OF BIG DATA SQLstream 4.0 product brief SQLstream 4 Product Brief CHANGING THE ECONOMICS OF BIG DATA SQLstream 4.0 product brief 2 Latest: The latest release of SQlstream s award winning s-streaming Product Portfolio, SQLstream 4, is changing

More information

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica

More information

Learn How to Leverage System z in Your Cloud

Learn How to Leverage System z in Your Cloud Learn How to Leverage System z in Your Cloud Mike Baskey IBM Thursday, February 7 th, 2013 Session 12790 Cloud implementations that include System z maximize Enterprise flexibility and increase cost savings

More information

Experience studies data management How to generate valuable analytics with improved data processes

Experience studies data management How to generate valuable analytics with improved data processes www.pwc.com/us/insurance Experience studies data management How to generate valuable analytics with improved data processes An approach to managing data for experience studies October 2015 Table of contents

More information

Accenture and SAP: Delivering Visual Data Discovery Solutions for Agility and Trust at Scale

Accenture and SAP: Delivering Visual Data Discovery Solutions for Agility and Trust at Scale Accenture and SAP: Delivering Visual Data Discovery Solutions for Agility and Trust at Scale 2 Today s data-driven enterprises are ramping up demands on their business intelligence (BI) teams for agility

More information

Oracle Data Integrator 12c (ODI12c) - Powering Big Data and Real-Time Business Analytics. An Oracle White Paper October 2013

Oracle Data Integrator 12c (ODI12c) - Powering Big Data and Real-Time Business Analytics. An Oracle White Paper October 2013 An Oracle White Paper October 2013 Oracle Data Integrator 12c (ODI12c) - Powering Big Data and Real-Time Business Analytics Introduction: The value of analytics is so widely recognized today that all mid

More information

Augmented Search for Software Testing

Augmented Search for Software Testing Augmented Search for Software Testing For Testers, Developers, and QA Managers New frontier in big log data analysis and application intelligence Business white paper May 2015 During software testing cycles,

More information

Presented By: Leah R. Smith, PMP. Ju ly, 2 011

Presented By: Leah R. Smith, PMP. Ju ly, 2 011 Presented By: Leah R. Smith, PMP Ju ly, 2 011 Business Intelligence is commonly defined as "the process of analyzing large amounts of corporate data, usually stored in large scale databases (such as a

More information

White. Paper. Big Data Advisory Service. September, 2011

White. Paper. Big Data Advisory Service. September, 2011 White Paper Big Data Advisory Service By Julie Lockner& Tom Kornegay September, 2011 This ESG White Paper was commissioned by EMC Corporation and is distributed under license from ESG. 2011, Enterprise

More information

Harnessing the Power of Big Data for Real-Time IT: Sumo Logic Log Management and Analytics Service

Harnessing the Power of Big Data for Real-Time IT: Sumo Logic Log Management and Analytics Service Harnessing the Power of Big Data for Real-Time IT: Sumo Logic Log Management and Analytics Service A Sumo Logic White Paper Introduction Managing and analyzing today s huge volume of machine data has never

More information

Cray: Enabling Real-Time Discovery in Big Data

Cray: Enabling Real-Time Discovery in Big Data Cray: Enabling Real-Time Discovery in Big Data Discovery is the process of gaining valuable insights into the world around us by recognizing previously unknown relationships between occurrences, objects

More information

Elastic Private Clouds

Elastic Private Clouds White Paper Elastic Private Clouds Agile, Efficient and Under Your Control 1 Introduction Most businesses want to spend less time and money building and managing IT infrastructure to focus resources on

More information

High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances

High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances Highlights IBM Netezza and SAS together provide appliances and analytic software solutions that help organizations improve

More information

Seven Practical Steps to Help You Run Your On-Premise Cloud Like a Business. Whitepaper

Seven Practical Steps to Help You Run Your On-Premise Cloud Like a Business. Whitepaper Seven Practical Steps to Help You Run Your On-Premise Cloud Like a Business Whitepaper Think about it. When a product or service is free, the demand for it is potentially infinite. But, once that product

More information

Big Data at Cloud Scale

Big Data at Cloud Scale Big Data at Cloud Scale Pushing the limits of flexible & powerful analytics Copyright 2015 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For

More information

Ironfan Your Foundation for Flexible Big Data Infrastructure

Ironfan Your Foundation for Flexible Big Data Infrastructure Ironfan Your Foundation for Flexible Big Data Infrastructure Benefits With Ironfan, you can expect: Reduced cycle time. Provision servers in minutes not days. Improved visibility. Increased transparency

More information

TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS

TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS 9 8 TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS Assist. Prof. Latinka Todoranova Econ Lit C 810 Information technology is a highly dynamic field of research. As part of it, business intelligence

More information

INNOVATION GROUP INNOVATION DATA MASTERY MODEL

INNOVATION GROUP INNOVATION DATA MASTERY MODEL INNOVATION GROUP INNOVATION DATA MASTERY MODEL Data Mastery is the leveraging of internal and external data (all types) to gain business insight to increase revenue, decrease expenses or improve ease of

More information

Adopting Site Quality Management to Optimize Risk-Based Monitoring

Adopting Site Quality Management to Optimize Risk-Based Monitoring Adopting Site Quality Management to Optimize Risk-Based Monitoring Medidata and other marks used herein are trademarks of Medidata Solutions, Inc. All other trademarks are the property of their respective

More information

The Purview Solution Integration With Splunk

The Purview Solution Integration With Splunk The Purview Solution Integration With Splunk Integrating Application Management and Business Analytics With Other IT Management Systems A SOLUTION WHITE PAPER WHITE PAPER Introduction Purview Integration

More information

SQL Server 2012 Performance White Paper

SQL Server 2012 Performance White Paper Published: April 2012 Applies to: SQL Server 2012 Copyright The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication.

More information

Organizational Intelligence, Scalability, and Agility

Organizational Intelligence, Scalability, and Agility Organizational Intelligence, Scalability, and Agility BPMS at the pace of business The Modern Way to Optimize Business Processes Business Process Management Systems (BPMS) have been key to improving efficiency,

More information

The Future of Business Analytics is Now! 2013 IBM Corporation

The Future of Business Analytics is Now! 2013 IBM Corporation The Future of Business Analytics is Now! 1 The pressures on organizations are at a point where analytics has evolved from a business initiative to a BUSINESS IMPERATIVE More organization are using analytics

More information

Extending Legacy Applications to Consume Web Services. OpenSpan White Paper Series: Extending Legacy Applications to Consume Web Services

Extending Legacy Applications to Consume Web Services. OpenSpan White Paper Series: Extending Legacy Applications to Consume Web Services OpenSpan White Paper Series: Extending Legacy Applications to Consume Web Services Extending Legacy Applications to Consume Web Services Achieving SOA Now p.2 OpenSpan White Paper Series: Extending Legacy

More information

Test Data Management Concepts

Test Data Management Concepts Test Data Management Concepts BIZDATAX IS AN EKOBIT BRAND Executive Summary Test Data Management (TDM), as a part of the quality assurance (QA) process is more than ever in the focus among IT organizations

More information

Predicting From the Edge in an

Predicting From the Edge in an Predicting From the Edge in an IoT World IoT will produce 4,400 exabytes of data or 4,400 billion terabytes between 2013 and 2020. (IDC) Today, in the Internet of Things (IoT) era, the Internet touches

More information

Understanding the Value of In-Memory in the IT Landscape

Understanding the Value of In-Memory in the IT Landscape February 2012 Understing the Value of In-Memory in Sponsored by QlikView Contents The Many Faces of In-Memory 1 The Meaning of In-Memory 2 The Data Analysis Value Chain Your Goals 3 Mapping Vendors to

More information

Internet of Things. Opportunity Challenges Solutions

Internet of Things. Opportunity Challenges Solutions Internet of Things Opportunity Challenges Solutions Copyright 2014 Boeing. All rights reserved. GPDIS_2015.ppt 1 ANALYZING INTERNET OF THINGS USING BIG DATA ECOSYSTEM Internet of Things matter for... Industrial

More information

SUSTAINING COMPETITIVE DIFFERENTIATION

SUSTAINING COMPETITIVE DIFFERENTIATION SUSTAINING COMPETITIVE DIFFERENTIATION Maintaining a competitive edge in customer experience requires proactive vigilance and the ability to take quick, effective, and unified action E M C P e r s pec

More information

Buyer s Guide to Big Data Integration

Buyer s Guide to Big Data Integration SEPTEMBER 2013 Buyer s Guide to Big Data Integration Sponsored by Contents Introduction 1 Challenges of Big Data Integration: New and Old 1 What You Need for Big Data Integration 3 Preferred Technology

More information

Whitepaper: 7 Steps to Developing a Cloud Security Plan

Whitepaper: 7 Steps to Developing a Cloud Security Plan Whitepaper: 7 Steps to Developing a Cloud Security Plan Executive Summary: 7 Steps to Developing a Cloud Security Plan Designing and implementing an enterprise security plan can be a daunting task for

More information

IBM Software IBM Business Process Management Suite. Increase business agility with the IBM Business Process Management Suite

IBM Software IBM Business Process Management Suite. Increase business agility with the IBM Business Process Management Suite IBM Software IBM Business Process Management Suite Increase business agility with the IBM Business Process Management Suite 2 Increase business agility with the IBM Business Process Management Suite We

More information

Advanced In-Database Analytics

Advanced In-Database Analytics Advanced In-Database Analytics Tallinn, Sept. 25th, 2012 Mikko-Pekka Bertling, BDM Greenplum EMEA 1 That sounds complicated? 2 Who can tell me how best to solve this 3 What are the main mathematical functions??

More information

Mitel Professional Services Catalog for Contact Center JULY 2015 SWEDEN, DENMARK, FINLAND AND BALTICS RELEASE 1.0

Mitel Professional Services Catalog for Contact Center JULY 2015 SWEDEN, DENMARK, FINLAND AND BALTICS RELEASE 1.0 Mitel Professional Services Catalog for Contact Center JULY 2015 SWEDEN, DENMARK, FINLAND AND BALTICS RELEASE 1.0 Contents MITEL PROFESSIONAL SERVICES DELIVERY METHODOLOGY... 2 CUSTOMER NEEDS... 2 ENGAGING

More information

How to claim the cloud: Getting past virtual stall to a cost-effective cloud

How to claim the cloud: Getting past virtual stall to a cost-effective cloud How to claim the cloud: Getting past virtual stall to a cost-effective cloud While virtualization and cloud computing are part of many IT organizations top 10 lists, few organizations have yet to harness

More information

Secure Data Transmission Solutions for the Management and Control of Big Data

Secure Data Transmission Solutions for the Management and Control of Big Data Secure Data Transmission Solutions for the Management and Control of Big Data Get the security and governance capabilities you need to solve Big Data challenges with Axway and CA Technologies. EXECUTIVE

More information

Vinay Parisa 1, Biswajit Mohapatra 2 ;

Vinay Parisa 1, Biswajit Mohapatra 2 ; Predictive Analytics for Enterprise Modernization Vinay Parisa 1, Biswajit Mohapatra 2 ; IBM Global Business Services, IBM India Pvt Ltd 1, IBM Global Business Services, IBM India Pvt Ltd 2 vinay.parisa@in.ibm.com

More information

IBM's Fraud and Abuse, Analytics and Management Solution

IBM's Fraud and Abuse, Analytics and Management Solution Government Efficiency through Innovative Reform IBM's Fraud and Abuse, Analytics and Management Solution Service Definition Copyright IBM Corporation 2014 Table of Contents Overview... 1 Major differentiators...

More information

White Paper: SAS and Apache Hadoop For Government. Inside: Unlocking Higher Value From Business Analytics to Further the Mission

White Paper: SAS and Apache Hadoop For Government. Inside: Unlocking Higher Value From Business Analytics to Further the Mission White Paper: SAS and Apache Hadoop For Government Unlocking Higher Value From Business Analytics to Further the Mission Inside: Using SAS and Hadoop Together Design Considerations for Your SAS and Hadoop

More information

ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V

ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V WHITE PAPER Create the Data Center of the Future Accelerate

More information

Data Virtualization A Potential Antidote for Big Data Growing Pains

Data Virtualization A Potential Antidote for Big Data Growing Pains perspective Data Virtualization A Potential Antidote for Big Data Growing Pains Atul Shrivastava Abstract Enterprises are already facing challenges around data consolidation, heterogeneity, quality, and

More information

Big Data Use Case. How Rackspace is using Private Cloud for Big Data. Bryan Thompson. May 8th, 2013

Big Data Use Case. How Rackspace is using Private Cloud for Big Data. Bryan Thompson. May 8th, 2013 Big Data Use Case How Rackspace is using Private Cloud for Big Data Bryan Thompson May 8th, 2013 Our Big Data Problem Consolidate all monitoring data for reporting and analytical purposes. Every device

More information

Four Things You Must Do Before Migrating Archive Data to the Cloud

Four Things You Must Do Before Migrating Archive Data to the Cloud Four Things You Must Do Before Migrating Archive Data to the Cloud The amount of archive data that organizations are retaining has expanded rapidly in the last ten years. Since the 2006 amended Federal

More information

Augmented Search for IT Data Analytics. New frontier in big log data analysis and application intelligence

Augmented Search for IT Data Analytics. New frontier in big log data analysis and application intelligence Augmented Search for IT Data Analytics New frontier in big log data analysis and application intelligence Business white paper May 2015 IT data is a general name to log data, IT metrics, application data,

More information

VDI FIT and VDI UX: Composite Metrics Track Good, Fair, Poor Desktop Performance

VDI FIT and VDI UX: Composite Metrics Track Good, Fair, Poor Desktop Performance VDI FIT and VDI UX: Composite Metrics Track Good, Fair, Poor Desktop Performance Key indicators and classification capabilities in Stratusphere FIT and Stratusphere UX Whitepaper INTRODUCTION This whitepaper

More information

ElegantJ BI. White Paper. The Enterprise Option Reporting Tools vs. Business Intelligence

ElegantJ BI. White Paper. The Enterprise Option Reporting Tools vs. Business Intelligence ElegantJ BI White Paper The Enterprise Option Integrated Business Intelligence and Reporting for Performance Management, Operational Business Intelligence and Data Management www.elegantjbi.com ELEGANTJ

More information

Deploying an Operational Data Store Designed for Big Data

Deploying an Operational Data Store Designed for Big Data Deploying an Operational Data Store Designed for Big Data A fast, secure, and scalable data staging environment with no data volume or variety constraints Sponsored by: Version: 102 Table of Contents Introduction

More information

Advanced Big Data Analytics with R and Hadoop

Advanced Big Data Analytics with R and Hadoop REVOLUTION ANALYTICS WHITE PAPER Advanced Big Data Analytics with R and Hadoop 'Big Data' Analytics as a Competitive Advantage Big Analytics delivers competitive advantage in two ways compared to the traditional

More information

Delivering Data-Driven Transformations

Delivering Data-Driven Transformations Delivering Data-Driven Transformations Pasi Vuorela Sales Manager Nordics ONLY Hortonworks Company Profile Apache 100 open source TM % Hadoop data platform Founded in 2011 1 ST provider to go public HADOOP

More information

HOW TO DO A SMART DATA PROJECT

HOW TO DO A SMART DATA PROJECT April 2014 Smart Data Strategies HOW TO DO A SMART DATA PROJECT Guideline www.altiliagroup.com Summary ALTILIA s approach to Smart Data PROJECTS 3 1. BUSINESS USE CASE DEFINITION 4 2. PROJECT PLANNING

More information

Role of Analytics in Infrastructure Management

Role of Analytics in Infrastructure Management Role of Analytics in Infrastructure Management Contents Overview...3 Consolidation versus Rationalization...5 Charting a Course for Gaining an Understanding...6 Visibility into Your Storage Infrastructure...7

More information

A technical paper for Microsoft Dynamics AX users

A technical paper for Microsoft Dynamics AX users s c i t y l a n a g n i Implement. d e d e e N is h c a o r Why a New app A technical paper for Microsoft Dynamics AX users ABOUT THIS WHITEPAPER 03 06 A TRADITIONAL APPROACH TO BI A NEW APPROACH This

More information

We are Big Data A Sonian Whitepaper

We are Big Data A Sonian Whitepaper EXECUTIVE SUMMARY Big Data is not an uncommon term in the technology industry anymore. It s of big interest to many leading IT providers and archiving companies. But what is Big Data? While many have formed

More information

From Lab to Factory: The Big Data Management Workbook

From Lab to Factory: The Big Data Management Workbook Executive Summary From Lab to Factory: The Big Data Management Workbook How to Operationalize Big Data Experiments in a Repeatable Way and Avoid Failures Executive Summary Businesses looking to uncover

More information

Informatica Application Information Lifecycle Management

Informatica Application Information Lifecycle Management Informatica Application Information Lifecycle Management Cost-Effectively Manage Every Phase of the Information Lifecycle brochure Controlling Explosive Data Growth The era of big data presents today s

More information