# Use of Computer Algebra in the Calculation of Feynman Diagrams

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften am Fachbereich Physik der Johannes-Gutenberg-Universität in Mainz Use of Computer Algebra in the Calculation of Feynman Diagrams Christian Bauer geb. in Koblenz Mainz, den 9. November 2004

2 D77 (Diss. Universität Mainz)

3 Find the right way down through the maze, to the food, then find the exit. Push the exit button. If the food tastes awful, don t eat it, go back and try another way. They want the same thing that you do, really, they want a path, just like you. You are in a maze in a maze, but which one counts? Your maze, their maze, my maze. Or are the mazes all the same, defined by the limits of their paths? Existence is simple: find the food, push the button, hit the treadmill. But sometimes it gets much harder. Sometimes the food makes you sick, or you can hear nearby feet racing you, urging you on. Sometimes the button only gets you landed right back in the beginning of the maze again, and the food won t satisfy. There is only one path and that is the path that you take, but you can take more than one path. Cross over the cell bars, find a new maze, make the maze from its path, find the cell bars, cross over the bars, find a maze, make the maze from its path, eat the food, eat the path. Marathon Infinity, Rage: Eat the Path

4

5 Contents Overview 1 1 An Introduction to xloops Feynman Diagrams Automated Calculation of Feynman Diagrams The History of xloops Shortcomings of the Maple-based xloops The Creation of GiNaC Design of the GiNaC-based xloops GiNaC Object-Oriented Computer Algebra Why C ++? Numeric vs. Symbolic Computing in C Design Principles of GiNaC Applying the Object-Oriented Paradigm to Computer Algebra Basic Features of GiNaC The GiNaC Class Structure The symbol Class The constant Class The numeric Class The add and mul Classes The power Class The function Class Other Classes Run-Time Structure of Expressions Automatic Evaluation of Expressions Memory Management Reference Counting Copy-on-Write Cloning of Stack-Allocated Objects Flyweights Fusion of Redundant Subtrees Run-Time Type Information Comparing Expressions Class Registry Adding New Algebraic Classes Expression Output v

6 Contents 2.15 Object Persistence GiNaC Expressions and the C++ Standard Library Iterators Visitors Applying Functions on Subexpressions Hash Maps Substitutions and Pattern Matching Simple Substitutions Pattern Matching Performance Issues Using GiNaC in Interactive Applications GiNaC for Physics Calculations Symmetries Special Algebras Indexed Expressions Predefined Tensors Simplifying Indexed Expressions Dummy Indices Automatic Evaluation Manual Evaluation Non-Commutative Algebras The Dirac Algebra The Color Algebra GiNaC Status and Outlook Efficient Allocation of Small Objects Virtual Memory Expression Input Graph Algorithms Expression Construction Multithreading Polynomial Factorization Algebraic Capabilities xloops One-Loop Integral Functions Loop Integrals Parallel/Orthogonal Decomposition Tensor Reduction One-Loop Two-Point Integrals One-Loop Three-Point Integrals Evaluation of the Basic One-Loop Integrals The Hierarchy of One-Loop Integral Functions in xloops The Scalar Functions ScalarNPt() The PO-decomposed Tensor Functions OneLoopNPt() The Lorentz Tensor Functions OneLoopTensNPt() vi

7 Contents The Loop Diagram Functions Diagram1LoopNPt() Sample Calculations QED Electron Self-Energy Non-Diagonal Contributions to the Quark Self-Energy Conclusions 127 A Notation 129 A.1 Class Diagrams A.2 Object Diagrams A.3 Interaction Diagrams B Simplification Rules 131 B.1 Predefined Tensors B.1.1 The Kronecker delta δ ij (tensdelta) B.1.2 The general metric tensor g µν (tensmetric) B.1.3 The Minkowski metric tensor η µν (minkmetric) B.1.4 The spinor metric tensor ɛ AB (spinmetric) B.1.5 The Levi-Civita tensor ɛ (tensepsilon) B.2 Dirac Algebra B.3 Color Algebra C Relation of xloops Functions to Standard One-Loop Integrals 137 Glossary 139 Bibliography 141 vii

8 Contents viii

9 List of Figures 1.1 Graphical user interface of xloops Components of xloops, and their relations Elementary algebraic classes in GiNaC, and their relations Representation of sums and products Representation of functions Overview of the hierarchy of algebraic classes in GiNaC Logical and physical structure of expressions Reference counting Copy-on-write Cloning of stack-allocated objects Comparing expressions Class registry Expression output in GiNaC and earlier versions Expression output in GiNaC Double dispatch for basic::print() in GiNaC Matrix of output methods Preorder and postorder tree traversal Visitor pattern Acyclic visitor Implementation of the matrix-evaluation method evalm() Comparison of different hash map implementations Comparison of run times of subexpression substitutions Class and object structure of symmetry trees Class structure of indexed objects and indices Possible representation of the four-momentum p µ in GiNaC Classes and methods for non-commutative algebras Classes implementing the Dirac algebra Examples for the representation of Dirac matrices in GiNaC Run times for computing Tr γ µ 1... γ µ N Classes implementing the SU(3) color algebra Run times for computing Tr T a1... T an Hierarchy of one-loop integral functions A.1 Class diagram ix

10 List of Figures A.2 Object diagram A.3 Interaction diagram x

11 Overview The increasing precision of current and future experiments in high-energy physics requires a likewise increase in the accuracy of the calculation of theoretical predictions, in order to find evidence for possible deviations of the generally accepted Standard Model of elementary particles and interactions. Such evidence could pave the way for a more fundamental and comprehensive theory and, ultimately, a deeper understanding of nature. Calculating the experimentally measurable cross sections of scattering and decay processes to a higher accuracy directly translates into including higher order radiative corrections in the calculation. The large number of particles and interactions in the full Standard Model results in an exponentially growing number of Feynman diagrams contributing to any given process in higher orders. Additionally, the appearance of multiple independent mass scales makes even the calculation of single diagrams non-trivial. For over two decades now, the only way to cope with these issues has been to rely on the assistance of computers. The aim of the xloops project is to provide the necessary tools to automate the calculation procedures as far as possible, including the generation of the contributing diagrams and the evaluation of the resulting Feynman integrals. The latter is based on the techniques developed in Mainz for solving one- and two-loop diagrams in a general and systematic way using parallel/orthogonal space methods. These techniques involve a considerable amount of symbolic computations. During the development of xloops it was found that conventional computer algebra systems were not a suitable implementation environment. For this reason, a new system called GiNaC has been created, which allows the development of large-scale symbolic applications in an object-oriented fashion within the C ++ programming language. This system, which is also in use for other projects besides xloops, is the main focus of this thesis. The structure of this work is as follows: In chapter 1 we give an introduction to the Feynman diagram formalism and the history of xloops, including the problems encountered that led to the creation of GiNaC. Chapter 2 describes the design and implementation of the GiNaC C ++ library in detail, starting with the guiding design principles and covering all classes and methods that constitute the general symbolic manipulation facilities of GiNaC, and their integration into the C ++ language. The functions that were implemented specifically for xloops, such as indexed objects and non-commutative algebras, are then discussed in chapter 3. In chapter 4 we summarize the current status of GiNaC and list some ideas for further enhancements. Chapter 5 returns to the topic of xloops, documenting the library of Feynman integral functions that have been reimplemented based on GiNaC. This is followed by two oneloop sample calculations performed using these functions. An analysis of our achievements and an outlook on the future of xloops and GiNaC in chapter 6 conclude this work. Three appendices provide information on notational conventions, on the transformation rules of GiNaC s special algebras, and on the relation of the xloops integral functions to the ones used in the literature, respectively. A glossary explains some terms (marked with an arrow in the text) from the fields of computer science and object-oriented programming that may not be familiar to physicists. 1

12 2

13 1 An Introduction to xloops I can t understand how anyone can write without rewriting everything over and over again. Leo Tolstoy In this chapter, we will give a brief overview of the motives and goals of the xloops project, and of the results obtained in the past. 1.1 Feynman Diagrams In order to test a physical theory one has to compare experimentally measurable quantities with the values predicted by the theory in question. In the field of elementary particle physics, the most basic experiment is a scattering between N i (usually one or two) particles in the initial state q 1... q Ni in which by interaction produce N f particles in the final state out q Ni q Ni +N f. Assuming an ideal experiment with perfectly prepared and detected initial and final states which are asymptotically independent of each other in the remote past (for the initial state) and future (for the final state), the transition amplitude is given by the time-evolution operator, whose matrix elements define the S (scattering) matrix: out q Ni q Ni +N f q 1... q Ni in = lim t q Ni q Ni +N f e iht q 1... q Ni := q Ni q Ni +N f S q 1... q Ni. (1.1) In a quantum field theory, the S-matrix elements can be expressed in terms of truncated Green functions G trunc by means of the LSZ reduction formula: N i +N f q Ni q Ni +N f S q 1... q Ni = Zn G trunc (q 1,..., q Ni +N f ) q 2 (1.2) n =mn, 2 n=1 where the Z n are the wave-function renormalization factors and the m n the masses of the respective particle types. The Green functions, which are generally defined as the vacuum expectation values of timeordered products of field operators, can be approximated perturbatively in a systematic way using the method of Feynman diagrams. For a given process, one draws graphs consisting of external nodes representing the initial and final particles, internal nodes (vertices) representing interaction points, and lines (propagators) representing the free propagation of fields. Each graph is then translated into a mathematical expression by 3

14 1 An Introduction to xloops applying the Feynman rules of the theory, assigning symbolic factors to each node and line of the graph. To calculate a Green function to a given order of the coupling constants, one takes the sum over all topologically distinct graphs that can be constructed from the possible fields and interactions of the theory, and the required powers of the coupling constants. For example, omitting symmetry factors, minus signs for closed fermion loops and the like, the Green function for electron-positron pair production γ e + e in QED is represented by the series = Truncated Green functions are represented by truncated Feynman diagrams that have their external nodes and the subgraphs attached to external nodes that are connected to the rest of the graph only by a single line removed: Because of momentum conservation at each vertex and along each line of a Feynman diagram, the only arbitrary momenta in a graph are those appearing in closed loops, one per loop; these have to be integrated over. All other internal momenta are fixed by the values of the external momenta and the momentum-conserving delta functions on the vertices and lines. Feynman diagrams are typically characterized by the number of external field points (or points for short) and the number of internal loops. It is characteristic for quantum field theories in general that loop diagrams can yield integrals which are divergent for arbitrarily large ( ultraviolet ) loop momenta. These divergences are absorbed into a redefinition (renormalization) of unobservable quantities like bare masses (as opposed to measurable effective masses), coupling constants, and the fields themselves (these are the Z-factors in eq. (1.2)). For this purpose, the divergent integrals are parametrized in terms of a regularization parameter. In the commonly used framework of dimensional regularization, the parameter is the dimensionality D of the space of the loop momenta, usually expressed in terms of ε = 4 D. (1.3) 2 The UV divergences of integral functions then appear as poles at ε = 0 (corresponding to D = 4). 1.2 Automated Calculation of Feynman Diagrams In the described perturbative approach, a high-precision calculation of a given process requires including radiative corrections, i. e. higher-order contributions in terms of loop 4

15 1.3 The History of xloops and bremsstrahlung diagrams. Due to the large number of fields and possible interactions in the full Standard Model, and even in the electroweak sub-sector only, the number of Feynman diagrams to be considered for a single process can easily exceed one hundred at the two-loop level. The occurrence of multiple independent mass scales (as opposed to only one scale in pure QCD calculations) further complicates the matter. It is obvious that calculations of this complexity can t reasonably be done without some degree of automatization, and the systematics of the Feynman diagram formalism make it well suited for implementation on a computer. One characteristic of these calculations is that they demand a high level of symbolic manipulations for decomposing the Lorentz and Dirac structure of the occurring integrals and for reducing them to a set of basic expressions. This is opposed to purely numeric computations as they appear, for example, in materials physics. Computers have been employed for doing symbolic calculations since the late 1950s. In fact, one of the incentives for the creation of the LISP programming language by John McCarthy, ca. 1958, was to have a language in which symbolic expression manipulation, starting with symbolic differentiation, could be implemented [Stoy 2004]. The first system specialized in calculations in high-energy physics was Schoonschip, developed in 1963 by Martinus Veltman. Later symbolic programs stemming from physics applications include Anthony Hearn s Reduce, written in LISP in the 1960s, SMP (the precursor to Mathematica), developed by Stephen Wolfram, and FORM by Jos Vermaseren, both written in C [Wein 2002]. Programs for the automatic calculation of general elementary particle processes using the method of Feynman diagrams have been under development since the late 1980s. Examples for such programs are Grace [IKKKST 1993], CompHEP [BDIPS 1994] and FeynCalc [MBD 1991], which were at first limited to the tree level or a restricted set of one-loop diagrams. 1.3 The History of xloops In 1991, Dirk Kreimer described a way to efficiently calculate the massive two-loop twopoint master integral by decomposing the integration space into parallel and orthogonal (PO) components (a technique that had been used for one-loop integrals before), obtaining a two-fold integral representation that allowed a straightforward numerical integration [Krei 1991]. The same method was later applied to two-loop three-point functions of arbitrary tensor degree [Krei 1992a] [Krei 1993a] [Krei 1994] [CKK 1995]. The calculation of factorizing two-loop topologies (those that can be written as a product of one-loop integrals) and two-loop diagrams of higher tensor rank also requires the evaluation of one-loop functions. In 1994, Lars Brücher, Johannes Franzkowski, and Dirk Kreimer released a library for the automatic calculation of one-loop one-, two-, and three-point integrals using PO decomposition and recurrence relations between R functions, instead of the usual Feynman parametrization [Krei 1992b] [Krei 1993b] [Fran 1992] [Brüc 1993] [BFK 1994] [BFK 1995]. This library, called oneloop [BFK 1997], was written in the language of the computer algebra system Maple. 5

16 1 An Introduction to xloops Figure 1.1: Graphical user interface of xloops 1.0 Later, it was decided to use this library as the basis for an implementation of the two-loop methods devised in Mainz [Frin 1996] [Krec 1997] [Fran 1997] [Post 1997] [Brüc 1997], and to create an integrated program package for the automatic calculation of physical processes at up to two-loop level. Thus xloops was born. The goal of xloops was to have a single program covering the entire calculation procedure, including graph generation, insertion of Feynman rules, decomposition into form factors, reduction to basic integrals, and numeric and symbolic evaluation of these integrals [BFFK 1997]. The 1997 release of xloops [BFK 1998], written in a mix of Maple and Tcl/Tk code, lacked the graph generator but included a graphical user interface (shown in fig. 1.1), and could calculate single one-loop one-, two- and three-point, and two-loop two-point Feynman diagrams. 1.4 Shortcomings of the Maple-based xloops During the attempted implementation of two-loop three-point functions in xloops in the context of [Frin 2000] it became apparent that it was more reasonable to rewrite the 6

18 1 An Introduction to xloops sums, products, powers, and functions, basic manipulation and simplification of expressions, arbitrary-precision complex arithmetic, symbolic differentiation, constructing and normalizing rational functions, expanding functions into Laurent series, special functions like the Euler Γ function and polylogarithms, solving linear systems of equations, and special algebras like Lorentz tensors and Dirac matrices. It appeared feasible to develop a symbolic manipulator fulfilling these requirements ourselves. Since available symbolic libraries such as SymbolicC++ [ShSt 1998] were geared more towards academic research and not real world calculations like the ones performed by xloops, we resolved upon creating our own C ++ library for symbolic computation. Additionally, we perceived the need within the scientific community for a symbolic engine that could be embedded into larger application frameworks, and that was both powerful as well as open in the sense that users were free to examine, extend, and modify the system themselves. At that time, most development in computer algebra took place behind closed doors on proprietary systems, and the algorithms and assumptions used in these systems were often insufficiently documented, requiring a certain amount of faith in trusting the results of calculations. Eventually, a separate project called GiNaC 2 was brought into being, with the aim of creating an Open Source C ++ library for symbolic computation that would primarily function as the basis for the new xloops program, but that would also be general enough to be reusable for other applications. 1.6 Design of the GiNaC-based xloops The experience with xloops has shown that programs used for physics calculations should not only produce correct results, but should also have a well thought-out design from the very beginning. There are a couple of reasons for this: 1. No piece of software, no matter how small, is ever finished. Eventually it will have to be maintained, ported to a new environment, or parts of it will be reused for a new application. Designing the software in terms of independent, reusable components facilitates this. 2 A recursive acronym for GiNaC is not a CAS (Computer Algebra System), emphasizing the fact that GiNaC takes a different approach from traditional computer algebra systems. 8

19 1.6 Design of the GiNaC-based xloops Figure 1.2: Components of xloops, and their relations 2. Software for research projects is often being worked on by people who stay with the project for only a limited amount of time, such as during the course of postgraduate studies. The more time their successors have to spend figuring out the workings of the existing code, the less time they have to advance the project. 3. Scienctific research is supposed to yield reproducible results. When those results are obtained from comprehensible, well-designed software, the research work will become more transparent. With this in mind, a revised concept for the re-implementation of xloops has been worked out, shown in fig. 1.2 (with dashed lines indicating items that do not exist yet). Given a description of a process in terms of incoming and outgoing particles (such as γ e + e ) and additional information like the maximum loop order to calculate or possible constraints on the momenta of particles, a graph generator will produce a list of all contributing Feynman diagrams based on a description of the physical model under consideration (such as QED, electroweak theory, or the full Standard Model). By inserting the model s Feynman rules for vertices and propagators, each diagram is converted to a symbolic expression which is then fed into the xloops routines for one- and two-loop integration. These routines make use of third-party libraries: Vegas/PVegas [Lepa 1978] [Krec 1998] or ParInt [DGBEG 1996] for the numeric integration of irreducible two-loop functions, and nestedsums [MUW 2002] for performing the ε-expansion of certain hypergeometric functions. The output of the loop integration is a complex amplitude, represented by its symbolic or numeric finite part, and its divergent part in terms of a Laurent series expansion in the regularization parameter ε (cf. eq. (1.3)). In order to obtain physically measurable quantities like cross sections and decay widths, further processing such as squaring the obtained matrix elements, and performing polarization sums and phase space integration 9

20 1 An Introduction to xloops is required, possibly by interfacing with an existing package like CompHEP. The new xloops program is entirely written in C ++, with all symbolic operations handled by the GiNaC library. All components are designed to also be usable (and testable) separately from each other. It should, for example, be possible to just obtain the list of contributing graphs for a given process, or, if the set of graphs to be calculated is known beforehand, to bypass the graph generator and start at the Feynman rule insertion stage. The central goals of the xloops project have not changed: The program should be able to automatically calculate processes in the Standard Model and related theories (such as supersymmetric extensions) at up to two-loop order. No restrictions should be imposed upon masses or momentum configurations. It should be possible to return results in analytic form, e. g. to test Ward identities and gauge invariance. At the time of this writing, xloops is still under development. Following the first stable versions of GiNaC, the one-loop one-, two-, and three-point functions have been implemented in [Baue 2000] and [BaDo 2002], and the two-loop self-energy functions in [Do 2003]. Oneloop four-point and two-loop three-point functions, as well as the Feynman rule insertion module are currently being worked on. The development of the graph generator has not been a part of this thesis. 10

### Glossary of Object Oriented Terms

Appendix E Glossary of Object Oriented Terms abstract class: A class primarily intended to define an instance, but can not be instantiated without additional methods. abstract data type: An abstraction

### Fundamental Computer Science Concepts Sequence TCSU CSCI SEQ A

Fundamental Computer Science Concepts Sequence TCSU CSCI SEQ A A. Description Introduction to the discipline of computer science; covers the material traditionally found in courses that introduce problem

### PURSUITS IN MATHEMATICS often produce elementary functions as solutions that need to be

Fast Approximation of the Tangent, Hyperbolic Tangent, Exponential and Logarithmic Functions 2007 Ron Doerfler http://www.myreckonings.com June 27, 2007 Abstract There are some of us who enjoy using our

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

### Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

### Moving from CS 61A Scheme to CS 61B Java

Moving from CS 61A Scheme to CS 61B Java Introduction Java is an object-oriented language. This document describes some of the differences between object-oriented programming in Scheme (which we hope you

### MATH REVIEW KIT. Reproduced with permission of the Certified General Accountant Association of Canada.

MATH REVIEW KIT Reproduced with permission of the Certified General Accountant Association of Canada. Copyright 00 by the Certified General Accountant Association of Canada and the UBC Real Estate Division.

### PGR Computing Programming Skills

PGR Computing Programming Skills Dr. I. Hawke 2008 1 Introduction The purpose of computing is to do something faster, more efficiently and more reliably than you could as a human do it. One obvious point

### Portable Assisted Study Sequence ALGEBRA IIA

SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of

### Curriculum Map. Discipline: Computer Science Course: C++

Curriculum Map Discipline: Computer Science Course: C++ August/September: How can computer programs make problem solving easier and more efficient? In what order does a computer execute the lines of code

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Prentice Hall Mathematics: Algebra 1 2007 Correlated to: Michigan Merit Curriculum for Algebra 1

STRAND 1: QUANTITATIVE LITERACY AND LOGIC STANDARD L1: REASONING ABOUT NUMBERS, SYSTEMS, AND QUANTITATIVE SITUATIONS Based on their knowledge of the properties of arithmetic, students understand and reason

### PURE MATHEMATICS AM 27

AM Syllabus (015): Pure Mathematics AM SYLLABUS (015) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (015): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)

### PURE MATHEMATICS AM 27

AM SYLLABUS (013) PURE MATHEMATICS AM 7 SYLLABUS 1 Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics and

### The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

### Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a

### ALGEBRA 1/ALGEBRA 1 HONORS

ALGEBRA 1/ALGEBRA 1 HONORS CREDIT HOURS: 1.0 COURSE LENGTH: 2 Semesters COURSE DESCRIPTION The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical

### Advanced Algebra 2. I. Equations and Inequalities

Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers

### 2) Write in detail the issues in the design of code generator.

COMPUTER SCIENCE AND ENGINEERING VI SEM CSE Principles of Compiler Design Unit-IV Question and answers UNIT IV CODE GENERATION 9 Issues in the design of code generator The target machine Runtime Storage

### Thomas Jefferson High School for Science and Technology Program of Studies Foundations of Computer Science. Unit of Study / Textbook Correlation

Thomas Jefferson High School for Science and Technology Program of Studies Foundations of Computer Science updated 03/08/2012 Unit 1: JKarel 8 weeks http://www.fcps.edu/is/pos/documents/hs/compsci.htm

### Diploma Plus in Certificate in Advanced Engineering

Diploma Plus in Certificate in Advanced Engineering Mathematics New Syllabus from April 2011 Ngee Ann Polytechnic / School of Interdisciplinary Studies 1 I. SYNOPSIS APPENDIX A This course of advanced

### High School Algebra 1 Common Core Standards & Learning Targets

High School Algebra 1 Common Core Standards & Learning Targets Unit 1: Relationships between Quantities and Reasoning with Equations CCS Standards: Quantities N-Q.1. Use units as a way to understand problems

### Interactive Math Glossary Terms and Definitions

Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas

### Bracken County Schools Curriculum Guide Math

Unit 1: Expressions and Equations (Ch. 1-3) Suggested Length: Semester Course: 4 weeks Year Course: 8 weeks Program of Studies Core Content 1. How do you use basic skills and operands to create and solve

### Feynman diagrams. 1 Aim of the game 2

Feynman diagrams Contents 1 Aim of the game 2 2 Rules 2 2.1 Vertices................................ 3 2.2 Anti-particles............................. 3 2.3 Distinct diagrams...........................

### 3.4 Complex Zeros and the Fundamental Theorem of Algebra

86 Polynomial Functions.4 Complex Zeros and the Fundamental Theorem of Algebra In Section., we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons and

### Advanced Higher Mathematics Course Assessment Specification (C747 77)

Advanced Higher Mathematics Course Assessment Specification (C747 77) Valid from August 2015 This edition: April 2016, version 2.4 This specification may be reproduced in whole or in part for educational

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

### Summation Algebra. x i

2 Summation Algebra In the next 3 chapters, we deal with the very basic results in summation algebra, descriptive statistics, and matrix algebra that are prerequisites for the study of SEM theory. You

### Java (12 Weeks) Introduction to Java Programming Language

Java (12 Weeks) Topic Lecture No. Introduction to Java Programming Language 1 An Introduction to Java o Java as a Programming Platform, The Java "White Paper" Buzzwords, Java and the Internet, A Short

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### THE NAS KERNEL BENCHMARK PROGRAM

THE NAS KERNEL BENCHMARK PROGRAM David H. Bailey and John T. Barton Numerical Aerodynamic Simulations Systems Division NASA Ames Research Center June 13, 1986 SUMMARY A benchmark test program that measures

Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

### MTH304: Honors Algebra II

MTH304: Honors Algebra II This course builds upon algebraic concepts covered in Algebra. Students extend their knowledge and understanding by solving open-ended problems and thinking critically. Topics

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### 1-04-10 Configuration Management: An Object-Based Method Barbara Dumas

1-04-10 Configuration Management: An Object-Based Method Barbara Dumas Payoff Configuration management (CM) helps an organization maintain an inventory of its software assets. In traditional CM systems,

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Overview of Math Standards

Algebra 2 Welcome to math curriculum design maps for Manhattan- Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse

### SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### discuss how to describe points, lines and planes in 3 space.

Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position

### Variable Base Interface

Chapter 6 Variable Base Interface 6.1 Introduction Finite element codes has been changed a lot during the evolution of the Finite Element Method, In its early times, finite element applications were developed

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### Numerical Analysis An Introduction

Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs

### KITES TECHNOLOGY COURSE MODULE (C, C++, DS)

KITES TECHNOLOGY 360 Degree Solution www.kitestechnology.com/academy.php info@kitestechnology.com technologykites@gmail.com Contact: - 8961334776 9433759247 9830639522.NET JAVA WEB DESIGN PHP SQL, PL/SQL

### Maple Basics Arithmetic operations in Maple

MA310 MAPLE Example Sheet 1 Maple is a comprehensive Symbolic Computation System or Computer Algebra System for advanced Mathematics. These phrases refer to Maple s capability to manipulate information

### Masconomet Regional High School Curriculum Guide

Masconomet Regional High School Curriculum Guide COURSE TITLE: Algebra 2 COURSE NUMBER: 1322 DEPARTMENT: Mathematics GRADE LEVEL(S) & PHASE: 10 12, CP LENGTH OF COURSE: Full Year Course Description: This

### Solution of Linear Systems

Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

### MBA Jump Start Program

MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

### NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

### AP Calculus BC. All students enrolling in AP Calculus BC should have successfully completed AP Calculus AB.

AP Calculus BC Course Description: Advanced Placement Calculus BC is primarily concerned with developing the students understanding of the concepts of calculus and providing experiences with its methods

### b) lower case always use lower case for all matlab commands. This is what matlab recognizes.

1 Matlab 1) Fundamentals a) Getting Help for more detailed help on any topic, typing help, then a space, and then the matlab command brings up a detailed page on the command or topic. For really difficult

### MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### Classroom Tips and Techniques: The Student Precalculus Package - Commands and Tutors. Content of the Precalculus Subpackage

Classroom Tips and Techniques: The Student Precalculus Package - Commands and Tutors Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft This article provides a systematic exposition

### PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and

### (Refer Slide Time: 00:00:56 min)

Numerical Methods and Computation Prof. S.R.K. Iyengar Department of Mathematics Indian Institute of Technology, Delhi Lecture No # 3 Solution of Nonlinear Algebraic Equations (Continued) (Refer Slide

### Object Oriented Design

Object Oriented Design Kenneth M. Anderson Lecture 20 CSCI 5828: Foundations of Software Engineering OO Design 1 Object-Oriented Design Traditional procedural systems separate data and procedures, and

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### The C Programming Language course syllabus associate level

TECHNOLOGIES The C Programming Language course syllabus associate level Course description The course fully covers the basics of programming in the C programming language and demonstrates fundamental programming

GENERAL COMMENTS Grade 12 Pre-Calculus Mathematics Achievement Test (January 2016) Student Performance Observations The following observations are based on local marking results and on comments made by

### Structural Design Patterns Used in Data Structures Implementation

Structural Design Patterns Used in Data Structures Implementation Niculescu Virginia Department of Computer Science Babeş-Bolyai University, Cluj-Napoca email address: vniculescu@cs.ubbcluj.ro November,

### SECTION 1.5: PIECEWISE-DEFINED FUNCTIONS; LIMITS AND CONTINUITY IN CALCULUS

(Section.5: Piecewise-Defined Functions; Limits and Continuity in Calculus).5. SECTION.5: PIECEWISE-DEFINED FUNCTIONS; LIMITS AND CONTINUITY IN CALCULUS LEARNING OBJECTIVES Know how to evaluate and graph

### South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

### http://www.aleks.com Access Code: RVAE4-EGKVN Financial Aid Code: 6A9DB-DEE3B-74F51-57304

MATH 1340.04 College Algebra Location: MAGC 2.202 Meeting day(s): TR 7:45a 9:00a, Instructor Information Name: Virgil Pierce Email: piercevu@utpa.edu Phone: 665.3535 Teaching Assistant Name: Indalecio

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

### Pre-Calculus Semester 1 Course Syllabus

Pre-Calculus Semester 1 Course Syllabus The Plano ISD eschool Mission is to create a borderless classroom based on a positive student-teacher relationship that fosters independent, innovative critical

### MyMathLab ecourse for Developmental Mathematics

MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and

### Fractions and Decimals

Fractions and Decimals Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles December 1, 2005 1 Introduction If you divide 1 by 81, you will find that 1/81 =.012345679012345679... The first

### REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95

REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course. The sheets

### DRAFT. Algebra 1 EOC Item Specifications

DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as

### Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

### Construction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7

About the Author v Preface to the Instructor xiii WileyPLUS xviii Acknowledgments xix Preface to the Student xxi 1 The Real Numbers 1 1.1 The Real Line 2 Construction of the Real Line 2 Is Every Real Number

### Student Performance Q&A:

Student Performance Q&A: AP Calculus AB and Calculus BC Free-Response Questions The following comments on the free-response questions for AP Calculus AB and Calculus BC were written by the Chief Reader,

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Optimization Techniques in C. Team Emertxe

Optimization Techniques in C Team Emertxe Optimization Techniques Basic Concepts Programming Algorithm and Techniques Optimization Techniques Basic Concepts What is Optimization Methods Space and Time

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards

### Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

### STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

### Name: Class: Date: 9. The compiler ignores all comments they are there strictly for the convenience of anyone reading the program.

Name: Class: Date: Exam #1 - Prep True/False Indicate whether the statement is true or false. 1. Programming is the process of writing a computer program in a language that the computer can respond to

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Identify examples of field properties: commutative, associative, identity, inverse, and distributive.

Topic: Expressions and Operations ALGEBRA II - STANDARD AII.1 The student will identify field properties, axioms of equality and inequality, and properties of order that are valid for the set of real numbers

### Algebra II. Larson, Boswell, Kanold, & Stiff (2001) Algebra II, Houghton Mifflin Company: Evanston, Illinois. TI 83 or 84 Graphing Calculator

Algebra II Text: Supplemental Materials: Larson, Boswell, Kanold, & Stiff (2001) Algebra II, Houghton Mifflin Company: Evanston, Illinois. TI 83 or 84 Graphing Calculator Course Description: The purpose

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### The program also provides supplemental modules on topics in geometry and probability and statistics.

Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students

### ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

### pp. 4 8: Examples 1 6 Quick Check 1 6 Exercises 1, 2, 20, 42, 43, 64

Semester 1 Text: Chapter 1: Tools of Algebra Lesson 1-1: Properties of Real Numbers Day 1 Part 1: Graphing and Ordering Real Numbers Part 1: Graphing and Ordering Real Numbers Lesson 1-2: Algebraic Expressions

### 2 Programs: Instructions in the Computer

2 2 Programs: Instructions in the Computer Figure 2. illustrates the first few processing steps taken as a simple CPU executes a program. The CPU for this example is assumed to have a program counter (PC),

### Florida Math for College Readiness

Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness