Decidable Fragments of FirstOrder and FixedPoint Logic


 Marshall Randall
 2 years ago
 Views:
Transcription
1 From prefixvocabulary classes to guarded logics Aachen University
2 The classical decision problem part of Hilbert s formalist programme for the foundations of mathematics in modern terminology: find an algorithm that solves the satisfiability problem for firstorder logic D. Hilbert and W. Ackermann: Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren kennt, das bei einem vorgelegten logischen Ausdruck durch endlich viele Operationen die Entscheidung über die Allgemeingültigkeit bzw. Erfüllbarkeit erlaubt. (...) Das Entscheidungsproblem muss als das Hauptproblem der mathematischen Logik bezeichnet werden. Grundzüge der theoretischen Logik (1928), pp 73ff
3 The classical decision problem part of Hilbert s formalist programme for the foundations of mathematics in modern terminology: find an algorithm that solves the satisfiability problem for firstorder logic D. Hilbert and W. Ackermann: The decision problem is solved when we know a procedure that allows, for any given logical expression, to decide by finitely many operations its validity or satisfiability. (...) The decision problem must be considered the main problem of mathematical logic. Grundzüge der theoretischen Logik (1928), pp 73ff
4 The classical decision problem part of Hilbert s formalist programme for the foundations of mathematics in modern terminology: find an algorithm that solves the satisfiability problem for firstorder logic D. Hilbert and W. Ackermann: The decision problem is solved when we know a procedure that allows, for any given logical expression, to decide by finitely many operations its validity or satisfiability. (...) The decision problem must be considered the main problem of mathematical logic. Grundzüge der theoretischen Logik (1928), pp 73ff Similar statements by many other logicians, including Bernays, Schönfinkel, Herbrand, von Neumann,...
5 Early results: decision procedures Decision algorithms for fragments of firstorder logic the monadic predicate calculus (Löwenheim 1915, Kalmár 1929) the prefix class (Bernays Schönfinkel 1928, Ramsey 1932) the prefix class (Ackermann 1928) the 2 prefix class, without equality (Gödel, Kalmár, Schütte )
6 Early results: decision procedures Decision algorithms for fragments of firstorder logic the monadic predicate calculus (Löwenheim 1915, Kalmár 1929) the prefix class (Bernays Schönfinkel 1928, Ramsey 1932) the prefix class (Ackermann 1928) the 2 prefix class, without equality (Gödel, Kalmár, Schütte ) These are often called the classical solvable cases of the decision problem.
7 Early results: reduction classes A fragment X FO is a reduction class if there is a computable function f : FO X such that ψ satisfiable f (ψ) satisfiable Early reduction classes: relational sentences without = (the pure predicate calculus) dyadic sentences (only predicates of arity 2) sentences, or relational sentences (Skolem normal form) only one binary predicate (Kalmár 1936) relational 3 sentences (Gödel 1933)
8 The undecidability of firstorder logic Theorem (Church 1936, Turing 1937) The satisfiability problem for firstorder logic is undecidable.
9 The undecidability of firstorder logic Theorem (Church 1936, Turing 1937) The satisfiability problem for firstorder logic is undecidable. Theorem (Trakhtenbrot 1950, Craig 1950) The satisfiability problem for firstorder logic on finite structures is undecidable.
10 The undecidability of firstorder logic Theorem (Church 1936, Turing 1937) The satisfiability problem for firstorder logic is undecidable. Theorem (Trakhtenbrot 1950, Craig 1950) The satisfiability problem for firstorder logic on finite structures is undecidable. = there is no sound and complete proof system for validity on finite structures
11 The undecidability of firstorder logic Theorem (Church 1936, Turing 1937) The satisfiability problem for firstorder logic is undecidable. Theorem (Trakhtenbrot 1950, Craig 1950) The satisfiability problem for firstorder logic on finite structures is undecidable. = there is no sound and complete proof system for validity on finite structures After the negative solution, the decision problem did not disappear, but became a classification problem.
12 The decision problem as a classification problem For which classes X FO is Sat(X) decidable, which are reduction classes? Similarly for satisfiablity on finite structures
13 The decision problem as a classification problem For which classes X FO is Sat(X) decidable, which are reduction classes? Similarly for satisfiablity on finite structures Which classes have the finite model property, which contain infinity axioms?
14 The decision problem as a classification problem For which classes X FO is Sat(X) decidable, which are reduction classes? Similarly for satisfiablity on finite structures Which classes have the finite model property, which contain infinity axioms? Complexity of decidable cases?
15 The decision problem as a classification problem For which classes X FO is Sat(X) decidable, which are reduction classes? Similarly for satisfiablity on finite structures Which classes have the finite model property, which contain infinity axioms? Complexity of decidable cases? What kind of classes X FO should be considered? There are continuum many such classes, one cannot study all of them. A direction is needed.
16 The decision problem as a classification problem For which classes X FO is Sat(X) decidable, which are reduction classes? Similarly for satisfiablity on finite structures Which classes have the finite model property, which contain infinity axioms? Complexity of decidable cases? What kind of classes X FO should be considered? There are continuum many such classes, one cannot study all of them. A direction is needed. In view of the early results, most attention (in logic) was given to classes determined by quantifier prefix and vocabulary, i.e. the number and arity of relation and function symbols.
17 Prefixvocabulary classes [Π, (p 1, p 2,...), (f 1, f 2,...)] (=)
18 Prefixvocabulary classes [Π, (p 1, p 2,...), (f 1, f 2,...)] (=) Π is a word over {,,, }, describing set of quantifier prefixes
19 Prefixvocabulary classes [Π, (p 1, p 2,...), (f 1, f 2,...)] (=) Π is a word over {,,, }, describing set of quantifier prefixes p m, f m ω indicate how many relation and function symbols of arity m may occur
20 Prefixvocabulary classes [Π, (p 1, p 2,...), (f 1, f 2,...)] (=) Π is a word over {,,, }, describing set of quantifier prefixes p m, f m ω indicate how many relation and function symbols of arity m may occur presence or absence of = indicates whether the formulae may contain equality
21 Prefixvocabulary classes [Π, (p 1, p 2,...), (f 1, f 2,...)] (=) Π is a word over {,,, }, describing set of quantifier prefixes p m, f m ω indicate how many relation and function symbols of arity m may occur presence or absence of = indicates whether the formulae may contain equality Example: [, (ω, 1), all] =
22 Prefixvocabulary classes [Π, (p 1, p 2,...), (f 1, f 2,...)] (=) Π is a word over {,,, }, describing set of quantifier prefixes p m, f m ω indicate how many relation and function symbols of arity m may occur presence or absence of = indicates whether the formulae may contain equality Example: [, (ω, 1), all] = sentences x 1... x m y z 1... z n φ where φ is quantifierfree and contains at most one binary predicate, and no predicates of arity 3, may contain any number of monadic predicates, may contain any number of function symbols of any arity, may contain equality.
23 The complete classification: undecidable cases A: Pure predicate logic (without functions, without =) (1) [, (ω, 1), (0)] (Kahr 1962) (2) [ 3, (ω, 1), (0)] (Surányi 1959) (3) [, (0, 1), (0)] (KalmárSurányi 1950) (4) [, (0, 1), (0)] (Denton 1963) (5) [, (0, 1), (0)] (Gurevich 1966) (6) [ 3, (0, 1), (0)] (KalmárSurányi 1947) (7) [, (0, 1), (0)] (KostyrkoGenenz 1964) (8) [, (0, 1), (0)] (Surányi 1959) (9) [ 3, (0, 1), (0)] (Surányi 1959)
24 The complete classification: undecidable cases B: Classes with functions or equality (10) [, (0), (2)] = (Gurevich 1976) (11) [, (0), (0, 1)] = (Gurevich 1976) (12) [ 2, (0, 1), (1)] (Gurevich 1969) (13) [ 2, (1), (0, 1)] (Gurevich 1969) (14) [ 2, (ω, 1), (0)] = (Goldfarb 1984) (15) [ 2, (0, 1), (0)] = (Goldfarb 1984) (16) [ 2, (0, 1), (0)] = (Goldfarb 1984)
25 The complete classification: decidable cases (Exclude the trivial classes: finite prefix and finite relational vocabulary) A: Classes with the finite model property (1) [, all, (0)] = (Bernays, Schönfinkel 1928) (2) [ 2, all, (0)] (Gödel 1932, Kalmár 1933, Schütte 1934) (3) [all, (ω), (ω)] (Löb 1967, Gurevich 1969) (4) [, all, all] (Gurevich 1973) (5) [, all, all] = (Gurevich 1976) B: Classes with infinity axioms (6) [all, (ω), (1)] = (Rabin 1969) (7) [, all, (1)] = (Shelah 1977)
26 Why prefixvocabulary classes? historical reasons
27 Why prefixvocabulary classes? historical reasons simple, syntactically defined classes
28 Why prefixvocabulary classes? historical reasons simple, syntactically defined classes a finite classification can a priori be proved to exist.
29 Why prefixvocabulary classes? historical reasons simple, syntactically defined classes a finite classification can a priori be proved to exist. Classifiability Theorem (Gurevich) Let P be a property of prefix vocabulary classes that is closed under subsets and under union: X P, Y X = Y P X, Y P = X Y P Then there is a finite list MIN of prefix vocabulary classes such that X P Y MIN : Y X
30 Why prefixvocabulary classes? historical reasons simple, syntactically defined classes a finite classification can a priori be proved to exist. Classifiability Theorem (Gurevich) Let P be a property of prefix vocabulary classes that is closed under subsets and under union: X P, Y X = Y P X, Y P = X Y P Then there is a finite list MIN of prefix vocabulary classes such that Take P = {X : Sat(X) decidable}. X P Y MIN : Y X = there is a finite list of minimal undecidable prefixvocabulary classes.
31 Why prefixvocabulary classes? historical reasons simple, syntactically defined classes a finite classification can a priori be proved to exist.
32 Why prefixvocabulary classes? historical reasons simple, syntactically defined classes a finite classification can a priori be proved to exist. Good question!
33 Why prefixvocabulary classes? historical reasons simple, syntactically defined classes a finite classification can a priori be proved to exist. Good question! Modern applications of logic in computer science often lead to quite different classes. For instance: modal logics, twovariable logics, guarded logics. On the other side the restriction to firstorder logic is often too restrictive. Consider instead (fragments of) fixed point logics
34 ML: propositional modal logic Transition systems = Kripke structures = labeled graphs K = ( V, (E a ) a A, (P i ) i I ) states elements actions binary relations atomic propositions unary relations Syntax of ML: ψ ::= P i P i ψ ψ ψ ψ a ψ [a]ψ Example: P 1 a (P 2 [b]p 1 ) Semantics: [[ψ]] K = {v : K, v = ψ} = {v : ψ holds at state v in K}. K, v = a ψ [a]ψ : K, w = ψ for some all w with (v, w) E a
35 ML as a fragment of firstorder logic There is standard translation, taking every ψ ML to a formula ψ (x) FO such that K, v = ψ K = ψ (v) P i P i x a ψ y(e a xy ψ (y)) [a]ψ y(e a xy ψ (y))
36 Properties of modal logic Good algorithmic properties:  Sat(ML) is decidable and PSPACEcomplete  efficient model checking: time O( ψ K )  automatabased algorithms
37 Properties of modal logic Good algorithmic properties:  Sat(ML) is decidable and PSPACEcomplete  efficient model checking: time O( ψ K )  automatabased algorithms Interesting modeltheoretic properties:  invariance under bisimulation: K, v = ψ, K, v K, v = K, v = ψ in fact ML is the bisimulationinvariant fragment of firstorder logic  ML has the tree model property  ML has the finite model property ...
38 Limitations of propositional modal logic ML has very limited expressive power  no equality  no unbounded quantification  no possibility to define new transition relations, not even on the quantifierfree level  no counting mechanism  no recursion mechanism: reachability problems, game problems, etc. are not expressible
39 Limitations of propositional modal logic ML has very limited expressive power  no equality  no unbounded quantification  no possibility to define new transition relations, not even on the quantifierfree level  no counting mechanism  no recursion mechanism: reachability problems, game problems, etc. are not expressible Note: The absence of a recursion mechanism is also a limitation of FO For numerous applications, in particular for reasoning about computation, reachability problems and game problems are essential. = numerous logics that extend ML by recursion mechanisms
40 Computation tree logic CTL ML + path quantification + temporal operators on paths CTL is a very important logic for hardware verification. Good balance between expressive power and algorithmic manageability A P U Q ( paths) (P until Q)
41 Computation tree logic CTL ML + path quantification + temporal operators on paths CTL is a very important logic for hardware verification. Good balance between expressive power and algorithmic manageability A P U Q ( paths) (P until Q) E G P ( path) always P A F P ( paths) eventually P
42 Computation tree logic CTL ML + path quantification + temporal operators on paths CTL is a very important logic for hardware verification. Good balance between expressive power and algorithmic manageability A P U Q ( paths) (P until Q) E G P ( path) always P A F P ( paths) eventually P A G A F P ( paths) always ( paths) eventually P ( paths) infinitely often P
43 L µ : modal µcalculus ML + least and greatest fixed points For any definable monotone relational operator F φ : X {w : φ(x) true at w} make also the least and the greatest fixed point of F φ definable: K, w = µx.φ w {X : F φ (X) = X} (least fixed point) K, w = νx.φ w {X : F φ (X) = X} (greatest fixed point)
44 L µ : Examples K, w = νx. a X there is an infinite apath from w in K K, w = µx. P [a]x every infinite apath from w eventually hits P
45 L µ : Examples K, w = νx. a X there is an infinite apath from w in K K, w = µx. P [a]x every infinite apath from w eventually hits P Two player game on graph G = (V, E). Players alternate, moves along edges, who cannot move, loses. Player 0 has winning strategy for game G from position w G, w = µx. X
46 L µ : Examples K, w = νx. a X there is an infinite apath from w in K K, w = µx. P [a]x every infinite apath from w eventually hits P Two player game on graph G = (V, E). Players alternate, moves along edges, who cannot move, loses. Player 0 has winning strategy for game G from position w G, w = µx. X K, w = νx µy. ((P X) Y) on some path from w, P occurs infinitely often
47 Importance of CTL and modal µcalculus ML CTL L µ µcalculus encompasses most of the popular logics used in hardware verification: LTL, CTL, CTL, PDL,..., and also many logics from other fields: game logic, description logics, etc. reasonably good algorithmic properties:  satisfiability problem decidable (EXPTIMEcomplete)  efficient model checking for CTL and other important fragments of µcalculus  automatabased algorithms nice modeltheoretic properties:  finite model property  tree model property L µ is the bisimulationinvariant fragment of MSO
48 Summery: properties of modal logics The basic modal logic ML has good algorithmic and modeltheoretic properties, but for most applications in computer science, it is not expressive enough
49 Summery: properties of modal logics The basic modal logic ML has good algorithmic and modeltheoretic properties, but for most applications in computer science, it is not expressive enough There are numerous modal logics, that extend ML by recursion mechanisms and other features. These extensions are practically important because the provide the necessary expressive power for applications, while preserving the good algorithmic properties. Of particular importance for theoretical studies: modal µcalculus (modal fixed point logic)
50 Summery: properties of modal logics The basic modal logic ML has good algorithmic and modeltheoretic properties, but for most applications in computer science, it is not expressive enough There are numerous modal logics, that extend ML by recursion mechanisms and other features. These extensions are practically important because the provide the necessary expressive power for applications, while preserving the good algorithmic properties. Of particular importance for theoretical studies: modal µcalculus (modal fixed point logic) Question. (Vardi 96) Why have modal logics so robust decidability properties?
51 Bounded variable logics FO k : relational firstorder logic with only k variables
52 Bounded variable logics FO k : relational firstorder logic with only k variables we may reuse variables: there is a path of length 17 FO 2 x y(exy x(eyx y(exy yexy ) )))
53 Bounded variable logics FO k : relational firstorder logic with only k variables we may reuse variables: there is a path of length 17 FO 2 x y(exy x(eyx y(exy yexy ) ))) Note: instead of the number of variables, we can restrict the width width(ψ): maximal number of free variables in subformulae of ψ Proposition. FO k {ψ FO : width(ψ) k} Proposition. Sat(FO k ) is undecidable for all k 3 indeed, even the prefix class is undecidable Question: What about FO 2?
54 Decidability of FO 2 Theorem (Mortimer 75) FO 2 has the finite model property. Mortimer s proof implies: every satisfiable ψ FO 2 has a model with at most 2 2O( ψ ) elements. = Sat(FO 2 ) 2NEXPTIME
55 Decidability of FO 2 Theorem (Mortimer 75) FO 2 has the finite model property. Mortimer s proof implies: every satisfiable ψ FO 2 has a model with at most 2 2O( ψ ) elements. = Sat(FO 2 ) 2NEXPTIME Theorem (Lewis 80, Fürer 84) Sat(FO 2 ) is NEXPTIMEhard. holds even for sentences of form x y α x y β (α and β quantifierfree), with only monadic predicates
56 Decidability of FO 2 Theorem (Mortimer 75) FO 2 has the finite model property. Mortimer s proof implies: every satisfiable ψ FO 2 has a model with at most 2 2O( ψ ) elements. = Sat(FO 2 ) 2NEXPTIME Theorem (Lewis 80, Fürer 84) Sat(FO 2 ) is NEXPTIMEhard. holds even for sentences of form x y α x y β (α and β quantifierfree), with only monadic predicates Theorem (Grädel, Kolaitis, Vardi 97) Every satisfiable ψ FO 2 has a model with at most 2 O( ψ ) elements. Corollary Sat(FO 2 ) is NEXPTIMEcomplete
57 Modal logic and twovariable logic ML is a fragment of FO 2. The standard translation, taking ψ ML to ψ (x) FO does not need more than two variables: P i P i x a ψ y(e a xy ψ (y)) [a]ψ y(e a xy ψ (y))
58 Modal logic and twovariable logic ML is a fragment of FO 2. The standard translation, taking ψ ML to ψ (x) FO does not need more than two variables: P i P i x a ψ y(e a xy ψ (y)) [a]ψ y(e a xy ψ (y)) Traditionally the embedding into twovariable logic has been used as an explanation for the good algorithmic properties of modal logics. Is this explanation convincing?
59 Modal logic and twovariable logic ML is a fragment of FO 2. The standard translation, taking ψ ML to ψ (x) FO does not need more than two variables: P i P i x a ψ y(e a xy ψ (y)) [a]ψ y(e a xy ψ (y)) Traditionally the embedding into twovariable logic has been used as an explanation for the good algorithmic properties of modal logics. Is this explanation convincing? Answer: No!!!
60 Stronger twovariable logics Challenge: Extend FO 2 in a similar way, as CTL and µcalculus extend propositional modal logic. Are the resulting logics still decidable? FO 2?? ML CTL L µ
61 Stronger twovariable logics TC 2 = FO 2 + transitive closures (TC φ)(x, y) CL 2 = least common natural extension of CTL and FO 2 FO 2 + β(x, y) φ + [β(x, y)] φ LFP 2 = FO 2 monadic least and greatest fixed points [lfp Tx. φ(t, x)](x) Theorem. (Grädel, Otto, Rosen) Sat(TC 2 ), Sat(CL 2 ), and Sat(LFP 2 ) are highly undecidable (Σ 1 1hard).
62 Twovariable logics FO 2 CL 2 LFP 2 TC 2. ML CTL L µ Twovariable logics do not have the robust decidability properties of modal logics. Is there another explanation?
63 The guarded fragment of firstorder logic (GF) Fragment of firstorder logic with only guarded quantification y(α(x, y) φ(x, y)) y(α(x, y) φ(x, y)) with guards α : atomic formulae containing all free variables of φ
64 The guarded fragment of firstorder logic (GF) Fragment of firstorder logic with only guarded quantification y(α(x, y) φ(x, y)) y(α(x, y) φ(x, y)) with guards α : atomic formulae containing all free variables of φ Generalizes modal quantification: ML GF FO a φ y(e a xy φ(y)) [a]φ y(e a xy φ(y))
65 Modeltheoretic and algorithmic properties of GF Satisfiability for GF is decidable (Andréka, van Benthem, Németi) GF has finite model property (Andréka, Hodkinson, Németi; Grädel) GF has (generalized) tree model property: every satisfiable formula has model of small tree width Sat(GF) is 2EXPTIMEcomplete and EXPTIMEcomplete for formulae of bounded width (Grädel) (Grädel) Guarded logics have small model checking games: G(A, ψ) = O( ψ A ) = efficient gamebased model checking algorithms GF is invariant under guarded bisimulation
66 A thesis and a challenge Thesis: (Andréka, van Benthem, Németi) The guarded nature of quantification in modal logics is the real reason for their good algorithmic and modeltheoretic properties.
67 A thesis and a challenge Thesis: (Andréka, van Benthem, Németi) The guarded nature of quantification in modal logics is the real reason for their good algorithmic and modeltheoretic properties. Results on GF provide some evidence for this thesis. Real test: algorithmic properties of stronger guarded logics than GF. Challenge: Extend GF in a similar way, as µcalculus extends ML. Is the resulting guarded fixedpoint logic still decidable? L µ? LFP ML GF FO
68 A thesis and a challenge Thesis: (Andréka, van Benthem, Németi) The guarded nature of quantification in modal logics is the real reason for their good algorithmic and modeltheoretic properties. Results on GF provide some evidence for this thesis. Real test: algorithmic properties of stronger guarded logics than GF. Challenge: Extend GF in a similar way, as µcalculus extends ML. Is the resulting guarded fixedpoint logic still decidable? L µ µgf LFP ML GF FO
69 Guarded fixedpoint logic µgf = GF + least and greatest fixed points
70 Guarded fixedpoint logic µgf = GF + least and greatest fixed points For every formula ψ(t, x 1... x k ), where T is a kary relation variable, occuring only positive in ψ, build formulae [lfp Tx. ψ](x) and [gfp Tx. ψ](x)
71 Guarded fixedpoint logic µgf = GF + least and greatest fixed points For every formula ψ(t, x 1... x k ), where T is a kary relation variable, occuring only positive in ψ, build formulae [lfp Tx. ψ](x) and [gfp Tx. ψ](x) On every structure A, ψ(t, x) defines monotone operator ψ A : P(A k ) P(A k ) T {a : (A, T) = ψ(t, a)} ψ A has a least fixed point lfp(ψ A ) and a greatest fixed point gfp(ψ A ) A = [lfp Tx. ψ(t, x)](a) : a lfp(ψ A ) A = [gfp Tx. ψ(t, x)](a) : a gfp(ψ A )
72 Guarded fixed point logic Example. ψ := xyfxy ( xy. Fxy) zfyz ( xy. Fxy) [lfp Wy. ( x. Fxy)Wx] } {{ } (y) {y : there is no infinite chain y y 1 y 2 } ψ is satisfiable: (ω, <) = ψ ψ has no finite models Proposition. µgf does not have the finite model property.
73 Decidability of guarded fixed point logic Theorem. (Grädel, Walukiewicz) Sat(µGF) 2EXPTIMEcomplete, and EXPTIMEcomplete for formulae of bounded width. same complexity bounds as for GF: no penalty for fixed points! Proof. Relies on generalized tree model property: Every satisfiable ψ µgf has a model of small tree width Reduction of Sat(µGF) to emptiness problem for certain automata (alternating twoway tree automata with parity acceptance condition).
74 Final remarks The world of guarded logics is much richer than shown in this talk:  more liberal guardedness conditions: loosely guarded, clique guarded, action guarded, packed logics  guarded fragments of other logics, e.g. GSO, Datalog LITE,...
75 Final remarks The world of guarded logics is much richer than shown in this talk:  more liberal guardedness conditions: loosely guarded, clique guarded, action guarded, packed logics  guarded fragments of other logics, e.g. GSO, Datalog LITE,... While modal logics talk only about graphs, guarded logics are applicable to arbitrary relational structures. Many of the mathematical tools used for analysing modal logics have their counterpart in the world of guarded logics: bisimulation, automata,...
76 Final remarks The world of guarded logics is much richer than shown in this talk:  more liberal guardedness conditions: loosely guarded, clique guarded, action guarded, packed logics  guarded fragments of other logics, e.g. GSO, Datalog LITE,... While modal logics talk only about graphs, guarded logics are applicable to arbitrary relational structures. Many of the mathematical tools used for analysing modal logics have their counterpart in the world of guarded logics: bisimulation, automata,... Conclusion. Guarded logics provide a general and versatile family of logical systems that generalise, and to a large extent explain the good algorithmic and modeltheoretic properties of modal logics.
FixedPoint Logics and Computation
1 FixedPoint Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of
More informationGuarded Negation. Balder ten Cate (UC Santa Cruz) Stanford Logic Seminar 10/2/12
Guarded Negation Balder ten Cate (UC Santa Cruz) Stanford Logic Seminar 10/2/12 Based on joint work with Luc Segoufin, Vince Barany, and Martin Otto (STACS 11, ICALP 11, VLDB 12) Decidable Fragments Decidable
More informationEncoding Mathematics in FirstOrder Logic
Applied Logic Lecture 19 CS 486 Spring 2005 Thursday, April 14, 2005 Encoding Mathematics in FirstOrder Logic Over the past few lectures, we have seen the syntax and the semantics of firstorder logic,
More informationConstraint Satisfaction Problems and Descriptive Complexity
1 Constraint Satisfaction Problems and Descriptive Complexity Anuj Dawar University of Cambridge AIM workshop on Universal Algebra, Logic and CSP 1 April 2008 2 Descriptive Complexity Descriptive Complexity
More informationTheory of Computing Systems 2004 Springer Science+Business Media, Inc.
Theory Comput. Systems OF1 OF20 (2004) DOI: 10.1007/s0022400411475 Theory of Computing Systems 2004 Springer Science+Business Media, Inc. FixedPoint Logics and Solitaire Games Dietmar Berwanger and
More informationSatisfiability Checking
Satisfiability Checking FirstOrder Logic Prof. Dr. Erika Ábrahám RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems WS 14/15 Satisfiability Checking Prof. Dr. Erika Ábrahám (RWTH Aachen
More informationAlgorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
More informationFirstOrder Logics and Truth Degrees
FirstOrder Logics and Truth Degrees George Metcalfe Mathematics Institute University of Bern LATD 2014, Vienna Summer of Logic, 1519 July 2014 George Metcalfe (University of Bern) FirstOrder Logics
More informationOutline. Database Theory. Perfect Query Optimization. Turing Machines. Question. Definition VU , SS Trakhtenbrot s Theorem
Database Theory Database Theory Outline Database Theory VU 181.140, SS 2016 4. Trakhtenbrot s Theorem Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 4.
More informationThe Consistency of the Continuum Hypothesis Annals of Mathematical Studies, No. 3 Princeton University Press Princeton, N.J., 1940.
TWO COMPUTATIONAL IDEAS Computations with Sets Union, intersection: computable Powerset: not computable Basic operations Absoluteness of Formulas A formula in the language of set theory is absolute if
More informationXPath, transitive closure logic, and nested tree walking automata
XPath, transitive closure logic, and nested tree walking automata Balder ten Cate U. of Amsterdam and UC Santa Cruz (visiting IBM Almaden) Luc Segoufin INRIA, ENS Cachan Logic and Algorithms, Edinburgh
More informationPath Querying on Graph Databases
Path Querying on Graph Databases Jelle Hellings Hasselt University and transnational University of Limburg 1/38 Overview Graph Databases Motivation Walk Logic Relations with FO and MSO Relations with CTL
More informationON FUNCTIONAL SYMBOLFREE LOGIC PROGRAMS
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2012 1 p. 43 48 ON FUNCTIONAL SYMBOLFREE LOGIC PROGRAMS I nf or m at i cs L. A. HAYKAZYAN * Chair of Programming and Information
More informationAn Introduction to FirstOrder Logic
Outline An Introduction to K. 1 1 Lane Department of Computer Science and Electrical Engineering West Virginia University Syntax, Semantics and Outline Outline 1 The Syntax of 2 of Expressions Model Different
More informationCHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
More informationMATHEMATICS: CONCEPTS, AND FOUNDATIONS Vol. III  Logic and Computer Science  Phokion G. Kolaitis
LOGIC AND COMPUTER SCIENCE Phokion G. Kolaitis Computer Science Department, University of California, Santa Cruz, CA 95064, USA Keywords: algorithm, Armstrong s axioms, complete problem, complexity class,
More informationSummary Last Lecture. Automated Reasoning. Outline of the Lecture. Definition sequent calculus. Theorem (Normalisation and Strong Normalisation)
Summary Summary Last Lecture sequent calculus Automated Reasoning Georg Moser Institute of Computer Science @ UIBK Winter 013 (Normalisation and Strong Normalisation) let Π be a proof in minimal logic
More informationUndecidable FirstOrder Theories of Affine Geometries
Undecidable FirstOrder Theories of Affine Geometries Antti Kuusisto University of Tampere Joint work with Jeremy Meyers (Stanford University) and Jonni Virtema (University of Tampere) Tarski s Geometry
More informationominimality and Uniformity in n 1 Graphs
ominimality and Uniformity in n 1 Graphs Reid Dale July 10, 2013 Contents 1 Introduction 2 2 Languages and Structures 2 3 Definability and Tame Geometry 4 4 Applications to n 1 Graphs 6 5 Further Directions
More informationSoftware Modeling and Verification
Software Modeling and Verification Alessandro Aldini DiSBeF  Sezione STI University of Urbino Carlo Bo Italy 34 February 2015 Algorithmic verification Correctness problem Is the software/hardware system
More informationChapter 1. Logic and Proof
Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known
More informationDescription Logics for Conceptual Data Modeling in UML
Description Logics for Conceptual Data Modeling in UML Diego Calvanese, Giuseppe De Giacomo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza ESSLLI 2003 Vienna, August 18 22, 2003
More informationFormal Verification Methods 3: Model Checking
Formal Verification Methods 3: Model Checking John Harrison Intel Corporation Marktoberdorf 2003 Fri 1st August 2003 (11:25 12:10) This presentation was not given in Marktoberdorf since it mostly duplicates
More informationCODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK DEGREES
CODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK DEGREES PAUL SHAFER Abstract. We prove that the firstorder theory of the Medvedev degrees, the firstorder theory of the Muchnik degrees, and the thirdorder
More informationMATHEMATICAL LOGIC FOR APPLICATIONS
MIKLÓS FERENCZI MIKLÓS SZŐTS MATHEMATICAL LOGIC FOR APPLICATIONS 2011 Abstract Contents Sponsorship Editorship Referee Technical editor Copyright ISBN This book is recommended for those readers who have
More informationAlgebraic Recognizability of Languages
of Languages LaBRI, Université Bordeaux1 and CNRS MFCS Conference, Prague, August 2004 The general problem Problem: to specify and analyse infinite sets by finite means The general problem Problem: to
More informationA Propositional Dynamic Logic for CCS Programs
A Propositional Dynamic Logic for CCS Programs Mario R. F. Benevides and L. Menasché Schechter {mario,luis}@cos.ufrj.br Abstract This work presents a Propositional Dynamic Logic in which the programs are
More informationElements of Finite Model Theory
Leonid Libkin Elements of Finite Model Theory With 24 Figures February 7, 2012 Springer Berlin Heidelberg NewYork Hong Kong London Milan Paris Tokyo To Helen, Daniel, and Victoria Preface Finite model
More informationModel Checking II Temporal Logic Model Checking
1/32 Model Checking II Temporal Logic Model Checking Edmund M Clarke, Jr School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 2/32 Temporal Logic Model Checking Specification Language:
More informationFormal Verification and Lineartime Model Checking
Formal Verification and Lineartime Model Checking Paul Jackson University of Edinburgh Automated Reasoning 21st and 24th October 2013 Why Automated Reasoning? Intellectually stimulating and challenging
More informationContinuous firstorder model theory for metric structures Lecture 2 (of 3)
Continuous firstorder model theory for metric structures Lecture 2 (of 3) C. Ward Henson University of Illinois Visiting Scholar at UC Berkeley October 21, 2013 Hausdorff Institute for Mathematics, Bonn
More informationApplying Gauss elimination from boolean equation systems to simple integer equation systems
Applying Gauss elimination from boolean equation systems to simple integer equation systems Kevin van der Pol Eindhoven University of Technology January 19, 2012 Abstract We define a direct transformation
More informationEntanglement and the Complexity of Directed Graphs
Entanglement and the Complexity of Directed Graphs Dietmar Berwanger a, Erich Grädel b, Lukasz Kaiser c, Roman Rabinovich b a LSV, CNRS & Ecole Normale Supérieure de Cachan, France b Mathematische Grundlagen
More information(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.
(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of firstorder logic will use the following symbols: variables connectives (,,,,
More informationTesting LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN02015 HUT, Finland
More informationTemporal Logics. Computation Tree Logic
Temporal Logics CTL: definition, relationship between operators, adequate sets, specifying properties, safety/liveness/fairness Modeling: sequential, concurrent systems; maximum parallelism/interleaving
More informationMathematical Logic. Giuseppe Peano ( ) Core Logic 2005/061ab p. 2/4
Mathematical Logic. From the XIXth century to the 1960s, logic was essentially mathematical. Development of firstorder logic (18791928): Frege, Hilbert, Bernays, Ackermann. Development of the fundamental
More informationModel Theory of Fields with Operators
Piotr Instytut Matematyczny Uniwersytetu Wroc lawskiego PhDs in Logic VIII, Darmstadt, May 911, 2016 Beginnings May 9: Model theory of fields Initial setting A firstorder language L; First order Lformulas,
More informationLogic and Rational Languages of Words Indexed by Linear Orderings
Logic and Rational Languages of Words Indexed by Linear Orderings Nicolas Bedon 1, Alexis Bès 2, Olivier Carton 3, and Chloé Rispal 1 1 Université ParisEst and CNRS Laboratoire d informatique de l Institut
More informationFinite variable logics
Finite variable logics Ian Hodkinson Department of Computing Imperial College 180 Queen s Gate, London SW7 2BZ, England. Email: imh@doc.ic.ac.uk Abstract In this survey article we discuss some aspects
More informationComputational Logic and Cognitive Science: An Overview
Computational Logic and Cognitive Science: An Overview Session 1: Logical Foundations Technical University of Dresden 25th of August, 2008 University of Osnabrück Who we are Helmar Gust Interests: Analogical
More informationDEFINABLE TYPES IN PRESBURGER ARITHMETIC
DEFINABLE TYPES IN PRESBURGER ARITHMETIC GABRIEL CONANT Abstract. We consider the first order theory of (Z, +,
More informationSoftware Verification and Testing. Lecture Notes: Temporal Logics
Software Verification and Testing Lecture Notes: Temporal Logics Motivation traditional programs (whether terminating or nonterminating) can be modelled as relations are analysed wrt their input/output
More informationWhen the Web Meets Programming Languages and Databases: Foundations of XML
1 / 22 When the Web Meets Programming Languages and Databases: Foundations of XML Pierre Genevès CNRS LIG WAM May 16 th, 2008 For more than half of the fifty years computer programmers have been writing
More informationA first step towards modeling semistructured data in hybrid multimodal logic
A first step towards modeling semistructured data in hybrid multimodal logic Nicole Bidoit * Serenella Cerrito ** Virginie Thion * * LRI UMR CNRS 8623, Université Paris 11, Centre d Orsay. ** LaMI UMR
More informationFoundations of mathematics
Foundations of mathematics 1. First foundations of mathematics 1.1. Introduction to the foundations of mathematics Mathematics, theories and foundations Sylvain Poirier http://settheory.net/ Mathematics
More informationScalable Automated Symbolic Analysis of Administrative RoleBased Access Control Policies by SMT solving
Scalable Automated Symbolic Analysis of Administrative RoleBased Access Control Policies by SMT solving Alessandro Armando 1,2 and Silvio Ranise 2, 1 DIST, Università degli Studi di Genova, Italia 2 Security
More informationUniversität Stuttgart Fakultät Informatik, Elektrotechnik und Informationstechnik
Universität Stuttgart Fakultät Informatik, Elektrotechnik und Informationstechnik Infinite State ModelChecking of Propositional Dynamic Logics Stefan Göller and Markus Lohrey Report Nr. 2006/04 Institut
More informationSOME SUPERINTUITIONISTIC LOGICS AS THE LOGICAL FRAGMENTS OF EQUATIONAL THEORIES 1
Tatsuya Shimura NobuYuki Suzuki SOME SUPERINTUITIONISTIC LOGICS AS THE LOGICAL FRAGMENTS OF EQUATIONAL THEORIES 1 Kripke frame semantics is used as a concise and convenient apparatus for the study of
More informationlogic language, static/dynamic models SAT solvers Verified Software Systems 1 How can we model check of a program or system?
5. LTL, CTL Last part: Alloy logic language, static/dynamic models SAT solvers Today: Temporal Logic (LTL, CTL) Verified Software Systems 1 Overview How can we model check of a program or system? Modeling
More informationContinuous fragment of the µcalculus
Continuous fragment of the µcalculus Gaëlle Fontaine Institute for Logic, Language and Computation, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands gfontain@science.uva.nl http://staff.science.uva.nl/~gfontain
More informationComposing Schema Mappings: SecondOrder Dependencies to the Rescue
Composing Schema Mappings: SecondOrder Dependencies to the Rescue Ronald Fagin IBM Almaden Research Center fagin@almaden.ibm.com Phokion G. Kolaitis UC Santa Cruz kolaitis@cs.ucsc.edu WangChiew Tan UC
More informationTheory of Automated Reasoning An Introduction. AnttiJuhani Kaijanaho
Theory of Automated Reasoning An Introduction AnttiJuhani Kaijanaho Intended as compulsory reading for the Spring 2004 course on Automated Reasononing at Department of Mathematical Information Technology,
More informationSection 3. Compactness Theorem
Section 3 Compactness Theorem 1 / 24 Compactness Theorem The most important result in model theory is: Compactness Theorem Let T be a theory in language L. If every finite subset of T has a model, then
More informationGoal of the Talk Theorem The class of languages recognisable by T coalgebra automata is closed under taking complements.
Complementation of Coalgebra Automata Christian Kissig (University of Leicester) joint work with Yde Venema (Universiteit van Amsterdam) 07 Sept 2009 / Universitá degli Studi di Udine / CALCO 2009 Goal
More informationhttp://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86
Atlantic Electronic http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86 AUTOMATED RECOGNITION OF STUTTER INVARIANCE OF LTL FORMULAS Jeffrey Dallien 1 and Wendy
More informationThe Semantic Complexity of some Fragments of English
Chapter 1 The Semantic Complexity of some Fragments of English IAN PRATTHARTMANN ABSTRACT. By a fragment of a natural language we mean a subset of that language equipped with a semantics which translates
More informationFun With Nonstandard Models
Fun With Nonstandard Models A selfcontained sequel to: 2500 Years of very Small Numbers David A. Ross Department of Mathematics University of Hawai i Outline of Talk: Slides 1..3 Random Blather Slides
More informationYuri Gurevich y. Quisani: Decidable and undecidable fragments of rstorder logic. People refer
On the Classical Decision Problem Yuri Gurevich y Author: Hello, my friend. What is on your mind today? Quisani: Decidable and undecidable fragments of rstorder logic. People refer to this eld as Entscheidungsproblem
More informationComputing basics. Ruurd Kuiper
Computing basics Ruurd Kuiper October 29, 2009 Overview (cf Schaum Chapter 1) Basic computing science is about using computers to do things for us. These things amount to processing data. The way a computer
More informationValidity Checking. Propositional and FirstOrder Logic (part I: semantic methods)
Validity Checking Propositional and FirstOrder Logic (part I: semantic methods) Slides based on the book: Rigorous Software Development: an introduction to program verification, by José Bacelar Almeida,
More informationIntroduction to Software Verification
Introduction to Software Verification Orna Grumberg Lectures Material winter 201314 Lecture 4 5.11.13 Model Checking Automated formal verification: A different approach to formal verification Model Checking
More informationSchedule. Logic (master program) Literature & Online Material. gic. Time and Place. Literature. Exercises & Exam. Online Material
OLC mputational gic Schedule Time and Place Thursday, 8:15 9:45, HS E Logic (master program) Georg Moser Institute of Computer Science @ UIBK week 1 October 2 week 8 November 20 week 2 October 9 week 9
More informationDevelopment of dynamically evolving and selfadaptive software. 1. Background
Development of dynamically evolving and selfadaptive software 1. Background LASER 2013 Isola d Elba, September 2013 Carlo Ghezzi Politecnico di Milano DeepSE Group @ DEIB 1 Requirements Functional requirements
More informationSJÄLVSTÄNDIGA ARBETEN I MATEMATIK
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Automated Theorem Proving av Tom Everitt 2010  No 8 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM
More informationCS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 RealTime Systems. CSCI 522 High Performance Computing
CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate
More informationDegrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets.
Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets. Logic is the study of reasoning. A language of propositions is fundamental to this study as well as true
More informationComposing Schema Mappings: An Overview
Composing Schema Mappings: An Overview Phokion G. Kolaitis UC Santa Scruz & IBM Almaden Joint work with Ronald Fagin, Lucian Popa, and WangChiew Tan The Data Interoperability Challenge Data may reside
More informationMonitoring Metric Firstorder Temporal Properties
Monitoring Metric Firstorder Temporal Properties DAVID BASIN, FELIX KLAEDTKE, SAMUEL MÜLLER, and EUGEN ZĂLINESCU, ETH Zurich Runtime monitoring is a general approach to verifying system properties at
More informationStatic analysis of parity games: alternating reachability under parity
8 January 2016, DTU Denmark Static analysis of parity games: alternating reachability under parity Michael Huth, Imperial College London Nir Piterman, University of Leicester Jim HuanPu Kuo, Imperial
More informationSection 7.1 FirstOrder Predicate Calculus predicate Existential Quantifier Universal Quantifier.
Section 7.1 FirstOrder Predicate Calculus Predicate calculus studies the internal structure of sentences where subjects are applied to predicates existentially or universally. A predicate describes a
More informationFirstOrder Predicate Logic (2)
FirstOrder Predicate Logic (2) Predicate Logic (2) Understanding firstorder predicate logic formulas. Satisfiability and undecidability of satisfiability. Tautology, logical consequence, and logical
More informationA CTLBased Logic for Program Abstractions
A CTLBased Logic for Program Abstractions Martin Lange 1 and Markus Latte 2 1 Dept. of Computer Science, University of Kassel, Germany 2 Dept. of Computer Science, LudwigMaximiliansUniversity Munich,
More informationModel Checking: An Introduction
Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm2:30pm W 5:30pm6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI
More informationWhich Semantics for Neighbourhood Semantics?
Which Semantics for Neighbourhood Semantics? Carlos Areces INRIA Nancy, Grand Est, France Diego Figueira INRIA, LSV, ENS Cachan, France Abstract In this article we discuss two alternative proposals for
More informationValid formulas, games and network protocols
Valid formulas, games and network protocols JeanLouis Krivine & Yves Legrandgérard Paris VII University, CNRS November 14, 2007 Introduction We describe a remarkable relation between a fundamental notion
More informationGENERAL REVEALED PREFERENCE THEORY. 1. Introduction
GENERAL REVEALED PREFERENCE THEORY CHRISTOPHER P. CHAMBERS, FEDERICO ECHENIQUE, AND ERAN SHMAYA Abstract. We generalize the standard revealedpreference exercise in economics, and prove a sufficient condition
More informationSyntax and Semantics for Business Rules
Syntax and Semantics for Business Rules Xiaofan Liu 1 2, Natasha Alechina 1, and Brian Logan 1 1 School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK 2 School of Computer and Communication,
More informationEntanglement A Measure for the Complexity of Directed Graphs With Applications to Logic and Games
Entanglement A Measure for the Complexity of Directed Graphs With Applications to Logic and Games Dietmar Berwanger and Erich Grädel Mathematische Grundlagen der Informatik, RWTH Aachen Abstract. We propose
More informationDECISION PROBLEMS OVER INFINITE GRAPHS HIGHERORDER PUSHDOWN SYSTEMS AND SYNCHRONIZED PRODUCTS
DECISION PROBLEMS OVER INFINITE GRAPHS HIGHERORDER PUSHDOWN SYSTEMS AND SYNCHRONIZED PRODUCTS Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RheinischWestfälischen Technischen
More informationThis asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.
3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but
More informationBounded Treewidth in Knowledge Representation and Reasoning 1
Bounded Treewidth in Knowledge Representation and Reasoning 1 Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien Luminy, October 2010 1 Joint work with G.
More informationIntroducing Formal Methods. Software Engineering and Formal Methods
Introducing Formal Methods Formal Methods for Software Specification and Analysis: An Overview 1 Software Engineering and Formal Methods Every Software engineering methodology is based on a recommended
More informationAutomated Theorem Proving  summary of lecture 1
Automated Theorem Proving  summary of lecture 1 1 Introduction Automated Theorem Proving (ATP) deals with the development of computer programs that show that some statement is a logical consequence of
More informationOrder 2 TreeAutomatic Graphs
Order 2 TreeAutomatic Graphs (work in progress) Antoine Meyer (UPEM) Joint work with Arnaud Carayol (CNRS, UPEM) Automatic Presentations of Graphs and Numbers IMSc, 11/10/2016 Antoine Meyer Order 2 TreeAutomatic
More informationFoundational Proof Certificates
An application of proof theory to computer science INRIASaclay & LIX, École Polytechnique CUSO Winter School, Proof and Computation 30 January 2013 Can we standardize, communicate, and trust formal proofs?
More informationStatic Program Transformations for Efficient Software Model Checking
Static Program Transformations for Efficient Software Model Checking Shobha Vasudevan Jacob Abraham The University of Texas at Austin Dependable Systems Large and complex systems Software faults are major
More informationSection 2.6 Cantor s Theorem and the ZFC Axioms
1 Section 2.6 and the ZFC Axioms Purpose of Section: To state and prove Cantor theorem, which guarantees the existence of infinities larger than the cardinality of the continuum. We also state and discuss
More informationMore Infinite Games JOHN H. CONWAY
More Games of No Chance MSRI Publications Volume 42, 2002 More Infinite Games JOHN H. CONWAY Abstract. Infinity in games introduces some weird and wonderful concepts. I examine a few here. My PhD thesis
More informationHigherOrder Logic. Specification and Verification with HigherOrder Logic
HigherOrder Logic Specification and Verification with HigherOrder Logic Arnd PoetzschHeffter Software Technology Group Fachbereich Informatik Technische Universität Kaiserslautern Sommersemester 2010
More informationDomain Theory: An Introduction
Domain Theory: An Introduction Robert Cartwright Rebecca Parsons Rice University This monograph is an unauthorized revision of Lectures On A Mathematical Theory of Computation by Dana Scott [3]. Scott
More informationAikaterini Marazopoulou
Imperial College London Department of Computing Tableau Compiled Labelled Deductive Systems with an application to Description Logics by Aikaterini Marazopoulou Submitted in partial fulfilment of the requirements
More informationSets and Subsets. Countable and Uncountable
Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There
More informationIntroduction to Constructive Logic and Mathematics
Introduction to Constructive Logic and Mathematics Thomas Streicher WS 00/01 Prerequisites The aim of this course is to give an introduction to constructive logic and mathematics for people who have some
More informationReading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
More informationSpecification and Analysis of Contracts Lecture 1 Introduction
Specification and Analysis of Contracts Lecture 1 Introduction Gerardo Schneider gerardo@ifi.uio.no http://folk.uio.no/gerardo/ Department of Informatics, University of Oslo SEFM School, Oct. 27  Nov.
More informationNondeterministic Semantics and the Undecidability of Boolean BI
1 Nondeterministic Semantics and the Undecidability of Boolean BI DOMINIQUE LARCHEYWENDLING, LORIA CNRS, Nancy, France DIDIER GALMICHE, LORIA Université Henri Poincaré, Nancy, France We solve the open
More informationTruth as Modality. Amsterdam Workshop on Truth 13 March 2013 truth be told again. Theodora Achourioti. ILLC University of Amsterdam
Truth as Modality Amsterdam Workshop on Truth 13 March 2013 truth be told again Theodora Achourioti ILLC University of Amsterdam Philosophical preliminaries i The philosophical idea: There is more to truth
More informationEQUATIONAL LOGIC AND ABSTRACT ALGEBRA * ABSTRACT
EQUATIONAL LOGIC AND ABSTRACT ALGEBRA * Taje I. Ramsamujh Florida International University Mathematics Department ABSTRACT Equational logic is a formalization of the deductive methods encountered in studying
More informationCertain Answers as Objects and Knowledge
Certain Answers as Objects and Knowledge Leonid Libkin School of Informatics, University of Edinburgh Abstract The standard way of answering queries over incomplete databases is to compute certain answers,
More information