First variation. (one-variable problem) January 21, 2015

Size: px
Start display at page:

Download "First variation. (one-variable problem) January 21, 2015"

Transcription

1 First vrition (one-vrible problem) Jnury 21, 2015 Contents 1 Sttionrity of n integrl functionl Euler eqution (Optimlity conditions) First integrls: Three specil cses Vritionl problem s limit of finite-dimensionl problem Sttionrity of boundry terms Vrition of boundry conditions Broken extreml nd the Weierstrss-Erdmn condition Functionl dependent on higher derivtives 13 4 Non-fixed intervl Trnsverslity condition Extreml broken t n unknown point Severl minimizers Euler equtions nd first integrls Vritionl boundry conditions Geometric optics Geometric optics problem Snell s lw of refrction Brchistochrone Miniml surfce of revolution

2 Since, however, the rules for isoperimetric curves or, in modern terms, extreml problems were not sufficiently generl, the fmous Euler undertook the tsk of reducing ll such investigtions to generl method which he gve in the work Essy on new method of determining the mxim nd minim of indefinite integrl formuls ; n originl work in which the profound science of the clculus shines through. Even so, while the method is ingenious nd rich, one must dmit tht it is not s simple s one might hope in work of pure nlysis. In Essy on new method of determining the mxim nd minim of indefinite integrl formuls, by Lgrnge, Sttionrity of n integrl functionl The technique ws developed by Euler, who lso introduced the nme Clculus of vritions in The method is bsed on n nlysis of infinitesiml vritions of minimizing curve. The min scheme of the vritionl method is s follows: ssuming tht the optiml curve u(x) exists mong smooth (twice-differentible curves), we compre the optiml curve with close-by trjectories u(x) + δu(x), where vrition δu(x) is smll in some sense. Using the smllness of δu, we simplify the comprison, deriving necessry conditions for the optiml trjectory u(x). The method is quite nlogous to the computing of differentil d f(x) = f (x) dx function f(x), minimum point is solution of the eqution f (x) = 0 becuse of the rbitrriness of differentil dx. Generlly speking, vritionl methods yield to only necessry conditions of optimlity becuse it is ssumed tht the compred trjectories re close to ech other; on the other hnd, these methods re pplicble to gret vriety of extreml problems clled vritionl problems. Similrly to the clculus problems, the proof of optimlity of trjectory should be complemented by inequlities tht distinguish minimum from mximum of sddle points nd n existence theorem tht either gurntees tht the minimizer is indeed twice-differentible function or suggests n lterntive pproch (relxting or regulriztion techniques) 1.1 Euler eqution (Optimlity conditions) Consider the problem clled the simplest problem of the clculus of vritions min u I(u), I(u) = F (x, u, u )dx, u() = u, u(b) = u b, (1) Here integrnt F is clled Lgrngin, it is ssumed to be twice differentible function of its three rguments, I(u) is clled the cost functionl. It is not known priori whether the minimizer u 0 (x) is smooth, but let us ssume tht it is twice differentible function of x. 2

3 Exmple 1.1 Consider the re of the surfce of revolution round the xes OX tht is supported by two prllel coxil circles of rdii R nd R b, the distnce between the centers of circles is b. According to the clculus, the re J of the surfce is A(r) = π r(x) 1 + r (x) 2 dx, where r(x) is the vrible distnce from the OX-xes. The problem of miniml re of such surfce I = min r(x) A(u), r() = R, r(b) = R b is vritionl problem, r(x) is n unknown function. To derive necessry condition of optimlity of minimizer u 0 we use the ides of clculus, computing n nlog of the derivtive of I with respect to u (clled the functionl derivtive) nd setting it to zero. We suppose tht function u 0 = u 0 (x) is minimizer nd replce u 0 with test function u 0 + δu. The test function u 0 + δu stisfies the sme boundry conditions s u 0. If indeed u 0 is minimizer, then the increment of the cost is δi(u 0 ) = I(u 0 + δu) I(u 0 ) is nonnegtive: δi(u 0 ) = 1 0 (F (x, u 0 + δu, (u 0 + δu) ) F (x, u 0, u 0))dx 0. (2) If δu is not specified, the eqution (2) is not too informtive. However, prticulr form of the vrition δu simplifies (2) nd llows for finding n eqution for the minimizer. Clculus of vritions suggests set of tests tht differ by vrious form of vritions δu. Euler Lgrnge Equtions The sttionry vritionl condition (the Euler Lgrnge eqution) is derived ssuming tht the vrition δu is infinitesimlly smll nd loclized: { ρ(x) if x [x0, x δu = 0 + ε], (3) 0 if x is outside of [x 0, x 0 + ε]. Here ρ(x) is continuous function tht vnishes t points x 0 nd x 0 + ε nd is constrined s follows: ρ(x) < ε, ρ (x) < ε x, ρ(x 0 ) = ρ(x 0 + ε) = 0 (4) The integrnd t the perturbed trjectory cn be expnded into Tylor series, F (x, u 0 + δu, (u 0 + δu) ) = F (x, u 0, u 0) + (x, u 0, u 0) δu + (x, u 0, u 0) δu + o(δu, δu ) 3

4 Here, δu is derivtive of the vrition δu, δu = (δu), o(δu, δu ) denotes higher order terms which norms re smller thn δu nd δu when ε 0. Substituting this expression into (2) nd collecting liner (with respect to ε) terms, we rewrite (2) s ( ) δi(u 0 ) = (δu) + (δu) dx + o(ε) 0. (5) where The F is clculted t the exmined trjectory u 0. To simplify nottions, we omit index ( 0 ) below. The vritions δu nd (δu) re mutully dependent nd (δu) cn be expressed in terms of δu. Integrtion by prts of the underlined term in (5) gives nd we obtin (δu) dx = 0 δi(u 0 ) = ( d dx ) δu dx + S F (x, u, u )δu dx + δu where S F denotes the functionl derivtive, δu x=b x= x=b x= + o(ε), (6) S F (x, u, u ) = d dx +. (7) The nonintegrl term in the right-hnd side of (6) is zero, becuse the boundry vlues of u re prescribed s u() = u nd u(b) = u b ; therefore their vritions δu x= nd δu x=b equl zero, δu x= = 0, δu x=b = 0 Due to the rbitrriness of δu, we rrive t the following Theorem 1.1 (Sttionrity condition) Any differentible nd bounded minimizer u 0 of the vritionl problem (1) is solution to the boundry vlue problem S F (x, u, u ) = d dx = 0 x (, b); u() = u, u(b) = u b, (8) clled the Euler Lgrnge eqution. The Euler Lgrnge eqution is lso clled the sttionry condition of optimlity becuse it expresses sttionrity of the vrition. Using the chin rule, the left-hnd side of eqution (8) cn be rewritten to the form of explicit second-rnk differentil eqution. S F (x, u, u ) = 2 F 2 u + 2 F u + 2 F x In this derivtion, it is indirectly ssumed tht the extreml u(t) is twice differentible function of x. (9) 4

5 Exmple 1.2 Compute the Euler eqution for the problem I = min u(x) 1 We compute = u, The minimizer u 0 (x) is 0 F (x, u, u )dx u(0) = 1, u(1) =, F = 1 2 (u ) u2 = u nd the Euler eqution becomes u u = 0 in (0, 1), u(0) = 1, u(1) =. u 0 (x) = cosh(x) + cosh(1) sinh(1) sinh(x). Remrk 1.1 The sttionrity test lone does not llow to conclude whether u is true minimizer or even to conclude tht solution to (8) exists. For exmple, the function u tht mximizes I(u) stisfies the sme Euler Lgrnge eqution. The tests tht distinguish miniml trjectory from other sttionry trjectories re discussed in Chpter??. Remrk 1.2 The reltion (6) request tht differentil eqution (8) is stisfied in ech infinitesiml intervl but not in in ech point. The eqution my be not defined in isolted points, if F or its prtil derivtives re not defined in these points. The minimizer cn chnge its vlues t severl points, or even t set of zero mesure without effecting the objective functionl. Such solutions re clled wek solutions?? of differentil eqution. The definition of the wek solution nturlly rises from the vritionl formultion tht does not check the behvior of the minimizer in every p[oint but only t intervls of nonzero mesure. In mbiguous cses, one should specify in wht sense (Riemnn, Lebesgue) the integrl is defined nd define of vrition ccordingly. 1.2 First integrls: Three specil cses In severl cses, the second-order Euler eqution (8) cn be integrted t lest once. These re the cses when Lgrngin F (x, u, u ) does not depend on one of the rguments. Assume tht F = F (x, u), nd the mini- Lgrngin is independent of u miztion problem is I(u) = min u(x) 1 0 F (x, u)dx (10) In this cse, Euler eqution (8) becomes n lgebric reltion for u = 0 (11) The vrition does not involve integrtion by prts, nd the minimizer does not need to be continuous. 5

6 Monimizer u(x) is determined in ech point independently of neighboring points. The boundry conditions in (8) re stisfied by possible jumps of the extreml u(x) in the end points; these conditions do not ffect the objective functionl t ll. Exmple 1.3 Consider the problem I(u) = min u(x) 1 0 (u sin x) 2 dx, u(0) = 1; u(1) = 0. The miniml vlue J(u 0 ) = 0 corresponds to the discontinuous minimizer sin x if 0 x 1 u 0 (x) = 1 if x = 0 0 if x = 1 Remrk 1.3 Formlly, the discontinuous minimizer contrdicts the ssumption posed when the Euler eqution ws derived. To be consistent, we need to repet the derivtion of the necessry condition for the problem (10) without ny ssumption on the continuity of the minimizer. This derivtion is quite obvious. Lgrngin is independent of u If Lgrngin does not depend on u, F = F (x, u ), Euler eqution (8) becomes S F (x, u, u ) = d dx = 0 x (, b); u() = u, u(b) = u b, (12) it cn be integrted once: = constnt (13) The differentil eqution (13) for u is the first integrl of eqution (8); it defines quntity tht stys constnt everywhere long n optiml trjectory. It remins to integrte the first order eqution (13) nd determine the constnts of integrtion from the boundry conditions. Exmple 1.4 Consider the problem I(u) = min u(x) 1 (compre with exmple 1.3) The first integrl is Integrting, we find the minimizer, 0 (u cos x) 2 dx, u(0) = 1; u(1) = 0. = u (x) cos x = C u(x) = sin x + C 1 x + C 2. 6

7 The constnts C 1 nd C 2 re found from nd the boundry conditions: C 2 = 1, C 1 = 1 sin 1, minimizer u 0 nd the cost of the problem become, respectively u 0 (x) = sin x (sin 1 + 1)x + 1 I(u 0 ) = (sin 1 + 1) 2. Notice tht the Lgrngin in the exmple (1.3) is the squre of difference between the minimizer u nd function sin x, nd the Lgrngin in the exmple (1.4) is the squre of difference of their derivtives. In the problem (1.3), the minimizer coincides with sin x, nd jumps to stisfy the prescribed boundry vlues. The minimizer u in the exmple (1.4) cnnot jump. Indeed, continuous pproximtion of derivtive u of discontinuous functionis unfunded in the proximity of the point of discontinuity, such behvior increses the objective functionl, nd therefore it is nonoptiml. Lgrngin is independent of x If F = F (u, u ), eqution (8) hs the first integrl: W (u, u ) = constnt (14) where W (u, u ) = u F Indeed, compute the x-derivtive of W (u, u ) which must be equl to zero by virtue of (14): d dx W (u, u ) = [ ( 2 u + F u u + 2 F u 2 )] u u = 0 where the expression in squre brckets is the derivtive of the first term of W (u, u ). Cncelling the equl terms, we bring this eqution to the form ( u 2 F 2 u + 2 F u ) = 0 (15) The expression in prenthesis coincides with the left-hnd-side term S(x, u, u ) of the Euler eqution in the form (9), simplified for the considered cse (F is independent of x, F = F (u, u )). W is constnt t ny solution u(x) of Euler eqution. Insted of solving the Euler eqution, we my solve the first-order eqution W = C. Exmple 1.5 Consider the Lgrngin for hrmonic oscilltor: F = 1 2 [ (u ) 2 ω 2 u 2] 7

8 The Euler eqution is The first integrl is u + ω 2 u = 0 W = 1 2 ( ω 2 u 2 + (u ) 2) = C 2 = constnt Let us check the constncy of the first integrl. The solution u of the Euler eqution is equl u = A cos(ωx) + B sin(ωx) where A nd B re constnts. Substituting the solution into the expression for the first integrl, we compute W = (u ) 2 + ω 2 u 2 = [ Aω sin(cx) + Bω cos(ωx)] 2 +ω 2 [A cos(ωx) + B sin(ωx)] 2 = ω 2 (A 2 + B 2 ) We hve shown tht W is constnt t the optiml trjectory. Notice tht W is the totl energy (sum of the potentil nd kinetic energy) of the oscilltor. 1.3 Vritionl problem s limit of finite-dimensionl problem Here, we derive Euler eqution for finite-dimensionl problem tht pproximte the simplest vritionl problem min I(u), I(u) = u(x) F (x, u, u )dx Consider clss of piece-wise constnt discontinuous functions U N : ū(x) U N, if ū(x) = u i x [ + in ] (b ) A function ū in U N is defined by n N-dimensionl vector {u 1,... u N }. Rewriting the vritionl problem for this clss of minimizers, we replce the derivtive u (x) with finite difference Diff (u i ) Diff (u i ) = 1 (u i u i 1 ), = b N ; (16) when N, this opertor tends to the derivtive. The vritionl problem is replced by finite-dimensionl optimiztion problem: min u 1,...,u N 1 I N I N = N F i (u i, z i ), z i = Diff (z i ) = 1 (z i z i 1 ) (17) i=1 Compute the sttionry conditions for the minimum of I N (u) I N i = 0, i = 1...., N. 8

9 Only two terms, F i nd F i+1, in the bove sum depend on u i : the first depends on u i directly nd lso through the opertor z i = Diff (u i ), nd the second only through z i+1 = Diff (u i+1 ): df i = i + i 1 du i i z i, df i+1 = i+1 1 du i z i+1. df k = 0, k i, k i + 1 du i Collecting the terms, we write the sttionry condition with respect to u i : I N = i + 1 ( i i i z ) i+1 = 0 z or, reclling the definition (16) of Diff -opertor, the form I N = ( ) i i+1 Diff = 0. i i z The initil nd the finl point u 0 nd u N enter the difference scheme only once, therefore the optimlity conditions re different. They re, respectively, N+1 Diff (u N+1 ) = 0; o Diff (u 0 ) = 0. Formlly pssing to the limit N, Diff d dx, z u replcing the index ( i ) with continuous vrible x, vector of vlues {u k } of the piece-wise constnt function with the continuous function u(x), difference opertor Diff with the derivtive d dx ; then nd N F i (u i, Diff u i ) i=1 i i Diff ( i+1 z ) F (x, u, u )dx. d d x The conditions for the end points become the nturl vritionl conditions: (0) = 0, (T ) = 0, So fr, we followed the forml scheme of necessry conditions, thereby tcitly ssuming tht ll derivtives of the Lgrngin exist, the increment of the functionl is correctly represented by the first term of its power expnsion, nd the limit of the sequence of finite-dimensionl problems exist nd does not depend on the prtition {x 1,... x N } if only x k x k 1 0 for ll k. We lso indirectly ssume tht the Euler eqution hs t lest one solution consistent with boundry conditions. 9

10 If ll the mde ssumptions re correct, we obtin curve tht might be minimizer becuse it cnnot be disproved by the sttionry test. In other terms, we find tht is there is no other close-by clssicl curve tht correspond to smller vlue of the functionl. Remrk 1.4 This sttement bout the optimlity seems to be rther wek but this is exctly wht the clculus of vrition cn give us. On the other hnd, the vritionl conditions re universl nd, being ppropritely used nd supplemented by other conditions, led to very detiled description of the extreml s we show lter in the course. Remrk 1.5 In the bove procedure, we ssume tht the limits of the components of the vector {u k } represent vlues of smooth function in the close-by points x 1,..., x N. At the other hnd, u k re solutions of optimiztion problems with the coefficients tht slowly vry with the number k. We need to nswer the question whether the solution of minimiztion problem tends to is differentible function of x; tht is whether the limit u k u k 1 lim k x k x k 1 exists nd this is not lwys the cse. We ddress this question lter in Chpter?? 2 Sttionrity of boundry terms 2.1 Vrition of boundry conditions Vritionl conditions nd nturl conditions The vlue of minimizer my not be specified on one or both ends of the intervl [, b]. In this cse, these vlues re clculted by the minimiztion of the gol functionl together with the minimizer. Consider vritionl problem where the boundry vlue t the right end b of the intervl is not defined nd the functionl directly depends on this vlue, min I(u), I(u) = u(x):u()=u F (x, u, u )dx + f(u(b)) (18) The Euler eqution for the problem remin the sme, S(x, u, u ) = 0, but this time it must be supplemented by vritionl boundry condition tht comes from the requirement of the sttionrity of the minimizer with respect to vrition of the boundry term. This term is ( + f ) δu(b) x=b The first term comes from the integrtion by prt in the derivtion of Euler eqution, see (6), nd the second is the vrition of the lst term in the objective 10

11 functionl (18): δf(u) = f δu. Becuse the sign of the vrition δu(b) is rbitrry, the sttionrity condition hs the form ( + f ) = 0. (19) This equlity provides the missing boundry condition t the endpoint x = b for the second order Euler eqution. Similr condition cn be derived for the point x = if the vlue t this point is not prescribed. Exmple 2.1 Minimize the functionl x=b 1 1 I(u) = min u 0 2 (u ) 2 dx + Au(1), u(0) = 0 Here, we wnt to minimize the endpoint vlue nd we do not wnt the trjectory be too steep. The Euler eqution u = 0 must be integrted with boundry conditions u(0) = 0 nd (see (19)) u (1) + A = 0 The extreml is stright line, u = Ax. The cost of the problem is I = 1 2 A2. If f = 0, the condition (19) becomes = 0 (20) x=b nd it is clled the nturl boundry condition. Exmple 2.2 Consider the Lgrngin F = (x)(u ) 2 + φ(x, u) where (x) 0 The nturl boundry condition is u x=b = Broken extreml nd the Weierstrss-Erdmn condition The clssicl derivtion of the Euler eqution requires the existence of ll second prtils of F, nd the solution u of the second-order differentil eqution is required to be twice-differentible. In some problems, F is only piece-wise twice differentible; in this cse, the extreml consists of severl curves solutions of the Euler eqution tht re computed t the intervls of smoothness. We consider the question: How to join these pieces together? The first continuity condition is continuity of the (differentible) minimizer u(x) [u] + = 0 long the optiml trjectory u(x) (21) Here [z] + = z + z denotes the jump of the vrible z. The extreml u is differentible, the first derivtive u exists t ll points of the trjectory. This derivtive does not need to be continuous. Insted, Euler eqution requests the differentibility of to ensure the existence of the term d in the Euler eqution. dx 11

12 Integrting the sttionrity condition (8), we obtin sttionrity in the integrl form x x ( d S F (x, u, u (x, u, u ) )dx = dx (x, u, ) u ) dx = 0 or If (x, u, u ) x = (x, u, u ) x 0 dx + (x, u, u ) (22) x= is bounded t the optiml trjectory, the right-hnd side is continuous function of x, nd so is the left-hnd side. This requirement of continuity of n optiml trjectory is clled the Weierstrss-Erdmn condition on broken extreml. Theorem 2.1 At ny point of the optiml trjectory, the Weierstrss-Erdmn condition must be stisfied: [ ] + = 0 long the optiml trjectory u(x). (23) Exmple 2.3 (Broken extreml) Consider the Lgrngin F = 1 2 c(x)(u ) { c1 if x [, x 2 u2, c(x) = ), c 2 if x (x, b] where x is point in (, b). The Euler eqution is held everywhere in (, b) except of the point x, d dx [c 1u ] u = 0 if x [, x ) d dx [c 2u ] u = 0 if x (x, b], At x = x, the continuity conditions hold, u(x 0) = u(x + 0), c 1 u (x 0) = c 2 u (x + 0). The derivtive u (x) itself is discontinuous; its jump is determined by the jump in the coefficients: u (x + 0) u (x 0) = c 1 c 2 These conditions together with the Euler eqution nd boundry conditions determine the optiml trjectory. 12

13 3 Functionl dependent on higher derivtives Consider more generl type vritionl problem with the Lgrngin tht depends on the minimizer nd its first nd second derivtive, J = F (x, u, u, u )dx The Euler eqution is derived similrly to the simplest cse: The vrition of the gol functionl is δj = ( δu + δu + δu ) dx Integrting by prts the second term nd twice the third term, we obtin ( δj = d ) dx + d2 dx 2 δu dx [ + δu + δu d ] x=b δu dx The sttionrity condition becomes the fourth-order differentil eqution x= (24) d 2 dx 2 d dx + = 0 (25) supplemented by two boundry conditions on ech end, δu [ = 0, δu d ] dx = 0 t x = nd x = b (26) or by the correspondent min conditions posed on the minimizer u nd its derivtive u t the end points. Exmple 3.1 The equilibrium of n elstic bending bem correspond to the solution of the vritionl problem min u(x) L 0 ( 1 2 (E(x)u ) 2 q(x)u)dx (27) where u(x) is the deflection of the point x of the bem, E(x) is the elstic stiffness of the mteril tht cn vry with x, q(x) is the lod tht bends the bem. Any of the following kinemtic boundry conditions cn be considered t ech end of the bem. (1) A clmped end: u() = 0, u () = 0 (2) simply supported end u() = 0. (3) free end (no kinemtic conditions). 13

14 Let us find eqution for equilibrium nd the missing boundry conditions in the second nd third cse. The Euler eqution (25) becomes The equtions (26) become (Eu ) q = 0 (, b) δu (Eu ) = 0, δu ((Eu ) ) = 0 In the cse (2) (simply supported end), the complementry vritionl boundry condition is Eu = 0, it expresses vnishing of the bending momentum t the simply supported end. In the cse (3), the vritionl conditions re Eu = 0 nd (Eu ) = 0; the lst expresses vnishing of the bending force t the free end (the bending momentum vnishes here s well). Generliztion The Lgrngin F (x, u, u,..., u (n)) dependent on first k derivtives of udependent on higher derivtives of u is considered similrly. The sttionry condition is the 2k-order differentil eqution d dx dk ( 1)k dx k (k) = 0 supplemented t ech end x = nd x = b of the trjectory by k boundry conditions [ ] δu (k 1) (k) x=,b = 0 [ d ] δu (k 2) (k 1) dx (k) x=,b = 0... [ d dx d(k 1) ( 1)k dx (k 1) ] δu (k) x=,b = 0 If u is vector minimizer, u cn be replced by vector but the structure of the necessry conditions sty the sme. 4 Non-fixed intervl 4.1 Trnsverslity condition Free boundry Consider now the cse when the intervl [, b] is not fixed, but the end point is to be chosen so tht it minimizes the functionl. Let us 14

15 compute the difference between the two functionls over two different intervls = δi = +δx (F (x, u + δu, u + δu ) F (x, u, u )) dx + The second integrl is estimted s +δx b F (x, u + δu, u + δu )dx +δx b F (x, u, u )dx F (x, u + δu, u + δu )dx F (x, u + δu, u + δu )dx = F (x, u, u ) x=b δx + o( δu, δx ) nd the first integrl is computed s before with integrtion by prts: S F (x, u, u )δu dx + δu(b) = 0 x=b 1. Suppose tht no boundry conditions re imposed t the minimizer t the point x = b. Becuse of rbitrriness of δx nd δu, we rrive t the conditions: S F (x, u, u ) = 0 x (, b), = 0, x=b nd F (x, u, u ) x=b = 0. (28) Euler eqution for the extreml stisfies n extr boundry condition (28), but hs lso n dditionl degree of freedom: unknown coordinte b. Exmple 4.1 Consider the problem s ( ) 1 min u(x),s 2 u 2 u + x dx u(0) = 0. 0 The Euler eqution u + 1 = 0 nd the condition t u(0) = 0 corresponds to the extreml u = 1 2 x2 + Ax, u = x + A where A is prmeter. The condition = u = 0 t the unknown right end x = s gives s = A. The trnsverslity condition F = 0 or ( u + x) x=a=s = 1 2 s2 s 2 + s = s (1 12 ) s = 0 We find s = 2, u = 1 2 x2 + 2x. 2. Next, consider the problem in which the boundry dt t x = b is prescribed, u = β, but the vlue of b is not known. In the perturbed trjectory, the 15

16 boundry condition is u(b + δx) = β. The vlue of u(b + δx) is n extrpoltion of u(x) s follows u(b + δx) = u(b) + u (b)δx + o( δu, δx ) Therefore, the vlue (u + δu) x=b depends on δx, u(b) = β u (b)δx or δu(b) = u (b)δx. Combining the depending on δx terms, we obtin the condition ( F (b)) x=b u δx Becuse δx is rbitrry, the boundry conditions re: u = β nd ( F (x, u, u ) u ) x=b = 0. (29) Remrk 4.1 Notice tht the left-hnd side expression in (29) t the unknown end is identicl to the expression for the first integrl (14) of the problem in the cse when F (u, u ) is independent of x. This integrl is constnt long n optiml trjectory which mens tht the problem with Lgrngin F (u, u ) does not stisfy (29) t n isolted point. 3. Finlly, consider the problem when the rjectory ends t curve. If the boundry vlue depends on b, u(b) = φ(b) (30) then the vritions δu nd δx re bounded: δu = φ δx. The two sttionrity conditions t the end point ( δu = 0 nd F (x, u, u ) u ) δx = 0 together (30) gives the conditions ( F (u φ ) ) x=b = 0 nd u(b) = φ(b). (31) The next exmple dels with constrint t the unknown length of the intervl nd the boundry dt. Exmple 4.2 Find the shortest pth between the origin nd curve φ(x). The pth length is given by I = min y(x),s s y 2 dx, u(0) = 0 At the end point x the pth meets the curve, therefore y(s) = φ(s) or δy = φ (s)δs (32) 16

17 The Euler eqution y = y = C 1 + y 2 shows tht y = constnt, therefore the pth is stright line, y = Ax s expected. At the point s, the vrition is ( u ) y F δx + y y δy = 1 δx + y δu 1 + y y 2 The sttionrity gives the reltion δx + y δu = 0. Compring it with the constrint (32), we conclude tht y (s)φ (s) = 1, or tht the shortest pth is stright line orthogonl to the curve φ(x), s it is expected. 4.2 Extreml broken t n unknown point Combining the techniques, we my ddress the problem of en extreml broken in n unknown point. The position of this point is determined from the minimiztion requirement. Assume tht Lgrngin hs the form { F (x, u, u F (x, u, u ) = ) if x (, ξ) F + (x, u, u ) if x (ξ, b) where ξ is n unknown point in the intervl (, b) of the integrtion. The Euler eqution is { SF (u) if x (, ξ) S F (u) = S F+ (u) if x (ξ, b) The sttionrity conditions t the unknown point ξ consist of sttionrity of the trjectory + = (33) nd sttionrity of the position of the trnsit point F + (u) u + + = F (u) u. (34) or F + (u) F (u) = (u + u ). (35) They re derived by the sme procedure s the conditions t the end point. The vrition δx of the trnsit point δx = δx + = δx increses the first prt of the trjectory nd decreses the second prt, or vise vers, which explins the structure of the sttionrity conditions. In prticulr, if the Lgrngin is independent of x, the condition (34) expresses the constncy of the first integrl (14) t the point ξ. 17

18 Exmple 4.3 Consider the problem with Lgrngin { F (x, u, u + u ) = 2 + b + u 2 if x (, ξ) u 2 if x (ξ, b) nd boundry conditions The Euler eqution is S F (u) = u() = 0, u(b) = 1 { + u b + u = 0 if x (, ξ) u = 0 if x (ξ, b) The solution to this eqution tht stisfies the boundry conditions is ( ) u + (x) = C 1 sinh b+ + (x ) if x (, ξ) u (x) = C 2 (x b) + 1 if x (ξ, b) ; it depends on three constnts ξ, C 1, nd C 2 (Notice tht the coefficient does not enter the Euler equtions). These constnts re determined from three conditions t the unknown point ξ which express (1) continuity of the extreml (2) Weierstrss-Erdmn condition (3) trnsverslity condition u + (ξ) = u (ξ), + u +(ξ) = u (ξ), + (u +(ξ)) 2 + b + u(ξ) 2 = (u (ξ)) 2. The trnsverslity condition sttes the equlity of two first integrl. It is simplified to C 2 1b + = C 2 2 From the Weierstrss-Erdmn condition, we find C 1 + b + cosh q = C 2, where q = b + + (ξ ) The first condition nd the definition of q llows for determintion of ξ: cosh q = +, ξ = + + b + cosh 1 + Finlly, we define constnts C 1 nd C 2 from the continuity C 1 sinh q = 1 + C 2 (ξ b) nd trnsverslity conditions: C 1 = sinh q b + (ξ b), C b+ 2 = sinh q b + (ξ b), 18

19 5 Severl minimizers 5.1 Euler equtions nd first integrls The Euler eqution cn be nturlly generlized to the problem with the vectorvlued minimizer I(u) = min u F (x, u, u )dx, (36) where x is point in the intervl [, b] nd u = (u 1 (x),..., u n (x)) is vector function. We suppose tht F is twice differentible function of its rguments. Let us compute the vrition δi(u) equl to I(u + δu) I(u), ssuming tht the vrition of the extreml nd its derivtive is smll nd loclized. To compute the Lgrngin t the perturbed trjectory u+δu, we use the expnsion F (x, u + δu, u + δu ) = F (x, u, u ) + n i=1 i δu i + n δu i i=1 i We cn perform n independent vritions of ech component of vector u pplying vritions δ i u = (0,..., δu i..., 0). The increment of the objective functionl should be zero for ech of these vrition, otherwise the functionl cn be decresed by one of them. The sttionrity condition for ny of considered vritions coincides with the one-minimizer cse. δ i I(u) = ( δu i + δu i i i ) dx 0 i = 1,..., n. Proceeding s before, we obtin the system of n second-order differentil equtions, d = 0, i = 1,... n (37) dx i nd the boundry term i n x=b δu i = 0 (38) i=1 i If the vlue of u i () or u i (b) is not prescribed, the nturl boundry conditions x= or i x=b, respectively, must be stisfied. i The vector form of the system (37), S F (u) = d dx x=b = 0, δut = 0 (39) is identicl to the sclr Euler eqution. This system corresponds to n definition of differentition with respect to vector rgument u. x= Exmple 5.1 Consider the problem with the integrnd x= F = 1 2 u u 2 2 u 1 u u2 1 (40) 19

20 The system of sttionrity conditions is computed to be d dx d dx = u 1 + u 2 u 1 = 0 2 = (u 2 u 1 ) = 0. If consists of two differentil equtions of second order for two unknowns u 1 (x) nd u 2 (x). First integrls The first integrls tht re estblished for the specil cses of the sclr Euler eqution, cn lso be derived for the vector eqution. 1. If F is independent of u k, then one of the Euler equtions degenertes into lgebric reltion: = 0 k nd the one of differentil eqution in (37) becomes n lgebric one. The vrible u k (x) cn be discontinuous function of x in n optiml solution. Since the Lgrngin is independent of u k, the discontinuities of u k(x) my occur long the optiml trjectory. 2. If F is independent of u k, the first integrl exists: k = constnt For instnce, the second eqution in Exmple 5.1 cn be integrted nd replced by u 2 u 1 = constnt 3. If F is independent of x, F = F (u, u ) then first integrl exist Here W = u T F = constnt (41) T u = n i=1 u i i For the Exmple 5.1, this first integrl is computed to be ( 1 W = u u 2 (u 2 u 1) 2 u u 2 2 u 1 u ) 2 u2 1 = 1 ( u u 2 2 u 2 1) = constnt These three cses do not exhust ll possible first integrls for vector cse. For exmple, if the functionl depends only on, sy (u 1 + u 2 ), one cn hope to find new invrints by chnging the vribles. We discuss this mtter below in Sections?? nd??. 20

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems Euler Euler Everywhere Using the Euler-Lgrnge Eqution to Solve Clculus of Vrition Problems Jenine Smllwood Principles of Anlysis Professor Flschk My 12, 1998 1 1. Introduction Clculus of vritions is brnch

More information

Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables

Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Uniform convergence and its consequences

Uniform convergence and its consequences Uniform convergence nd its consequences The following issue is centrl in mthemtics: On some domin D, we hve sequence of functions {f n }. This mens tht we relly hve n uncountble set of ordinry sequences,

More information

The Calculus of Variations: An Introduction. By Kolo Sunday Goshi

The Calculus of Variations: An Introduction. By Kolo Sunday Goshi The Clculus of Vritions: An Introduction By Kolo Sundy Goshi Some Greek Mythology Queen Dido of Tyre Fled Tyre fter the deth of her husbnd Arrived t wht is present dy Liby Irbs (King of Liby) offer Tell

More information

Solutions to Section 1

Solutions to Section 1 Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

Arc Length. P i 1 P i (1) L = lim. i=1

Arc Length. P i 1 P i (1) L = lim. i=1 Arc Length Suppose tht curve C is defined by the eqution y = f(x), where f is continuous nd x b. We obtin polygonl pproximtion to C by dividing the intervl [, b] into n subintervls with endpoints x, x,...,x

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

Net Change and Displacement

Net Change and Displacement mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

An Off-Center Coaxial Cable

An Off-Center Coaxial Cable 1 Problem An Off-Center Coxil Cble Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Nov. 21, 1999 A coxil trnsmission line hs inner conductor of rdius nd outer conductor

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

1 Numerical Solution to Quadratic Equations

1 Numerical Solution to Quadratic Equations cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll

More information

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: x n+ x n n + + C, dx = ln x + C, if n if n = In prticulr, this mens tht dx = ln x + C x nd x 0 dx = dx = dx = x + C Integrl of Constnt:

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

6 Energy Methods And The Energy of Waves MATH 22C

6 Energy Methods And The Energy of Waves MATH 22C 6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this

More information

All pay auctions with certain and uncertain prizes a comment

All pay auctions with certain and uncertain prizes a comment CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin

More information

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 tmcwillim@college.hrvrd.edu December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Lesson 10. Parametric Curves

Lesson 10. Parametric Curves Return to List of Lessons Lesson 10. Prmetric Curves (A) Prmetric Curves If curve fils the Verticl Line Test, it cn t be expressed by function. In this cse you will encounter problem if you try to find

More information

Volumes of solids of revolution

Volumes of solids of revolution Volumes of solids of revolution We sometimes need to clculte the volume of solid which cn be obtined by rotting curve bout the x-xis. There is strightforwrd technique which enbles this to be done, using

More information

11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.

11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π. . Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Calculus of variations with fractional derivatives and fractional integrals

Calculus of variations with fractional derivatives and fractional integrals Anis do CNMAC v.2 ISSN 1984-820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810-193 Aveiro, Portugl

More information

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required

More information

4: RIEMANN SUMS, RIEMANN INTEGRALS, FUNDAMENTAL THEOREM OF CALCULUS

4: RIEMANN SUMS, RIEMANN INTEGRALS, FUNDAMENTAL THEOREM OF CALCULUS 4: RIEMA SUMS, RIEMA ITEGRALS, FUDAMETAL THEOREM OF CALCULUS STEVE HEILMA Contents 1. Review 1 2. Riemnn Sums 2 3. Riemnn Integrl 3 4. Fundmentl Theorem of Clculus 7 5. Appendix: ottion 10 1. Review Theorem

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Answer, Key Homework 8 David McIntyre 1

Answer, Key Homework 8 David McIntyre 1 Answer, Key Homework 8 Dvid McIntyre 1 This print-out should hve 17 questions, check tht it is complete. Multiple-choice questions my continue on the net column or pge: find ll choices before mking your

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH3432: Green s Functions, Integrl Equtions nd the Clculus of Vritions Section 3 Integrl Equtions Integrl Opertors nd Liner Integrl Equtions As we sw in Section on opertor nottion, we work with functions

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

MATLAB: M-files; Numerical Integration Last revised : March, 2003

MATLAB: M-files; Numerical Integration Last revised : March, 2003 MATLAB: M-files; Numericl Integrtion Lst revised : Mrch, 00 Introduction to M-files In this tutoril we lern the bsics of working with M-files in MATLAB, so clled becuse they must use.m for their filenme

More information

Week 11 - Inductance

Week 11 - Inductance Week - Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

Ostrowski Type Inequalities and Applications in Numerical Integration. Edited By: Sever S. Dragomir. and. Themistocles M. Rassias

Ostrowski Type Inequalities and Applications in Numerical Integration. Edited By: Sever S. Dragomir. and. Themistocles M. Rassias Ostrowski Type Inequlities nd Applictions in Numericl Integrtion Edited By: Sever S Drgomir nd Themistocles M Rssis SS Drgomir) School nd Communictions nd Informtics, Victori University of Technology,

More information

Generalized Inverses: How to Invert a Non-Invertible Matrix

Generalized Inverses: How to Invert a Non-Invertible Matrix Generlized Inverses: How to Invert Non-Invertible Mtrix S. Swyer September 7, 2006 rev August 6, 2008. Introduction nd Definition. Let A be generl m n mtrix. Then nturl question is when we cn solve Ax

More information

Written Homework 6 Solutions

Written Homework 6 Solutions Written Homework 6 Solutions Section.10 0. Explin in terms of liner pproximtions or differentils why the pproximtion is resonble: 1.01) 6 1.06 Solution: First strt by finding the liner pproximtion of f

More information

The Chain Rule. rf dx. t t lim " (x) dt " (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx

The Chain Rule. rf dx. t t lim  (x) dt  (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx The Chin Rule The Chin Rule In this section, we generlize the chin rule to functions of more thn one vrible. In prticulr, we will show tht the product in the single-vrible chin rule extends to n inner

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information

r 2 F ds W = r 1 qe ds = q

r 2 F ds W = r 1 qe ds = q Chpter 4 The Electric Potentil 4.1 The Importnt Stuff 4.1.1 Electricl Potentil Energy A chrge q moving in constnt electric field E experiences force F = qe from tht field. Also, s we know from our study

More information

CHAPTER 11 Numerical Differentiation and Integration

CHAPTER 11 Numerical Differentiation and Integration CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

Ae2 Mathematics : Fourier Series

Ae2 Mathematics : Fourier Series Ae Mthemtics : Fourier Series J. D. Gibbon (Professor J. D Gibbon, Dept of Mthemtics j.d.gibbon@ic.c.uk http://www.imperil.c.uk/ jdg These notes re not identicl word-for-word with my lectures which will

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Curve Sketching. 96 Chapter 5 Curve Sketching

Curve Sketching. 96 Chapter 5 Curve Sketching 96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

Matrix Algebra CHAPTER 1 PREAMBLE 1.1 MATRIX ALGEBRA

Matrix Algebra CHAPTER 1 PREAMBLE 1.1 MATRIX ALGEBRA CHAPTER 1 Mtrix Algebr PREAMBLE Tody, the importnce of mtrix lgebr is of utmost importnce in the field of physics nd engineering in more thn one wy, wheres before 1925, the mtrices were rrely used by the

More information

Lecture 3 Basic Probability and Statistics

Lecture 3 Basic Probability and Statistics Lecture 3 Bsic Probbility nd Sttistics The im of this lecture is to provide n extremely speedy introduction to the probbility nd sttistics which will be needed for the rest of this lecture course. The

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

Math 22B Solutions Homework 1 Spring 2008

Math 22B Solutions Homework 1 Spring 2008 Mth 22B Solutions Homework 1 Spring 2008 Section 1.1 22. A sphericl rindrop evportes t rte proportionl to its surfce re. Write differentil eqution for the volume of the rindrop s function of time. Solution

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

Quadratic Equations. Math 99 N1 Chapter 8

Quadratic Equations. Math 99 N1 Chapter 8 Qudrtic Equtions Mth 99 N1 Chpter 8 1 Introduction A qudrtic eqution is n eqution where the unknown ppers rised to the second power t most. In other words, it looks for the vlues of x such tht second degree

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

INTERCHANGING TWO LIMITS. Zoran Kadelburg and Milosav M. Marjanović

INTERCHANGING TWO LIMITS. Zoran Kadelburg and Milosav M. Marjanović THE TEACHING OF MATHEMATICS 2005, Vol. VIII, 1, pp. 15 29 INTERCHANGING TWO LIMITS Zorn Kdelburg nd Milosv M. Mrjnović This pper is dedicted to the memory of our illustrious professor of nlysis Slobodn

More information

Double Integrals over General Regions

Double Integrals over General Regions Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing

More information

Physics 6010, Fall 2010 Symmetries and Conservation Laws: Energy, Momentum and Angular Momentum Relevant Sections in Text: 2.6, 2.

Physics 6010, Fall 2010 Symmetries and Conservation Laws: Energy, Momentum and Angular Momentum Relevant Sections in Text: 2.6, 2. Physics 6010, Fll 2010 Symmetries nd Conservtion Lws: Energy, Momentum nd Angulr Momentum Relevnt Sections in Text: 2.6, 2.7 Symmetries nd Conservtion Lws By conservtion lw we men quntity constructed from

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Review Problems for the Final of Math 121, Fall 2014

Review Problems for the Final of Math 121, Fall 2014 Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since

More information

Jackson 2.23 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.23 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson.3 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: A hollow cube hs conducting wlls defined by six plnes x =, y =, z =, nd x =, y =, z =. The wlls z =

More information

DETERMINANTS. ] of order n, we can associate a number (real or complex) called determinant of the matrix A, written as det A, where a ij. = ad bc.

DETERMINANTS. ] of order n, we can associate a number (real or complex) called determinant of the matrix A, written as det A, where a ij. = ad bc. Chpter 4 DETERMINANTS 4 Overview To every squre mtrix A = [ ij ] of order n, we cn ssocite number (rel or complex) clled determinnt of the mtrix A, written s det A, where ij is the (i, j)th element of

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

to the area of the region bounded by the graph of the function y = f(x), the x-axis y = 0 and two vertical lines x = a and x = b.

to the area of the region bounded by the graph of the function y = f(x), the x-axis y = 0 and two vertical lines x = a and x = b. 5.9 Are in rectngulr coordintes If f() on the intervl [; ], then the definite integrl f()d equls to the re of the region ounded the grph of the function = f(), the -is = nd two verticl lines = nd =. =

More information

4.0 5-Minute Review: Rational Functions

4.0 5-Minute Review: Rational Functions mth 130 dy 4: working with limits 1 40 5-Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two

More information

Chapter 6 Solving equations

Chapter 6 Solving equations Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign

More information

ORBITAL MANEUVERS USING LOW-THRUST

ORBITAL MANEUVERS USING LOW-THRUST Proceedings of the 8th WSEAS Interntionl Conference on SIGNAL PROCESSING, ROBOICS nd AUOMAION ORBIAL MANEUVERS USING LOW-HRUS VIVIAN MARINS GOMES, ANONIO F. B. A. PRADO, HÉLIO KOII KUGA Ntionl Institute

More information

Answer, Key Homework 4 David McIntyre Mar 25,

Answer, Key Homework 4 David McIntyre Mar 25, Answer, Key Homework 4 Dvid McIntyre 45123 Mr 25, 2004 1 his print-out should hve 18 questions. Multiple-choice questions my continue on the next column or pe find ll choices before mkin your selection.

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

Lectures 8 and 9 1 Rectangular waveguides

Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

More information

Worksheet 24: Optimization

Worksheet 24: Optimization Worksheet 4: Optimiztion Russell Buehler b.r@berkeley.edu 1. Let P 100I I +I+4. For wht vlues of I is P mximum? P 100I I + I + 4 Tking the derivtive, www.xkcd.com P (I + I + 4)(100) 100I(I + 1) (I + I

More information

The Definite Integral

The Definite Integral Chpter 4 The Definite Integrl 4. Determining distnce trveled from velocity Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: If we know

More information

CHAPTER 5 Spline Approximation of Functions and Data

CHAPTER 5 Spline Approximation of Functions and Data CHAPTER 5 Spline Approximtion of Functions nd Dt This chpter introduces number of methods for obtining spline pproximtions to given functions, or more precisely, to dt obtined by smpling function. In Section

More information

14.2. The Mean Value and the Root-Mean-Square Value. Introduction. Prerequisites. Learning Outcomes

14.2. The Mean Value and the Root-Mean-Square Value. Introduction. Prerequisites. Learning Outcomes he Men Vlue nd the Root-Men-Squre Vlue 4. Introduction Currents nd voltges often vry with time nd engineers my wish to know the men vlue of such current or voltge over some prticulr time intervl. he men

More information

1. The leves re either lbeled with sentences in ;, or with sentences of the form All X re X. 2. The interior leves hve two children drwn bove them) if

1. The leves re either lbeled with sentences in ;, or with sentences of the form All X re X. 2. The interior leves hve two children drwn bove them) if Q520 Notes on Nturl Logic Lrry Moss We hve seen exmples of wht re trditionlly clled syllogisms lredy: All men re mortl. Socrtes is mn. Socrtes is mortl. The ide gin is tht the sentences bove the line should

More information

m, where m = m 1 + m m n.

m, where m = m 1 + m m n. Lecture 7 : Moments nd Centers of Mss If we hve msses m, m 2,..., m n t points x, x 2,..., x n long the x-xis, the moment of the system round the origin is M 0 = m x + m 2 x 2 + + m n x n. The center of

More information

Homework #6: Answers. a. If both goods are produced, what must be their prices?

Homework #6: Answers. a. If both goods are produced, what must be their prices? Text questions, hpter 7, problems 1-2. Homework #6: Answers 1. Suppose there is only one technique tht cn be used in clothing production. To produce one unit of clothing requires four lbor-hours nd one

More information

Calculus of Variations

Calculus of Variations Clculus of Vritions The biggest step from derivtives with one vrible to derivtives with mny vribles is from one to two. After tht, going from two to three ws just more lgebr nd more complicted pictures.

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Tests for One Poisson Mean

Tests for One Poisson Mean Chpter 412 Tests for One Poisson Men Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson distribution

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

4 Approximations. 4.1 Background. D. Levy

4 Approximations. 4.1 Background. D. Levy D. Levy 4 Approximtions 4.1 Bckground In this chpter we re interested in pproximtion problems. Generlly speking, strting from function f(x) we would like to find different function g(x) tht belongs to

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2010

AAPT UNITED STATES PHYSICS TEAM AIP 2010 2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD

More information

Slow roll inflation. 1 What is inflation? 2 Equations of motions for a homogeneous scalar field in an FRW metric

Slow roll inflation. 1 What is inflation? 2 Equations of motions for a homogeneous scalar field in an FRW metric Slow roll infltion Pscl udrevnge pscl@vudrevnge.com October 6, 00 Wht is infltion? Infltion is period of ccelerted expnsion of the universe. Historiclly, it ws invented to solve severl problems: Homogeneity:

More information

MATLAB Workshop 13 - Linear Systems of Equations

MATLAB Workshop 13 - Linear Systems of Equations MATLAB: Workshop - Liner Systems of Equtions pge MATLAB Workshop - Liner Systems of Equtions Objectives: Crete script to solve commonly occurring problem in engineering: liner systems of equtions. MATLAB

More information

Using Definite Integrals

Using Definite Integrals Chpter 6 Using Definite Integrls 6. Using Definite Integrls to Find Are nd Length Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: How

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

COMPONENTS: COMBINED LOADING

COMPONENTS: COMBINED LOADING LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

More information