Vision-based Walking Parameter Estimation for Biped Locomotion Imitation

Size: px
Start display at page:

Download "Vision-based Walking Parameter Estimation for Biped Locomotion Imitation"

Transcription

1 Vision-based Walking Parameter Estimation for Biped Locomotion Imitation Juan Pedro Bandera Rubio 1, Changjiu Zhou 2 and Francisco Sandoval Hernández 1 1 Dpto. Tecnología Electrónica, E.T.S.I. Telecomunicación Universidad de Málaga, Málaga, Spain, 2 School of Electrical and Electronic Engineering, Singapore Polytechnic, 500 Dover Road, Singapore Abstract. This paper proposes a new vision-based system that can extract walking parameters from human demonstration. The system uses only a non-calibrated USB webcam connected to a standard PC, and the human is only required to put three color patches on one of his legs and walk roughly in a perpendicular plane with respect to camera orientation. The walking parameters are then extracted in real time, using a local tracking system to follow the markers and a fast decision layer to detect the main features of the leg movement. As only one leg can be tracked properly using only one camera, we assume symmetric movement for left and right legs. Once extracted, the parameters have been successfully tested by generating walking sequences for both simulated and real Robo-Erectus humanoid robots. 1 Introduction Biped Locomotion has become a key topic in robotic research over the last decade. Both hardware improvements and new software architectures have allowed the implementation of impressive humanoid robots such as Honda ASIMO, Sony QRIO or Fujitsu HOAP-2. Many universities have begun research in humanoid robotics, and some very interesting prototypes have appeared over the last years. Most of them use one of the two main approaches to biped locomotion: static or dynamic. Both approaches will be reviewed in Section 2. The main objective, in any case, is to produce a gait as natural and stable as possible. One of the most popular and efficient methods to generate these natural gaits is imitation. As humanoid robots are inspired by the properties of a biological system -humans- it is not far-fetched to consider biologically inspired computation methods for them. The idea is that the movements of a humanoid robot will be more natural when produced through imitation of a human teacher. This process of imitation can be simplified by extracting suitable characteristics of the human motion [1]. If we focus in the walking process, a common assumption is to consider it as a periodic movement. The postures at the beginning and the end of each step have to be identical to have a continuous and repeatable gait [3]. This requires the

2 selection of specific initial conditions, constraint functions and their associated gait parameters. However, this gait will not usually be human-like. A common solution to this issue is the use of Human Motion Capture Data (HMCD) to drive the robot [5]. Nevertheless, some researchers show that the HMCD cannot be applied directly to humanoid robots due to kinematic and dynamic inconsistencies between the human subject and the humanoid. Kinematic corrections are usually required while calculating the joint angle trajectory [2]. Adaptation of HMCD for a humanoid robot is commonly made with periodic joint motion corrections at selected joints to approximately match the desired Zero Moment Point (ZMP) trajectory. Constrained optimization methods can be used to maximize the dynamic stability against sliding during walking. In any case, it is very complex to adapt the trajectories from human to humanoid. The main problems arise from differences between human and humanoid bodies, stability, and noise during the perception stage. In order to get as good reference trajectories as possible, commercial HMCD systems can be used. However, most of them are very expensive and intrusive. They usually require special suits or markers, fine calibration and specific environments. This paper introduces a new approach to the adaptation problem. The proposed method relies on parameter extraction to facilitate the gait conversion from human to humanoid. This means that perceived trajectories will not be used directly to create synthetic gait. Instead of this, the system analyzes the perceived motion and extracts the main walking parameters from it. These parameters are then used to create motion for the humanoid. If the set of extracted parameters is sufficient to characterize the gait, the generated movement will imitate correctly the perceived one [3][6]. The proposed method does not require a complex perception system to extract the base parameters. The HMCD used for our system was collected in the ARICC Lab at Singapore Polytechnic, using a non-calibrated USB webcam. The human performer only need to wear three color patches roughly placed on hip, knee and ankle. 2 Biped Locomotion and Key Walking Parameters Biped motion is generally divided into a Single Support Phase (SSP), when only one foot is on the ground, and a Double Support Phase (DSP), when both feet are on the ground. In ordinary human gait, the DSP lasts for approximately 20% of the step cycle. There are two types of biped gait: static and dynamic. Static walkers rely on the static equilibrium condition: maintain the Center of Gravity (CG) on the convex hull of the contact area with the ground. This approach denies inertial forces and therefore can be applied only if robot movements are very slow. Dynamic walkers achieve fast and natural walking motion following the principle of dynamic equilibrium: they use ZMP instead of CG, so that inertia components and gravity are considered. This is the approach adopted in this paper. The process of gait generation can be simplified if we just generate a synthetic gait from key walking parameters. These parameters can be seen in Fig. 1.a and

3 are deeply explained in [3]. There are four time-related parameters, related to step period, SSP and DSP intervals, and time of maximum ankle height. The detection of these key moments in the walking process will be one of the main objectives of the perception stage. The rest of parameters are related to lengths and distances. Fig. 1. a) Walking parameters and coordinates, b) Joint positions and angles 3 System Overview Our system uses a tracking stage to estimate joint positions (Fig. 1.b) in realtime. The outputs of this stage are the centroids of the detected markers. This information is used as input for a decision algorithm that determines the walking phase, and detects transitions between phases. The moments in which these transitions occur, and the joint positions at these moments, are used to extract the walking parameters. Finally, these parameters are tested by generating simulated and real robot walking sequences and comparing them with the perceived ones. 4 Perception System Our perception system relies on a fast and efficient color-based tracking algorithm to extract the movement of a human leg. We instrument the human with three color patches located in the hip, knee and ankle of one of his legs. The tracked human is also supposed to walk more or less in a perpendicular straight line with respect to camera orientation. The perception system is divided into two stages. The first stage tracks the color markers, and reduces drastically the amount of information the system is

4 using, from a video sequence to just the (x, z) positions of the three markers in each frame. The second stage uses these positions to determine the phase of the movement. 4.1 Tracking Algorithm The algorithm we are using to track the color markers was proposed in [4], and it relies on a hierarchical representation of the regions of interest to track these regions in real time. The basis of the algorithm is to use a weighted template to follow each object. This template changes not only its position, but also its shape so that it can successfully handle partial occlusions, and perspective and physical deformations. The method represents both target and template using a Bounded Irregular Pyramid (BIP). This structure is a hierarchical approach to tracking that reduces very much the computational cost and allows the system to track the three leg markers in real time. The only difference between the original tracking algorithm and our implementation is that we have used Hue-Saturation-Intensity (HSI) color space, more suitable to track saturated colors. See [4] for further details. 4.2 Decision Algorithm The positions of hip, knee and ankle are used to extract walking parameters from the HMCD. As these parameters are related to walking phases, the proposed system must be able to detect these phases and, specially, the transitions between them. Each step can be roughly divided into three stages: the first is the Double Support Phase (DSP). The second and third phases are contained in the Single Support Phase (SSP). The decision stage will determine when the leg is changing from one phase, or state, to another (Fig. 2). More concretely, the decision will be related to ankle movement. A previous average filter is applied before decision to reduce noise. Alternative approaches were tried such as computing joint angle trajectory minima, and other measurements on relative joint distances. However these have appeared to be more sensitive to noise, as the inertia of markers and noise affects more the distance and angle information. Fig. 2. Decision algorithm states

5 5 Extraction of Walking Parameters Our approach to walking process considers it as a symmetric, periodic and smooth motion. The hip, knee and ankle trajectories, both in Cartesian and Joint spaces, can be considered as smooth curves characterized by a set of key points [3]. These key points should be identified in the transition moments where the state of the leg is changing. So changes detected in the decision stage become the key moments in which walking parameters can be extracted. These parameters, already introduced in Sect. 2, can be divided into two main groups: time parameters and position parameters. 5.1 Time Parameters Time parameters are directly obtained from the decision stage. We consider that each step begins with a DSP followed by a SSP. Being T (kab) the time instant, in step k, in which the leg moves from state a to state b, time parameters are obtained as detailed below: T s.thessp period is obtained using this equation: T s = T (k12) T (k20) (1) T d. The system is tracking only one leg. This means that there is no direct way to obtain the DSP period as it is defined as the time between the SSPs of both legs. If we assume a symmetric walking pattern, then T d can be obtained from the moment in which the tracked ankle stops: T d =(T (k20) T ((k 1)12) T s )/2 (2) T m. This is the moment in which the ankle reaches its maximum height, measured from the beginning of the previous DSP. This is easily obtained from the transition between states 0 and 1: T c. This is the step period, T c = T d + T s. T m = T (k01) T (k20) + T d (3) 5.2 Position Parameters These parameters (Fig. 1.a) are obtained in the same way as time parameters, as the main information about joints motion is also related to transition moments: S l. The step length is the horizontal motion of the tracked ankle during states 0 and 1: S l = x a (k12) x a (k20) (4) where x a (kab) denotes the horizontal (x) value for the ankle position in step k, in the transition from state a to state b.

6 Ha0 and La0. Both parameters are related to transition between states 0 and 1: Ha0= z a (k01) z a (k20) ; La0 = x a (k01) x a (k20) (5) Xsd and Xed. These parameters are distances between hip and ankle in key instants. The system extracts these parameters at the beginning and the end of the SSP: Xsd = x a (k20) x h (k20) ; Xed = x a (k12) x h (k12) (6) Hm max and Hm min. The extraction of these parameters is slightly different, as they are not related to transition moments [3]. Hm max and Hm min are only required to produce a more natural motion in the simulator and real robot. The perception stage will obtain them as the maximum and minimum vertical hip positions during the human demonstration. 6 Experiments and Results The proposed system has been tested in an indoor environment, using pink color patches as markers. The algorithm runs on a standard PC and the images are captured using a Ranger VCAM365 commercial webcam. Our approach does not require the camera to be calibrated. Besides, no specific illumination conditions nor specific background have been used. The HMCD has been used to generate walking sequences over a Simulator developed at ARICC [6]. These sequences have been also successfully adapted to a real Robo-Erectus robot [7], also developed and built at ARICC, in Singapore Polytechnic. Table 1 shows the walking parameters extracted from a perceived walking motion. Time parameters are in seconds, position parameters are in pixels. After perception, all position parameters are normalized with respect to perceived shank length. When these parameters are translated to the robot simulator or the real robot, they are multiplied by the value of shank length that simulator or robot are using. Table 1. Walking parameters extracted from human motion Parameter Value Normalized Value Parameter Value Normalized Value T c Ha T s La T d Xsd T m Xed Shank 43 1 Hm max S l Hm min The parameters presented in Table 1 were used to generate a simulated walking sequence. The horizontal motion of hip and ankles in the simulator is shown

7 in Fig. 3.a. By extracting only the relevant parameters and reconstructing the trajectories the system is able to synthesize a low noise smooth and stable motion. On the other hand, Fig. 3.b presents the trajectories in joint space for the previous movement. We can see here how it would be much more difficult to extract the walking parameters in this space, because angle trajectories are not as clearly associated with walking parameters as joint displacements. Fig. 4 shows the perceived walking cycle. Although there are evident similarities between real and generated cycles (so that real and artificial movements will be very similar), the perceived walking sequence is much more noisy, and non periodical. Besides, we must also consider the possibility of losing markers. All this justifies the extraction of parameters as opposed to direct trajectory imitation. Fig. 3. Simulated walking cycle: a) Horizontal displacements of the hip and both ankles, and b) Joint angle trajectories 7 Conclusions and Future Work This paper has presented a novel approach to extraction of walking parameters from a perceived video sequence. The chosen parameterization allows to apply the extracted parameters on the simulator or real robot. The results show that generated sequences are rather similar to real ones. The proposed method requires only a standard, uncalibrated digital camera and three color patches. Future work will address on-line balance compensation and imitation. We will also collect human walking data under various behavioral conditions. Parameter estimation techniques will be tested to extract more effectively human walking parameters for humanoid control and imitation. We will also conduct research on the use of periodic joint motion corrections at selected joints to dynamically match the desired ZMP trajectory.

8 Fig. 4. Perceived walking cycle: a) Horizontal displacements of the hip and right ankle, b) Joint angle trajectories 8 Acknowledgement This work has been partially supported by the Spanish Ministerio de Educación, Cultura y Deporte (MECD), project number TIN References 1. Aggarwal, J.K., Slotin, J.: Human motion analysis: a review. Computer Vision and Image Understanding, 73, 3, (1999) Dasgupta, A., Nakamura, Y.: Making feasible walking motion of humanoid robots from human motion capture data. In Proc. IEEE Intl. Conf. on Robotics & Automation, Detroit, Michigan, (1999) Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H. Koyachi, N., Tanie, K.: Planning walking patterns for a biped robot. IEEE Trans. Robot. Automat., 17, (2001) Marfil, R., Rodriquez, J.A., Bandera, A., Sandoval, F.: Bounded irregular pyramid: a new structure for color image segmentation. Pattern Recognition, 37, 3, (2004) Safonova, A., Pollard, N., Hodgins, J. K.: Optimizing Human Motion for the Control of a Humanoid Robot. In Proc. 2nd International Symposium on Adaptive Motion of Animals and Machines (AMAM2003), Kyoto, Japan, (2003) 6. Tang, Z., Zhou, C., Sun, Z.: Gait planning for soccer playing humanoid robots. Lecture Notes in Control and Information Sciences, Springer-Verlag, 299, (2004) Zhou, C., Yue, P.K.: Robo-Erectus: a low cost autonomous humanoid soccer robot. Advanced Robotics, 18, 7, (2004)

Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database

Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database Seungsu Kim, ChangHwan Kim and Jong Hyeon Park School of Mechanical Engineering Hanyang University, Seoul, 133-791, Korea.

More information

Obstacle Avoidance Design for Humanoid Robot Based on Four Infrared Sensors

Obstacle Avoidance Design for Humanoid Robot Based on Four Infrared Sensors Tamkang Journal of Science and Engineering, Vol. 12, No. 3, pp. 249 258 (2009) 249 Obstacle Avoidance Design for Humanoid Robot Based on Four Infrared Sensors Ching-Chang Wong 1 *, Chi-Tai Cheng 1, Kai-Hsiang

More information

Support Changes during Online Human Motion Imitation by a Humanoid Robot using Task Specification

Support Changes during Online Human Motion Imitation by a Humanoid Robot using Task Specification Support Changes during Online Human Motion Imitation by a Humanoid Robot using Task Specification Louise Penna Poubel 1, Sophie Sakka 2, Denis Ćehajić 3 and Denis Creusot 4 Abstract This paper presents

More information

Mechanism and Control of a Dynamic Lifting Robot

Mechanism and Control of a Dynamic Lifting Robot Mechanism and Control of a Dynamic Lifting Robot T. Uenoa, N. Sunagaa, K. Brownb and H. Asada' 'Institute of Technology, Shimizu Corporation, Etchujima 3-4-17, Koto-ku, Tokyo 135, Japan 'Department of

More information

GAIT DEVELOPMENT FOR THE TYROL BIPED ROBOT

GAIT DEVELOPMENT FOR THE TYROL BIPED ROBOT Proceedings of ECTC 2007 2007 ASME Early Career Technical Conference October 5-6, 2007, Miami, Florida USA GAIT DEVELOPMENT FOR THE TYROL BIPED ROBOT Vishnu Madadi, Mehmet Ismet Can Dede, and Sabri Tosunoglu

More information

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras 1 CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation Prof. Dr. Hani Hagras Robot Locomotion Robots might want to move in water, in the air, on land, in space.. 2 Most of the

More information

Automatic Labeling of Lane Markings for Autonomous Vehicles

Automatic Labeling of Lane Markings for Autonomous Vehicles Automatic Labeling of Lane Markings for Autonomous Vehicles Jeffrey Kiske Stanford University 450 Serra Mall, Stanford, CA 94305 jkiske@stanford.edu 1. Introduction As autonomous vehicles become more popular,

More information

This week. CENG 732 Computer Animation. Challenges in Human Modeling. Basic Arm Model

This week. CENG 732 Computer Animation. Challenges in Human Modeling. Basic Arm Model CENG 732 Computer Animation Spring 2006-2007 Week 8 Modeling and Animating Articulated Figures: Modeling the Arm, Walking, Facial Animation This week Modeling the arm Different joint structures Walking

More information

DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE. F. R. Soha, I. A. Szabó, M. Budai. Abstract

DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE. F. R. Soha, I. A. Szabó, M. Budai. Abstract ACTA PHYSICA DEBRECINA XLVI, 143 (2012) DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE F. R. Soha, I. A. Szabó, M. Budai University of Debrecen, Department of Solid State Physics Abstract

More information

Template-based Eye and Mouth Detection for 3D Video Conferencing

Template-based Eye and Mouth Detection for 3D Video Conferencing Template-based Eye and Mouth Detection for 3D Video Conferencing Jürgen Rurainsky and Peter Eisert Fraunhofer Institute for Telecommunications - Heinrich-Hertz-Institute, Image Processing Department, Einsteinufer

More information

A Method for Controlling Mouse Movement using a Real- Time Camera

A Method for Controlling Mouse Movement using a Real- Time Camera A Method for Controlling Mouse Movement using a Real- Time Camera Hojoon Park Department of Computer Science Brown University, Providence, RI, USA hojoon@cs.brown.edu Abstract This paper presents a new

More information

Building an Advanced Invariant Real-Time Human Tracking System

Building an Advanced Invariant Real-Time Human Tracking System UDC 004.41 Building an Advanced Invariant Real-Time Human Tracking System Fayez Idris 1, Mazen Abu_Zaher 2, Rashad J. Rasras 3, and Ibrahiem M. M. El Emary 4 1 School of Informatics and Computing, German-Jordanian

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics Lecture 18 Kinematics and Animation Interactive Graphics Lecture 18: Slide 1 Animation of 3D models In the early days physical models were altered frame by frame to create

More information

Original research papers

Original research papers Pol. J. Sport Tourism, 9, 8-7 DOI:.78/v97---z 8 Original research papers THE IMPACT OF ANKLE JOINT STIFFENING BY SKI EQUIPMENT ON MAINTENANCE OF BODY BALANCE The impact of ski equipment on body balance

More information

A Hybrid Software Platform for Sony AIBO Robots

A Hybrid Software Platform for Sony AIBO Robots A Hybrid Software Platform for Sony AIBO Robots Dragos Golubovic, Bo Li, and Huosheng Hu Department of Computer Science, University of Essex Wivenhoe Park, Colchester CO4 3SQ, United Kingdom {dgolub,bli,hhu}@essex.ac.uk

More information

Making Machines Understand Facial Motion & Expressions Like Humans Do

Making Machines Understand Facial Motion & Expressions Like Humans Do Making Machines Understand Facial Motion & Expressions Like Humans Do Ana C. Andrés del Valle & Jean-Luc Dugelay Multimedia Communications Dpt. Institut Eurécom 2229 route des Crêtes. BP 193. Sophia Antipolis.

More information

Mouse Control using a Web Camera based on Colour Detection

Mouse Control using a Web Camera based on Colour Detection Mouse Control using a Web Camera based on Colour Detection Abhik Banerjee 1, Abhirup Ghosh 2, Koustuvmoni Bharadwaj 3, Hemanta Saikia 4 1, 2, 3, 4 Department of Electronics & Communication Engineering,

More information

A Reliability Point and Kalman Filter-based Vehicle Tracking Technique

A Reliability Point and Kalman Filter-based Vehicle Tracking Technique A Reliability Point and Kalman Filter-based Vehicle Tracing Technique Soo Siang Teoh and Thomas Bräunl Abstract This paper introduces a technique for tracing the movement of vehicles in consecutive video

More information

An Approach for Utility Pole Recognition in Real Conditions

An Approach for Utility Pole Recognition in Real Conditions 6th Pacific-Rim Symposium on Image and Video Technology 1st PSIVT Workshop on Quality Assessment and Control by Image and Video Analysis An Approach for Utility Pole Recognition in Real Conditions Barranco

More information

A General Framework for Tracking Objects in a Multi-Camera Environment

A General Framework for Tracking Objects in a Multi-Camera Environment A General Framework for Tracking Objects in a Multi-Camera Environment Karlene Nguyen, Gavin Yeung, Soheil Ghiasi, Majid Sarrafzadeh {karlene, gavin, soheil, majid}@cs.ucla.edu Abstract We present a framework

More information

CS231M Project Report - Automated Real-Time Face Tracking and Blending

CS231M Project Report - Automated Real-Time Face Tracking and Blending CS231M Project Report - Automated Real-Time Face Tracking and Blending Steven Lee, slee2010@stanford.edu June 6, 2015 1 Introduction Summary statement: The goal of this project is to create an Android

More information

Tracking Moving Objects In Video Sequences Yiwei Wang, Robert E. Van Dyck, and John F. Doherty Department of Electrical Engineering The Pennsylvania State University University Park, PA16802 Abstract{Object

More information

Matlab Based Interactive Simulation Program for 2D Multisegment Mechanical Systems

Matlab Based Interactive Simulation Program for 2D Multisegment Mechanical Systems Matlab Based Interactive Simulation Program for D Multisegment Mechanical Systems Henryk Josiński,, Adam Świtoński,, Karol Jędrasiak, Andrzej Polański,, and Konrad Wojciechowski, Polish-Japanese Institute

More information

RIA : 2013 Market Trends Webinar Series

RIA : 2013 Market Trends Webinar Series RIA : 2013 Market Trends Webinar Series Robotic Industries Association A market trends education Available at no cost to audience Watch live or archived webinars anytime Learn about the latest innovations

More information

A Learning Based Method for Super-Resolution of Low Resolution Images

A Learning Based Method for Super-Resolution of Low Resolution Images A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 emre.ugur@ceng.metu.edu.tr Abstract The main objective of this project is the study of a learning based method

More information

The QOOL Algorithm for fast Online Optimization of Multiple Degree of Freedom Robot Locomotion

The QOOL Algorithm for fast Online Optimization of Multiple Degree of Freedom Robot Locomotion The QOOL Algorithm for fast Online Optimization of Multiple Degree of Freedom Robot Locomotion Daniel Marbach January 31th, 2005 Swiss Federal Institute of Technology at Lausanne Daniel.Marbach@epfl.ch

More information

ROBJP: AsonwARE PACKAGE FOR THE EXPERIMENTAL EVALUATION OF THE REQUIRED DEGREES OF FREEDOM FOR A BIPED ROBOT

ROBJP: AsonwARE PACKAGE FOR THE EXPERIMENTAL EVALUATION OF THE REQUIRED DEGREES OF FREEDOM FOR A BIPED ROBOT 08101 96 15: 24 "0"8717050 LAL (CSIC) OO2l007 ROBJP: AsonwARE PACKAGE FOR THE EXPERIMENTAL EVALUATION OF THE REQUIRED DEGREES OF FREEDOM FOR A BIPED ROBOT ARMADA, M A, MARTTNOLl, A, SELAYA, J InslilUlo

More information

Analecta Vol. 8, No. 2 ISSN 2064-7964

Analecta Vol. 8, No. 2 ISSN 2064-7964 EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,

More information

Operational Space Control for A Scara Robot

Operational Space Control for A Scara Robot Operational Space Control for A Scara Robot Francisco Franco Obando D., Pablo Eduardo Caicedo R., Oscar Andrés Vivas A. Universidad del Cauca, {fobando, pacaicedo, avivas }@unicauca.edu.co Abstract This

More information

Visual Servoing Methodology for Selective Tree Pruning by Human-Robot Collaborative System

Visual Servoing Methodology for Selective Tree Pruning by Human-Robot Collaborative System Ref: C0287 Visual Servoing Methodology for Selective Tree Pruning by Human-Robot Collaborative System Avital Bechar, Victor Bloch, Roee Finkelshtain, Sivan Levi, Aharon Hoffman, Haim Egozi and Ze ev Schmilovitch,

More information

A System for Capturing High Resolution Images

A System for Capturing High Resolution Images A System for Capturing High Resolution Images G.Voyatzis, G.Angelopoulos, A.Bors and I.Pitas Department of Informatics University of Thessaloniki BOX 451, 54006 Thessaloniki GREECE e-mail: pitas@zeus.csd.auth.gr

More information

Part-Based Recognition

Part-Based Recognition Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple

More information

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - nzarrin@qiau.ac.ir

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions Basic Facts What does the name ASIMO stand for? ASIMO stands for Advanced Step in Innovative Mobility. Who created ASIMO? ASIMO was developed by Honda Motor Co., Ltd., a world

More information

A Study on M2M-based AR Multiple Objects Loading Technology using PPHT

A Study on M2M-based AR Multiple Objects Loading Technology using PPHT A Study on M2M-based AR Multiple Objects Loading Technology using PPHT Sungmo Jung, Seoksoo Kim * Department of Multimedia Hannam University 133, Ojeong-dong, Daedeok-gu, Daejeon-city Korea sungmoj@gmail.com,

More information

A method of generating free-route walk-through animation using vehicle-borne video image

A method of generating free-route walk-through animation using vehicle-borne video image A method of generating free-route walk-through animation using vehicle-borne video image Jun KUMAGAI* Ryosuke SHIBASAKI* *Graduate School of Frontier Sciences, Shibasaki lab. University of Tokyo 4-6-1

More information

Character Animation from 2D Pictures and 3D Motion Data ALEXANDER HORNUNG, ELLEN DEKKERS, and LEIF KOBBELT RWTH-Aachen University

Character Animation from 2D Pictures and 3D Motion Data ALEXANDER HORNUNG, ELLEN DEKKERS, and LEIF KOBBELT RWTH-Aachen University Character Animation from 2D Pictures and 3D Motion Data ALEXANDER HORNUNG, ELLEN DEKKERS, and LEIF KOBBELT RWTH-Aachen University Presented by: Harish CS-525 First presentation Abstract This article presents

More information

EDROM Humanoid Kid Size 2014

EDROM Humanoid Kid Size 2014 EDROM Humanoid Kid Size 2014 Ana Patrícia Araújo, Caio Ribeiro, Carlos Eduardo Silva, Carolina Resende, Débora Valverde, Igor Bôas, Iuri Souza, Leonardo Jappe, Leonardo Barbosa, Cassiano Moura, Lucas Gonzaga,

More information

High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound

High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound Ralf Bruder 1, Florian Griese 2, Floris Ernst 1, Achim Schweikard

More information

THEORETICAL MECHANICS

THEORETICAL MECHANICS PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents

More information

Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02

Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02 Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 02 Good morning. Today is the second lecture in the series of lectures on structural

More information

INTERACTIVELY RESPONSIVE ANIMATION OF HUMAN WALKING IN VIRTUAL ENVIRONMENTS

INTERACTIVELY RESPONSIVE ANIMATION OF HUMAN WALKING IN VIRTUAL ENVIRONMENTS INTERACTIVELY RESPONSIVE ANIMATION OF HUMAN WALKING IN VIRTUAL ENVIRONMENTS By Shih-kai Chung B.A. June 1988, National Taiwan University, Taiwan M.S. May 1994, The George Washington University A Dissertation

More information

Figure 3.1.2 Cartesian coordinate robot

Figure 3.1.2 Cartesian coordinate robot Introduction to Robotics, H. Harry Asada Chapter Robot Mechanisms A robot is a machine capable of physical motion for interacting with the environment. Physical interactions include manipulation, locomotion,

More information

An experience for teaching humanoid robotics in computer engineering studies

An experience for teaching humanoid robotics in computer engineering studies An experience for teaching humanoid robotics in computer engineering studies Martin Mellado Instituto de Automática e Informática Industrial Universidad Politécnica de Valencia Camino de Vera s/n 46022

More information

3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving

3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving 3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving AIT Austrian Institute of Technology Safety & Security Department Christian Zinner Safe and Autonomous Systems

More information

VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS

VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS Aswin C Sankaranayanan, Qinfen Zheng, Rama Chellappa University of Maryland College Park, MD - 277 {aswch, qinfen, rama}@cfar.umd.edu Volkan Cevher, James

More information

An Energy-Based Vehicle Tracking System using Principal Component Analysis and Unsupervised ART Network

An Energy-Based Vehicle Tracking System using Principal Component Analysis and Unsupervised ART Network Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '9) ISSN: 179-519 435 ISBN: 978-96-474-51-2 An Energy-Based Vehicle Tracking System using Principal

More information

PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY

PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY V. Knyaz a, *, Yu. Visilter, S. Zheltov a State Research Institute for Aviation System (GosNIIAS), 7, Victorenko str., Moscow, Russia

More information

A Genetic Algorithm-Evolved 3D Point Cloud Descriptor

A Genetic Algorithm-Evolved 3D Point Cloud Descriptor A Genetic Algorithm-Evolved 3D Point Cloud Descriptor Dominik Wȩgrzyn and Luís A. Alexandre IT - Instituto de Telecomunicações Dept. of Computer Science, Univ. Beira Interior, 6200-001 Covilhã, Portugal

More information

Laser Gesture Recognition for Human Machine Interaction

Laser Gesture Recognition for Human Machine Interaction International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-04, Issue-04 E-ISSN: 2347-2693 Laser Gesture Recognition for Human Machine Interaction Umang Keniya 1*, Sarthak

More information

Cloud-Empowered Multimedia Service: An Automatic Video Storytelling Tool

Cloud-Empowered Multimedia Service: An Automatic Video Storytelling Tool Cloud-Empowered Multimedia Service: An Automatic Video Storytelling Tool Joseph C. Tsai Foundation of Computer Science Lab. The University of Aizu Fukushima-ken, Japan jctsai@u-aizu.ac.jp Abstract Video

More information

Poker Vision: Playing Cards and Chips Identification based on Image Processing

Poker Vision: Playing Cards and Chips Identification based on Image Processing Poker Vision: Playing Cards and Chips Identification based on Image Processing Paulo Martins 1, Luís Paulo Reis 2, and Luís Teófilo 2 1 DEEC Electrical Engineering Department 2 LIACC Artificial Intelligence

More information

Animating reactive motion using momentum-based inverse kinematics

Animating reactive motion using momentum-based inverse kinematics COMPUTER ANIMATION AND VIRTUAL WORLDS Comp. Anim. Virtual Worlds 2005; 16: 213 223 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cav.101 Motion Capture and Retrieval

More information

Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau

Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau 04/02 Introduction & projective rendering 11/02 Prodedural modeling, Interactive modeling with parametric surfaces 25/02 Introduction

More information

Sensor Modeling for a Walking Robot Simulation. 1 Introduction

Sensor Modeling for a Walking Robot Simulation. 1 Introduction Sensor Modeling for a Walking Robot Simulation L. France, A. Girault, J-D. Gascuel, B. Espiau INRIA, Grenoble, FRANCE imagis, GRAVIR/IMAG, Grenoble, FRANCE Abstract This paper proposes models of short-range

More information

Digital Position Control for Analog Servos

Digital Position Control for Analog Servos Digital Control for Analog Servos Sven Behnke and Michael Schreiber Humanoid Robots Group, Computer Science Institute University of Freiburg, Georges-Köhler-Allee 52, 79 Freiburg, Germany Email: { behnke

More information

The Advantages of Using a Fixed Stereo Vision sensor

The Advantages of Using a Fixed Stereo Vision sensor Proc. of International Conference on Industrial & Engineering Applications of Artificial Intelligence & Expert Systems (IEA/AIE), 2005 Real-Time People Localization and Tracking through Fixed Stereo Vision

More information

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow , pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices

More information

Multi-view Intelligent Vehicle Surveillance System

Multi-view Intelligent Vehicle Surveillance System Multi-view Intelligent Vehicle Surveillance System S. Denman, C. Fookes, J. Cook, C. Davoren, A. Mamic, G. Farquharson, D. Chen, B. Chen and S. Sridharan Image and Video Research Laboratory Queensland

More information

Tracking of Small Unmanned Aerial Vehicles

Tracking of Small Unmanned Aerial Vehicles Tracking of Small Unmanned Aerial Vehicles Steven Krukowski Adrien Perkins Aeronautics and Astronautics Stanford University Stanford, CA 94305 Email: spk170@stanford.edu Aeronautics and Astronautics Stanford

More information

SimFonIA Animation Tools V1.0. SCA Extension SimFonIA Character Animator

SimFonIA Animation Tools V1.0. SCA Extension SimFonIA Character Animator SimFonIA Animation Tools V1.0 SCA Extension SimFonIA Character Animator Bring life to your lectures Move forward with industrial design Combine illustrations with your presentations Convey your ideas to

More information

Blender 3D Animation

Blender 3D Animation Bachelor Maths/Physics/Computer Science University Paris-Sud Digital Imaging Course Blender 3D Animation Christian Jacquemin Introduction to Computer Animation Animation Basics animation consists in changing

More information

3D Scanner using Line Laser. 1. Introduction. 2. Theory

3D Scanner using Line Laser. 1. Introduction. 2. Theory . Introduction 3D Scanner using Line Laser Di Lu Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute The goal of 3D reconstruction is to recover the 3D properties of a geometric

More information

LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE. indhubatchvsa@gmail.com

LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE. indhubatchvsa@gmail.com LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE 1 S.Manikandan, 2 S.Abirami, 2 R.Indumathi, 2 R.Nandhini, 2 T.Nanthini 1 Assistant Professor, VSA group of institution, Salem. 2 BE(ECE), VSA

More information

Fundamentals of Computer Animation

Fundamentals of Computer Animation Fundamentals of Computer Animation Principles of Traditional Animation How to create maximum impact page 1 How to create maximum impact Early animators worked from scratch to analyze and improve upon silence

More information

EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM

EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM Amol Ambardekar, Mircea Nicolescu, and George Bebis Department of Computer Science and Engineering University

More information

Tracking Groups of Pedestrians in Video Sequences

Tracking Groups of Pedestrians in Video Sequences Tracking Groups of Pedestrians in Video Sequences Jorge S. Marques Pedro M. Jorge Arnaldo J. Abrantes J. M. Lemos IST / ISR ISEL / IST ISEL INESC-ID / IST Lisbon, Portugal Lisbon, Portugal Lisbon, Portugal

More information

Vision based Vehicle Tracking using a high angle camera

Vision based Vehicle Tracking using a high angle camera Vision based Vehicle Tracking using a high angle camera Raúl Ignacio Ramos García Dule Shu gramos@clemson.edu dshu@clemson.edu Abstract A vehicle tracking and grouping algorithm is presented in this work

More information

Short Presentation. Topic: Locomotion

Short Presentation. Topic: Locomotion CSE 888.14 Advanced Computer Animation Short Presentation Topic: Locomotion Kang che Lee 2009 Fall 1 Locomotion How a character moves from place to place. Optimal gait and form for animal locomotion. K.

More information

High Quality Image Magnification using Cross-Scale Self-Similarity

High Quality Image Magnification using Cross-Scale Self-Similarity High Quality Image Magnification using Cross-Scale Self-Similarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, Rolf-Rainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D-21079 Hamburg

More information

Sensory-motor control scheme based on Kohonen Maps and AVITE model

Sensory-motor control scheme based on Kohonen Maps and AVITE model Sensory-motor control scheme based on Kohonen Maps and AVITE model Juan L. Pedreño-Molina, Antonio Guerrero-González, Oscar A. Florez-Giraldo, J. Molina-Vilaplana Technical University of Cartagena Department

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Slow Tree Climbing Robot Analysis of Performance

Slow Tree Climbing Robot Analysis of Performance Slow Tree Climbing Robot Analysis of Performance Prakash Karamari 1, Prajwal Subbhapurmath 2 1Student, Department of Industrial and Production engineering, B.V.Bhoomaraddi college of engineering and technology,

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

Visual-based ID Verification by Signature Tracking

Visual-based ID Verification by Signature Tracking Visual-based ID Verification by Signature Tracking Mario E. Munich and Pietro Perona California Institute of Technology www.vision.caltech.edu/mariomu Outline Biometric ID Visual Signature Acquisition

More information

THE MS KINECT USE FOR 3D MODELLING AND GAIT ANALYSIS IN THE MATLAB ENVIRONMENT

THE MS KINECT USE FOR 3D MODELLING AND GAIT ANALYSIS IN THE MATLAB ENVIRONMENT THE MS KINECT USE FOR 3D MODELLING AND GAIT ANALYSIS IN THE MATLAB ENVIRONMENT A. Procházka 1,O.Vyšata 1,2,M.Vališ 1,2, M. Yadollahi 1 1 Institute of Chemical Technology, Department of Computing and Control

More information

Acceleration Introduction: Objectives: Methods:

Acceleration Introduction: Objectives: Methods: Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocity-time graph, acceleration

More information

Face detection is a process of localizing and extracting the face region from the

Face detection is a process of localizing and extracting the face region from the Chapter 4 FACE NORMALIZATION 4.1 INTRODUCTION Face detection is a process of localizing and extracting the face region from the background. The detected face varies in rotation, brightness, size, etc.

More information

Low-resolution Character Recognition by Video-based Super-resolution

Low-resolution Character Recognition by Video-based Super-resolution 2009 10th International Conference on Document Analysis and Recognition Low-resolution Character Recognition by Video-based Super-resolution Ataru Ohkura 1, Daisuke Deguchi 1, Tomokazu Takahashi 2, Ichiro

More information

The tango of a load balancing biped

The tango of a load balancing biped The tango of a load balancing biped Eric D. Vaughan, Ezequiel Di Paolo, Inman R. Harvey Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton, BN1 9QH {e.vaughan, ezequiel,

More information

Virtual Mouse Using a Webcam

Virtual Mouse Using a Webcam 1. INTRODUCTION Virtual Mouse Using a Webcam Since the computer technology continues to grow up, the importance of human computer interaction is enormously increasing. Nowadays most of the mobile devices

More information

Analyzing Facial Expressions for Virtual Conferencing

Analyzing Facial Expressions for Virtual Conferencing IEEE Computer Graphics & Applications, pp. 70-78, September 1998. Analyzing Facial Expressions for Virtual Conferencing Peter Eisert and Bernd Girod Telecommunications Laboratory, University of Erlangen,

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

OBJECT TRACKING USING LOG-POLAR TRANSFORMATION

OBJECT TRACKING USING LOG-POLAR TRANSFORMATION OBJECT TRACKING USING LOG-POLAR TRANSFORMATION A Thesis Submitted to the Gradual Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions Basic Facts What does the name ASIMO stand for? ASIMO stands for Advanced Step in Innovative Mobility. Who created ASIMO? ASIMO was developed by Honda Motor Co., Ltd., a world

More information

3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving

3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving 3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving AIT Austrian Institute of Technology Safety & Security Department Manfred Gruber Safe and Autonomous Systems

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 torsten@sfu.ca www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

More information

T-REDSPEED White paper

T-REDSPEED White paper T-REDSPEED White paper Index Index...2 Introduction...3 Specifications...4 Innovation...6 Technology added values...7 Introduction T-REDSPEED is an international patent pending technology for traffic violation

More information

A Survey of Video Processing with Field Programmable Gate Arrays (FGPA)

A Survey of Video Processing with Field Programmable Gate Arrays (FGPA) A Survey of Video Processing with Field Programmable Gate Arrays (FGPA) Heather Garnell Abstract This paper is a high-level, survey of recent developments in the area of video processing using reconfigurable

More information

CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS

CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS E. Batzies 1, M. Kreutzer 1, D. Leucht 2, V. Welker 2, O. Zirn 1 1 Mechatronics Research

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics Computer Animation Adapted from notes by Yong Cao Virginia Tech 1 Outline Principles of Animation Keyframe Animation Additional challenges in animation 2 Classic animation Luxo

More information

An Instructional Aid System for Driving Schools Based on Visual Simulation

An Instructional Aid System for Driving Schools Based on Visual Simulation An Instructional Aid System for Driving Schools Based on Visual Simulation Salvador Bayarri, Rafael Garcia, Pedro Valero, Ignacio Pareja, Institute of Traffic and Road Safety (INTRAS), Marcos Fernandez

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

Virtual Fitting by Single-shot Body Shape Estimation

Virtual Fitting by Single-shot Body Shape Estimation Virtual Fitting by Single-shot Body Shape Estimation Masahiro Sekine* 1 Kaoru Sugita 1 Frank Perbet 2 Björn Stenger 2 Masashi Nishiyama 1 1 Corporate Research & Development Center, Toshiba Corporation,

More information

Practical Tour of Visual tracking. David Fleet and Allan Jepson January, 2006

Practical Tour of Visual tracking. David Fleet and Allan Jepson January, 2006 Practical Tour of Visual tracking David Fleet and Allan Jepson January, 2006 Designing a Visual Tracker: What is the state? pose and motion (position, velocity, acceleration, ) shape (size, deformation,

More information

Model Based Control of a Moving Solar Roof for a Solar Vehicle

Model Based Control of a Moving Solar Roof for a Solar Vehicle Model Based Control of a Moving Solar Roof for a Solar Vehicle G.Coraggio*, C.Pisanti*, G.Rizzo*, A.Senatore* *Dept. Of Mechanical Engineering, University of Salerno, 8484 Fisciano (SA), Italy Email: gcoraggio

More information

Static Environment Recognition Using Omni-camera from a Moving Vehicle

Static Environment Recognition Using Omni-camera from a Moving Vehicle Static Environment Recognition Using Omni-camera from a Moving Vehicle Teruko Yata, Chuck Thorpe Frank Dellaert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 USA College of Computing

More information

Terrain Traversability Analysis using Organized Point Cloud, Superpixel Surface Normals-based segmentation and PCA-based Classification

Terrain Traversability Analysis using Organized Point Cloud, Superpixel Surface Normals-based segmentation and PCA-based Classification Terrain Traversability Analysis using Organized Point Cloud, Superpixel Surface Normals-based segmentation and PCA-based Classification Aras Dargazany 1 and Karsten Berns 2 Abstract In this paper, an stereo-based

More information

MOBILE ROBOT TRACKING OF PRE-PLANNED PATHS. Department of Computer Science, York University, Heslington, York, Y010 5DD, UK (email:nep@cs.york.ac.

MOBILE ROBOT TRACKING OF PRE-PLANNED PATHS. Department of Computer Science, York University, Heslington, York, Y010 5DD, UK (email:nep@cs.york.ac. MOBILE ROBOT TRACKING OF PRE-PLANNED PATHS N. E. Pears Department of Computer Science, York University, Heslington, York, Y010 5DD, UK (email:nep@cs.york.ac.uk) 1 Abstract A method of mobile robot steering

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information