ConTag: Conceptual Tag Clouds Video Browsing in e-learning

Size: px
Start display at page:

Download "ConTag: Conceptual Tag Clouds Video Browsing in e-learning"

Transcription

1 ConTag: Conceptual Tag Clouds Video Browsing in e-learning 1 Ahmad Nurzid Rosli, 2 Kee-Sung Lee, 3 Ivan A. Supandi, 4 Geun-Sik Jo 1, First Author Department of Information Technology, Inha University, South Korea *4, Corresponding Author School of Computer and Information Engineering, South Korea 2,3 Department of Information Technology, Inha University, South Korea Abstract This paper presents our proposed method to automatically generate topical video content. We exploiting video transcripts to generate Conceptual graph and Tag clouds visualization, known as ConTag or Contextual Tag. The system is able to provide users with contextual information according to the video content. To achieve this we employed popular text mining algorithm, TF-IDF model and phrase association algorithm, Apriori algorithm. In this work, we also solved passive learning problem by facilitating users with interactive conceptual visualization system and communication mechanism over Social Networking Service (SNS) which accompanied by contextual and temporal information correspond to the particular time and scene from the video. 1. Introduction Keywords: Video Summarization, Tag Clouds, Conceptual Graph, E-Learning In recent years the popularity of audiovisual content as teaching and learning resources has grown over the net (e.g.: KhanAcademy, Yovisto, TED Conference (Technology, Education and Design Conference), Edu - YouTube and videolectures.net). According to study report from Nielsen Company, indicated that American spends more than 41 hours each week engaging with content across all screen (i.e.: via television, TV internet computer, smartphones, and tablet) [1]. This tremendous increased number of videos demanded an efficient way of supporting exploration and navigation of multimedia data [2]. Therefore, there is a need to generate an understanding from the content and context of the video or in other words video summarization. There are significant studies devoted to provide better interpretation of the video content [3][4]. Generally we found two issues in academic video representation: 1) How to provide a context of understanding which may vary in the videos, therefore it is easy for users to jump into particular context at particular video scene and if they are interested to have further discussion over the corresponded video. 2) What is the suitable form to represent such context mentioned earlier, so that easy for users to grasp what elements may available to represent the video? Under those circumstances, we proposed a novel system that solves aforementioned circumstances by providing conceptual hierarchy ontology visualization to represent video content known as Conceptual graph and the Tag Clouds. To achieve this, we utilized transcript resources available on the videos by employing text mining method in our system called ConTag or Conceptual Tag as e-learning system. In this work we present text mining approach by utilizing video transcript resources to help user to decide the worthwhile to watch through the whole video as a part of e-learning process. Additionally, we also facilitate practical way for user to access video content or scene through intuitive interface known as ConTag. In other words, we proposed an automated video summarization through text mining by employing and widely used algorithm for retrieving document the TF-IDF algorithm [5][6]. 2. Related Work In this section, a short overview on tag cloud and video summarization is described. Generally word cloud or tag cloud known as visual representation of the frequency of the words in any written material, Research Notes in Information Science (RNIS) Volume14,June 2013 doi: /rnis.vol

2 such as lectures notes or textbook chapter [7]. The font size is used to indicate word frequency, so the larger the font size allows getting a quick impression of the relevant concepts available in transcripts. Gottron in his work, claims that user has to read the text to understand which word is important. In his research work, the idea of enhancing perception of documents with visualization techniques are borrowed from the tag clouds [8]. In similar way, Cui et al., use word cloud to depict the representative keywords [9]. Meanwhile, Miley and Read introduce words cloud as a tool that assist student learning. The tool enhances students motivation and engagement with the learning [10]. On the other hand, Haubold introduce new technique for extracting, meaningful textual information from low-accuracy lecture transcripts using an external corpus of index phrases [11]. Similarly to our work, for the purpose of indexing, summarization, and cross-referencing, Open Directory Project (ODP) are used to extract the domain. The ODP is human-edited index of web sites and used to list and categorize sites. In his work, he also believes, the transcripts would include theme and topic phrases that describe the topic in a given lecture. 3. System Architecture This section describes how our proposed system works (see Figure 1). The system is called ConTag. For the implementation purpose, we have selected a video from TED conference which promotes free knowledge and inspired thinker s talks. To demonstrate our work and explanation purpose, we have selected a talk from Tim Berners Lee with title The next web (16 min 20 sec long). We extract readily segmented transcript with associated temporal information from the video. Each segmented transcript in this video is treated as a collection of documents and is assigned with transcript ID. The video is consisting of 159 documents with 3083 words. Noted, we will switch back and forth to use the term document as a transcript and vice versa Text Extraction Method Figure 1. ConTag System Architecture The transcripts are varied according to the topics and duration length. It is important to note that it contains various complexities which due to the nature of spoken language which informal, weak grammar structure and usage of common argumentative words and sometimes it contains incomplete sentence. Therefore, in this work we will: (i) Help user to decide worthwhile to watch the whole video content by providing an interactive conceptual hierarchical ontology obtained from ODP that summarize the video content; (ii) Create tag clouds while still maintaining the semantic content; (iii) Provide communication mechanism to engage active learning among users by integrating the SNS in the system. In the first phase, to generate the keywords or terms from the transcript, we first filtered the document and eliminate unimportant terms by using stop words function. Then, we compute the importance of each term in each document by employing the traditional term weighting in Information Retrieval (IR) system based on TF-IDF model. We first count how often the term appears in particular document. For each term t we determine its document frequency df(t). For a given document d we then 110

3 determine the term frequency. The TF-IDF weight for term t in document d, denote the total number of document by N is defined as: ( ) ( ) (1) The aforementioned formula (Eq. 1) describes a weighting scheme for term in a vector space IR model. If a query term matches an index term with a high TF-IDF value, the corresponding documents obtain a higher relevance score. The term which score the highest the TF-IDF scoring, represent well the document compared to other documents. The score value is the index terms and known as feature vector. It will eliminate unimportant words, in other words system that treats words as occurring independently. Therefore, it makes no use of semantic similarities between words. (i.e.: world, wide, web as a single term compared to the world wide web term). In second phase, we need to employ the traditional phrase association algorithm known as Apriori algorithm [12]. In other words, the phrase association algorithm will eliminates any unimportant words. Instead, we generate important keywords or terms that relevance to the topic, based on keywords or terms that tend to occur together (e.g.: World Wide Web, Semantic Web and etc.). Apriori algorithm efficiently finds all frequent unordered and ordered keywords or terms in given collection of document from a transcript (see Figure 2). This algorithm will run through over a transcript as D, document of transactions to compute set of frequent k-phrase patterns for every k = 1,,d. In step 1 of Apriori finds the frequent 1-itemsets,. In step 2 to 10, is used to generate candidate in order to find for k 2. The apriori_gen procedure generates the candidates and then uses the Apriori property to eliminate those having a subset that is not in frequent (step 3). The document is scanned in step 4, once all candidates have been generated. It is important to note that we set the bound distance between candidates to 1 for each transaction in step 5. Then, a subset function is used to find all subsets of the transaction that are candidates and count for each candidate is accumulated (step 6 and 7). At the end, those candidates satisfying minimum support (step 9) form the set of frequent item sets, L (step 11). As a result, relevant keywords are generated from the transcript. Then, the feature associates with the original keywords are used to assign to the new keywords. These new keywords with feature vectors are used in the next phase to compute the similarity measure for cross reference purpose. 1) L = {large 1-itemsets}; 2) for (k = 2; L k ϕ; k++) do begin ( ) 3) C k = apriori-gen ( L k ); // New candidates 4) forall transactions t 2 D do begin 5) C t = subset (C k, t); // Candidates contained in t 6) forall candidates c C t do 7) c.count++; 8) end 9) L k = {c C t c.count min_sup} 10) end 11) Answer = k L k ; Figure 2. Modified Apriori Algorithm As shown in ConTag system architecture, we also employ the TF-IDF to the hierarchical ontology schema known as ODP to generate the feature vector similarly to feature vector extracted from the transcript. The ODP is important to provide cross reference to term extracted from the corresponding transcript. To achieve this, we need to compute the keywords or term similarity from both of the transcript and the ODP by employing the cosine similarities measurement on the third phase (see Eq. 2). The relevancy can be measured by traditional cosine similarity between the feature vector of the keywords from the transcript and topic from ODP. Given two documents and their cosine similarity is: ( ) (2) 111

4 Where (D = Document) and (C = Categories) are m-dimensional vectors over the term set * +. Each dimension represents a term with its weight in the document, which is nonnegative. As a result, the cosine similarity is non-negative and bounded between [0, 1]. For example, computer science is the subclass of computers that has feature vectors (, ) to represent the topic computers and similarly every keyword from the transcript has a set of keywords feature vector (, ). Therefore, term is assigned to topic T by matching the degree of relevancy. As the matter of fact, the process is important in order to cluster the transcripts according into its relevance domain and sub-domain (see Table 1). In general ODP consists of 16 main categories including Arts, Business, Science and etc. These transcripts are clustered then are mapped as conceptual hierarchical ontology visualization as seen in phase 4. This will provide quick scanning and helps user to make a relevance decision to jump to the visualized conceptual hierarchy. This is one of the main contributions of the ConTag which provide an impression of the worthwhile whether or not to watch the whole video or on selected segment. Domain Computers etc. Table 1. Domain and sub-domain of Computers in ODP Sub-domain Computer Science: Artificial Intelligent/Distributed Computing,/Computer Graphic,/Parallel computing etc. Internet: On the web,/searching/web design and development. etc. etc. Meanwhile, the idea to use the word clouds or tag clouds to transfer visualization of the topics over the corresponding transcript is also visualized in phase 5. In different with previous phase (phase 4), which visually summarize the document as a whole and provide a hierarchical visualization to represent the transcript, phase 5 will unfold the keywords or terms that present on selected sub-concept. The details explanation is described in next section. To promote collaborative learning, we facilitate our e-learning eco-system with communication mechanism among users (e.g.: students- to-students and students-to-lecturer vice versa) by integrating ConTag with Twitter API. This will engage active learning while watching the videos by harnessing diversity and open opportunity for student to teach each other by interacting with the comment or message thread and hash tag ( # ) message related to the video Conceptualization Visualization Interface For the purpose of visualizing the content of the transcript, efficient user interface design is a must. Therefore, we distinguish five interface parts in our system (see Figure 3). The video will be display at (a) Video display part. For the transcript visualization representation, it is represented by two type of representation: (i) Conceptual hierarchical ontology form and (ii) Tag clouds form. Both representations will be displayed at (b) as Conceptual graph and Tag clouds. The Conceptual graph form is hierarchical representation of the ontology schema obtained from ODP. It is mainly to portray in which domain of particular video belongs to. It dynamically changes correspond to what video is loaded. The main idea is to derive user to jump insight of the video context domain. This may help user to grab what-is-what? that correspond to the video transcript. User can interactively use the Conceptual graph to navigate related concepts shown in this part. This is certainly a significant feature in ConTag system that helps to reveal the conceptual hierarchical ontology that represents the video content. Once it selected, then the system will unfold or display related sub-domain (sub-topic). The tag cloud is organized according to the weight value which refers to the terms frequency exists in the document. The tag clouds are unfolded after one of the conceptual hierarchy ontology is selected. Each of the tag clouds comprises of highlighted keywords or term which reflects the particular subdomain in conceptual hierarchical ontology. Our objective is to highlight the terms that exist in the particular transcript. These words are then linked (mapped) to a list of relevant transcript with 112

5 associated temporal information at (c) Transcript box part. The transcript box is necessary in order to allow users to have a glance of idea on particular transcript that reflected from the word cloud. Users can jump to particular scene by selecting or click on provided icon next to the transcript. Meanwhile at (d) ConTag Tweeting message, provides communication mechanism for the users (i.e.: students-to students or students-to-lecturer vice versa) to engage active discussion over the particular video. The details explanation about this mechanism and scenario can be found on the next section. Figure 3. ConTag interface design Figure 4. ConTag message format 3.3. Integrating SNS with ConTag This section will describe how we facilitate the communication mechanism between users over the topics in particular video. The main idea is to promote active participation between users in ConTag ecosystem and engage learning with SNS platform [13, 14]. Initially, segmented transcripts are represented as conceptual graph and tag clouds. Each consists of temporal information to derive user to jump to the particular scene in the video. In contrast, let consider these scenarios: 1) What if users wanted to pose a question at particular time or scene? However, the text alone is relatively abstract to express such context in the discussion over the video. 2) What if someone has left a comment or pose a question at that particular time and how users may respond to grasp the understanding from the question? 3) What if users wanted to share interested part or particular scene with others in SNS (i.e.: Twitter)? In that case, we provide communication mechanisms called ConTag Tweeting message by utilizing the Twitter API. As shown in Figure 3, this ConTag Tweeting message will facilitates the communication among users in ConTag ecosystem. Details about ConTag Tweet message format is shown in Figure 4. It important to note, the time and hierarchy significantly help user to grab instantly the message or question context that are referring to that particular time or scene in the video. User may write any comment or message in comment box. We can call this as Twitter of ConTag or a twitter of e-learning ecosystem. This on the other hand, enables user to label or annotate with the comment over particular video. User also can interact with the message left by other users by simply click respond button, and message window will pop-up on top of the page. In fact, any message left by the user will unfold (overlay) on top of the video at time where the message is left while other users watching the video (see Figure 3 e). Users also can expand the entire message left by other users without having to wait to unfold at that particular time. 4. Conclusion and Future Works We have proposed a design to summarize and accessing video content which can maintain the semantic context based on the provided transcript. Our main contribution is providing contextual information through interactive interface design that helps user to decide the worthwhile to watch the whole video through the Conceptual graph and Tag clouds. This allows us to address missing context that exists in one way learning process (video to user). The Conceptual graph provides conceptual hierarchical ontology as visualization interface that helps user to provides quick scanning and make relevance decision to jump to particular scene. In fact, it also facilitates contextual information to 113

6 provide context of discussion related to particular scene or time in the video, which usually ignored. Usually they simply share the plain video and sometimes accompany with long description in order to explain where and which particular part of the video they are referring to. Thanks to our temporal info and hierarchy info in ConTag Tweeting message which address aforementioned circumstances. Another key point is, we also to promote active learning and collaborative learning over particular video content without losing the context of the discussion through the communication mechanism. We facilitate context and understanding sharing that absence in one way learning process (video to student). For future work, the encouraging numbers of video for educational purpose motivates us to expand our system to another domain available in ODP. We are also considering implementing other text mining method to improve the relevancy of generated keywords or terms. 5. Acknowledgement This research was supported by the Ministry of Knowledge Economy (MKE), Korea and Microsoft Research under IT/SW Creative Research Program supervised by National IT Industry Promotion Agency (NIPA) (NIPA-2012-(H )). 6. References [1] Free to move between screens: The Cross Platform Report 2013, retrieved from html [2] Xu, C., Zhang, Y. F., Zhu, G., Rui, Y., Lu, H., & Huang, Q, Using webcast text for semantic event detection in broadcast sports video. Multimedia, IEEE Transactions, vol. 10, issue 7, pp , [3] Liao, C. W., Chan, K. H., Cheng, B. Y., Tsai, C. H., Chang, W. T., & Chuang, Y. L., An open framework for video content analysis. In Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, pp. 1-8, [4] Li Xiang-Wei, Zhang Ming-Xin, Zhao Shuang-Ping and Zhu Ya Lin, A Novel Dynamic Video Summarization Approach Based on Rough Sets in Compressed Domain, Information Technology Journal, vol. 8, pp , [5] Salton, G., Developments in automatic text retrieval, In Science (New York, NY), vol. 253 (no. 5023), pp , [6] Tan, S., Tan, H. K., & Ngo, C. W. (2010, October). Topical summarization of web videos by visual-text time-dependent alignment. In Proceedings of the international conference on Multimedia (pp ). ACM. [7] Bateman, S., Gutwin, C., & Nacenta, M., Seeing things in the clouds: the effect of visual features on tag cloud selections, In Proceedings of the nineteenth ACM conference on Hypertext and hypermedia, pp , [8] Gottron, T., Document word clouds: Visualising web documents as tag clouds to aid users in relevance decisions, Research and Advanced Technology for Digital Libraries, pp , [9] Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M. X., & Qu, H, Context preserving dynamic word cloud visualization, In IEEE Pacific Visualization Symposium, pp , [10] Miley, F., & Read, A., Using Word Clouds to Develop Proactive Learners, Journal of the Scholarship of Teaching and Learning, vol. 11(2), pp , [11] Haubold, A., Analysis and visualization of index words from audio transcripts of instructional videos, In Multimedia Software Engineering, IEEE Sixth International Symposium proceedings, pp , [12] Agrawal, R., Imieliński, T., & Swami, A., Mining association rules between sets of items in large databases, In ACM SIGMOD Record, vol. 22 (No. 2), pp , [13] Shamma, D., Kennedy, L., & Churchill, E., Tweetgeist: Can the twitter timeline reveal the structure of broadcast events, In CSCW Horizons, [14] Sack, H., & Waitelonis, J., Integrating social tagging and document annotation for content-based search in multimedia data, In Semantic Authoring and Annotation Workshop (SAAW),

Term extraction for user profiling: evaluation by the user

Term extraction for user profiling: evaluation by the user Term extraction for user profiling: evaluation by the user Suzan Verberne 1, Maya Sappelli 1,2, Wessel Kraaij 1,2 1 Institute for Computing and Information Sciences, Radboud University Nijmegen 2 TNO,

More information

Search Result Optimization using Annotators

Search Result Optimization using Annotators Search Result Optimization using Annotators Vishal A. Kamble 1, Amit B. Chougule 2 1 Department of Computer Science and Engineering, D Y Patil College of engineering, Kolhapur, Maharashtra, India 2 Professor,

More information

Exploiting Tag Clouds for Database Browsing and Querying

Exploiting Tag Clouds for Database Browsing and Querying Exploiting Tag Clouds for Database Browsing and Querying Stefania Leone, Matthias Geel, and Moira C. Norrie Institute for Information Systems, ETH Zurich CH-8092 Zurich, Switzerland {leone geel norrie}@inf.ethz.ch

More information

Clustering Technique in Data Mining for Text Documents

Clustering Technique in Data Mining for Text Documents Clustering Technique in Data Mining for Text Documents Ms.J.Sathya Priya Assistant Professor Dept Of Information Technology. Velammal Engineering College. Chennai. Ms.S.Priyadharshini Assistant Professor

More information

Can Twitter Predict Royal Baby's Name?

Can Twitter Predict Royal Baby's Name? Summary Can Twitter Predict Royal Baby's Name? Bohdan Pavlyshenko Ivan Franko Lviv National University,Ukraine, b.pavlyshenko@gmail.com In this paper, we analyze the existence of possible correlation between

More information

The Archiving Method for Records of Public Sector s Facebook Page

The Archiving Method for Records of Public Sector s Facebook Page The Archiving Method for Records of Public Sector s Facebook Page Yun-Young Hwang 1, In-Ho Jang 2 and Kyu-Chul Lee 2 1 Korean Institute of Science and Technology Information 2 Dept. Computer Engineering,

More information

So today we shall continue our discussion on the search engines and web crawlers. (Refer Slide Time: 01:02)

So today we shall continue our discussion on the search engines and web crawlers. (Refer Slide Time: 01:02) Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #39 Search Engines and Web Crawler :: Part 2 So today we

More information

Semantic Concept Based Retrieval of Software Bug Report with Feedback

Semantic Concept Based Retrieval of Software Bug Report with Feedback Semantic Concept Based Retrieval of Software Bug Report with Feedback Tao Zhang, Byungjeong Lee, Hanjoon Kim, Jaeho Lee, Sooyong Kang, and Ilhoon Shin Abstract Mining software bugs provides a way to develop

More information

Research on News Video Multi-topic Extraction and Summarization

Research on News Video Multi-topic Extraction and Summarization International Journal of New Technology and Research (IJNTR) ISSN:2454-4116, Volume-2, Issue-3, March 2016 Pages 37-39 Research on News Video Multi-topic Extraction and Summarization Di Li, Hua Huo Abstract

More information

MPEG-7: Multimedia Content Description interface

MPEG-7: Multimedia Content Description interface Introduction to MPEG-21 workshop 20th & 21st of March 2000 MPEG-7: Multimedia Content Description interface Philippe Salembier Olivier Avaro Universitat Politècnica de Catalunya France Telecom philippe@gps.tsc.upc.es

More information

Towards a Visually Enhanced Medical Search Engine

Towards a Visually Enhanced Medical Search Engine Towards a Visually Enhanced Medical Search Engine Lavish Lalwani 1,2, Guido Zuccon 1, Mohamed Sharaf 2, Anthony Nguyen 1 1 The Australian e-health Research Centre, Brisbane, Queensland, Australia; 2 The

More information

isecure: Integrating Learning Resources for Information Security Research and Education The isecure team

isecure: Integrating Learning Resources for Information Security Research and Education The isecure team isecure: Integrating Learning Resources for Information Security Research and Education The isecure team 1 isecure NSF-funded collaborative project (2012-2015) Faculty NJIT Vincent Oria Jim Geller Reza

More information

Folksonomies versus Automatic Keyword Extraction: An Empirical Study

Folksonomies versus Automatic Keyword Extraction: An Empirical Study Folksonomies versus Automatic Keyword Extraction: An Empirical Study Hend S. Al-Khalifa and Hugh C. Davis Learning Technology Research Group, ECS, University of Southampton, Southampton, SO17 1BJ, UK {hsak04r/hcd}@ecs.soton.ac.uk

More information

Tweets Miner for Stock Market Analysis

Tweets Miner for Stock Market Analysis Tweets Miner for Stock Market Analysis Bohdan Pavlyshenko Electronics department, Ivan Franko Lviv National University,Ukraine, Drahomanov Str. 50, Lviv, 79005, Ukraine, e-mail: b.pavlyshenko@gmail.com

More information

Blog Post Extraction Using Title Finding

Blog Post Extraction Using Title Finding Blog Post Extraction Using Title Finding Linhai Song 1, 2, Xueqi Cheng 1, Yan Guo 1, Bo Wu 1, 2, Yu Wang 1, 2 1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 2 Graduate School

More information

Analysis of Social Media Streams

Analysis of Social Media Streams Fakultätsname 24 Fachrichtung 24 Institutsname 24, Professur 24 Analysis of Social Media Streams Florian Weidner Dresden, 21.01.2014 Outline 1.Introduction 2.Social Media Streams Clustering Summarization

More information

IMAV: An Intelligent Multi-Agent Model Based on Cloud Computing for Resource Virtualization

IMAV: An Intelligent Multi-Agent Model Based on Cloud Computing for Resource Virtualization 2011 International Conference on Information and Electronics Engineering IPCSIT vol.6 (2011) (2011) IACSIT Press, Singapore IMAV: An Intelligent Multi-Agent Model Based on Cloud Computing for Resource

More information

Mining Text Data: An Introduction

Mining Text Data: An Introduction Bölüm 10. Metin ve WEB Madenciliği http://ceng.gazi.edu.tr/~ozdemir Mining Text Data: An Introduction Data Mining / Knowledge Discovery Structured Data Multimedia Free Text Hypertext HomeLoan ( Frank Rizzo

More information

Institute for Information Systems and Computer Media. Graz University of Technology. Phone: (+43) 316-873-5613. Graz University of Technology

Institute for Information Systems and Computer Media. Graz University of Technology. Phone: (+43) 316-873-5613. Graz University of Technology Title: Tag Clouds Name: Christoph Trattner 1 and Denis Helic 2 and Markus Strohmaier 2 Affil./Addr. 1: Knowledge Management Institute and Institute for Information Systems and Computer Media Graz University

More information

Web Mining. Margherita Berardi LACAM. Dipartimento di Informatica Università degli Studi di Bari berardi@di.uniba.it

Web Mining. Margherita Berardi LACAM. Dipartimento di Informatica Università degli Studi di Bari berardi@di.uniba.it Web Mining Margherita Berardi LACAM Dipartimento di Informatica Università degli Studi di Bari berardi@di.uniba.it Bari, 24 Aprile 2003 Overview Introduction Knowledge discovery from text (Web Content

More information

COURSE RECOMMENDER SYSTEM IN E-LEARNING

COURSE RECOMMENDER SYSTEM IN E-LEARNING International Journal of Computer Science and Communication Vol. 3, No. 1, January-June 2012, pp. 159-164 COURSE RECOMMENDER SYSTEM IN E-LEARNING Sunita B Aher 1, Lobo L.M.R.J. 2 1 M.E. (CSE)-II, Walchand

More information

A Platform for Managing Term Dictionaries for Utilizing Distributed Interview Archives

A Platform for Managing Term Dictionaries for Utilizing Distributed Interview Archives 1102 Web Information Systems Modeling A Platform for Managing Term Dictionaries for Utilizing Distributed Interview Archives Kenro Aihara and Atsuhiro Takasu National Institute of Informatics 2-1-2 Hitotsubashi,

More information

Social-Sensed Multimedia Computing

Social-Sensed Multimedia Computing Social-Sensed Multimedia Computing Wenwu Zhu Tsinghua University Multimedia Computing Search Recommend Multimedia Summarize Social Distribution... Sense from Social Preference Influence User behaviors

More information

Understanding Web personalization with Web Usage Mining and its Application: Recommender System

Understanding Web personalization with Web Usage Mining and its Application: Recommender System Understanding Web personalization with Web Usage Mining and its Application: Recommender System Manoj Swami 1, Prof. Manasi Kulkarni 2 1 M.Tech (Computer-NIMS), VJTI, Mumbai. 2 Department of Computer Technology,

More information

Users Interest Correlation through Web Log Mining

Users Interest Correlation through Web Log Mining Users Interest Correlation through Web Log Mining F. Tao, P. Contreras, B. Pauer, T. Taskaya and F. Murtagh School of Computer Science, the Queen s University of Belfast; DIW-Berlin Abstract When more

More information

Search and Information Retrieval

Search and Information Retrieval Search and Information Retrieval Search on the Web 1 is a daily activity for many people throughout the world Search and communication are most popular uses of the computer Applications involving search

More information

ASSOCIATION RULE MINING ON WEB LOGS FOR EXTRACTING INTERESTING PATTERNS THROUGH WEKA TOOL

ASSOCIATION RULE MINING ON WEB LOGS FOR EXTRACTING INTERESTING PATTERNS THROUGH WEKA TOOL International Journal Of Advanced Technology In Engineering And Science Www.Ijates.Com Volume No 03, Special Issue No. 01, February 2015 ISSN (Online): 2348 7550 ASSOCIATION RULE MINING ON WEB LOGS FOR

More information

Importance of Domain Knowledge in Web Recommender Systems

Importance of Domain Knowledge in Web Recommender Systems Importance of Domain Knowledge in Web Recommender Systems Saloni Aggarwal Student UIET, Panjab University Chandigarh, India Veenu Mangat Assistant Professor UIET, Panjab University Chandigarh, India ABSTRACT

More information

Intinno: A Web Integrated Digital Library and Learning Content Management System

Intinno: A Web Integrated Digital Library and Learning Content Management System Intinno: A Web Integrated Digital Library and Learning Content Management System Synopsis of the Thesis to be submitted in Partial Fulfillment of the Requirements for the Award of the Degree of Master

More information

Videoconferencing in open learning

Videoconferencing in open learning OpenLearn: Researching open content in education 21 Videoconferencing in open learning Elia Tomadaki and Peter J. Scott e.tomadaki@open.ac.uk peter.scott@open.ac.uk Abstract This paper presents naturalistic

More information

Text Mining Approach for Big Data Analysis Using Clustering and Classification Methodologies

Text Mining Approach for Big Data Analysis Using Clustering and Classification Methodologies Text Mining Approach for Big Data Analysis Using Clustering and Classification Methodologies Somesh S Chavadi 1, Dr. Asha T 2 1 PG Student, 2 Professor, Department of Computer Science and Engineering,

More information

EXPLOITING FOLKSONOMIES AND ONTOLOGIES IN AN E-BUSINESS APPLICATION

EXPLOITING FOLKSONOMIES AND ONTOLOGIES IN AN E-BUSINESS APPLICATION EXPLOITING FOLKSONOMIES AND ONTOLOGIES IN AN E-BUSINESS APPLICATION Anna Goy and Diego Magro Dipartimento di Informatica, Università di Torino C. Svizzera, 185, I-10149 Italy ABSTRACT This paper proposes

More information

Self Organizing Maps for Visualization of Categories

Self Organizing Maps for Visualization of Categories Self Organizing Maps for Visualization of Categories Julian Szymański 1 and Włodzisław Duch 2,3 1 Department of Computer Systems Architecture, Gdańsk University of Technology, Poland, julian.szymanski@eti.pg.gda.pl

More information

Towards SoMEST Combining Social Media Monitoring with Event Extraction and Timeline Analysis

Towards SoMEST Combining Social Media Monitoring with Event Extraction and Timeline Analysis Towards SoMEST Combining Social Media Monitoring with Event Extraction and Timeline Analysis Yue Dai, Ernest Arendarenko, Tuomo Kakkonen, Ding Liao School of Computing University of Eastern Finland {yvedai,

More information

Developing a Collaborative MOOC Learning Environment utilizing Video Sharing with Discussion Summarization as Added-Value

Developing a Collaborative MOOC Learning Environment utilizing Video Sharing with Discussion Summarization as Added-Value , pp. 397-408 http://dx.doi.org/10.14257/ijmue.2014.9.11.38 Developing a Collaborative MOOC Learning Environment utilizing Video Sharing with Discussion Summarization as Added-Value Mohannad Al-Mousa 1

More information

Semantic Web based e-learning System for Sports Domain

Semantic Web based e-learning System for Sports Domain Semantic Web based e-learning System for Sports Domain S.Muthu lakshmi Research Scholar Dept.of Information Science & Technology Anna University, Chennai G.V.Uma Professor & Research Supervisor Dept.of

More information

Information Visualization of Attributed Relational Data

Information Visualization of Attributed Relational Data Information Visualization of Attributed Relational Data Mao Lin Huang Department of Computer Systems Faculty of Information Technology University of Technology, Sydney PO Box 123 Broadway, NSW 2007 Australia

More information

Diagnosis of Students Online Learning Portfolios

Diagnosis of Students Online Learning Portfolios Diagnosis of Students Online Learning Portfolios Chien-Ming Chen 1, Chao-Yi Li 2, Te-Yi Chan 3, Bin-Shyan Jong 4, and Tsong-Wuu Lin 5 Abstract - Online learning is different from the instruction provided

More information

OLAP Visualization Operator for Complex Data

OLAP Visualization Operator for Complex Data OLAP Visualization Operator for Complex Data Sabine Loudcher and Omar Boussaid ERIC laboratory, University of Lyon (University Lyon 2) 5 avenue Pierre Mendes-France, 69676 Bron Cedex, France Tel.: +33-4-78772320,

More information

Legal Informatics Final Paper Submission Creating a Legal-Focused Search Engine I. BACKGROUND II. PROBLEM AND SOLUTION

Legal Informatics Final Paper Submission Creating a Legal-Focused Search Engine I. BACKGROUND II. PROBLEM AND SOLUTION Brian Lao - bjlao Karthik Jagadeesh - kjag Legal Informatics Final Paper Submission Creating a Legal-Focused Search Engine I. BACKGROUND There is a large need for improved access to legal help. For example,

More information

A COGNITIVE APPROACH IN PATTERN ANALYSIS TOOLS AND TECHNIQUES USING WEB USAGE MINING

A COGNITIVE APPROACH IN PATTERN ANALYSIS TOOLS AND TECHNIQUES USING WEB USAGE MINING A COGNITIVE APPROACH IN PATTERN ANALYSIS TOOLS AND TECHNIQUES USING WEB USAGE MINING M.Gnanavel 1 & Dr.E.R.Naganathan 2 1. Research Scholar, SCSVMV University, Kanchipuram,Tamil Nadu,India. 2. Professor

More information

2 AIMS: an Agent-based Intelligent Tool for Informational Support

2 AIMS: an Agent-based Intelligent Tool for Informational Support Aroyo, L. & Dicheva, D. (2000). Domain and user knowledge in a web-based courseware engineering course, knowledge-based software engineering. In T. Hruska, M. Hashimoto (Eds.) Joint Conference knowledge-based

More information

Merging learner performance with browsing behavior in video lectures

Merging learner performance with browsing behavior in video lectures Merging learner performance with browsing behavior in video lectures Konstantinos Chorianopoulos Department of Informatics Ionian University Corfu, GR-49100 Greece choko@ionio.gr Michail N. Giannakos Department

More information

Domain Classification of Technical Terms Using the Web

Domain Classification of Technical Terms Using the Web Systems and Computers in Japan, Vol. 38, No. 14, 2007 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J89-D, No. 11, November 2006, pp. 2470 2482 Domain Classification of Technical Terms Using

More information

Movie Classification Using k-means and Hierarchical Clustering

Movie Classification Using k-means and Hierarchical Clustering Movie Classification Using k-means and Hierarchical Clustering An analysis of clustering algorithms on movie scripts Dharak Shah DA-IICT, Gandhinagar Gujarat, India dharak_shah@daiict.ac.in Saheb Motiani

More information

Data Mining in Web Search Engine Optimization and User Assisted Rank Results

Data Mining in Web Search Engine Optimization and User Assisted Rank Results Data Mining in Web Search Engine Optimization and User Assisted Rank Results Minky Jindal Institute of Technology and Management Gurgaon 122017, Haryana, India Nisha kharb Institute of Technology and Management

More information

Establishment of Fire Control Management System in Building Information Modeling Environment

Establishment of Fire Control Management System in Building Information Modeling Environment Establishment of Fire Control Management System in Building Information Modeling Environment Yan-Chyuan Shiau 1, Chong-Teng Chang 2 Department of Construction Management, Chung Hua University, 707, Wu-Fu

More information

Best Practices for Structural Metadata Version 1 Yale University Library June 1, 2008

Best Practices for Structural Metadata Version 1 Yale University Library June 1, 2008 Best Practices for Structural Metadata Version 1 Yale University Library June 1, 2008 Background The Digital Production and Integration Program (DPIP) is sponsoring the development of documentation outlining

More information

Semantic Video Annotation by Mining Association Patterns from Visual and Speech Features

Semantic Video Annotation by Mining Association Patterns from Visual and Speech Features Semantic Video Annotation by Mining Association Patterns from and Speech Features Vincent. S. Tseng, Ja-Hwung Su, Jhih-Hong Huang and Chih-Jen Chen Department of Computer Science and Information Engineering

More information

TV INSIGHTS APPLICATION OF BIG DATA TO TELEVISION

TV INSIGHTS APPLICATION OF BIG DATA TO TELEVISION TV INSIGHTS APPLICATION OF BIG DATA TO TELEVISION AN ARRIS WHITE PAPER BY: BHAVAN GANDHI, ALFONSO MARTINEZ- SMITH, & DOUG KUHLMAN TABLE OF CONTENTS ABSTRACT... 3 INTRODUCTION INTERSECTION OF TV & BIG DATA...

More information

New Web tool to create educational and adaptive courses in an E-Learning platform based fusion of Web resources

New Web tool to create educational and adaptive courses in an E-Learning platform based fusion of Web resources New Web tool to create educational and adaptive courses in an E-Learning platform based fusion of Web resources Mohammed Chaoui 1, Mohamed Tayeb Laskri 2 1,2 Badji Mokhtar University Annaba, Algeria 1

More information

Automatic Annotation Wrapper Generation and Mining Web Database Search Result

Automatic Annotation Wrapper Generation and Mining Web Database Search Result Automatic Annotation Wrapper Generation and Mining Web Database Search Result V.Yogam 1, K.Umamaheswari 2 1 PG student, ME Software Engineering, Anna University (BIT campus), Trichy, Tamil nadu, India

More information

MALLET-Privacy Preserving Influencer Mining in Social Media Networks via Hypergraph

MALLET-Privacy Preserving Influencer Mining in Social Media Networks via Hypergraph MALLET-Privacy Preserving Influencer Mining in Social Media Networks via Hypergraph Janani K 1, Narmatha S 2 Assistant Professor, Department of Computer Science and Engineering, Sri Shakthi Institute of

More information

PRODUCT REVIEW RANKING SUMMARIZATION

PRODUCT REVIEW RANKING SUMMARIZATION PRODUCT REVIEW RANKING SUMMARIZATION N.P.Vadivukkarasi, Research Scholar, Department of Computer Science, Kongu Arts and Science College, Erode. Dr. B. Jayanthi M.C.A., M.Phil., Ph.D., Associate Professor,

More information

IT services for analyses of various data samples

IT services for analyses of various data samples IT services for analyses of various data samples Ján Paralič, František Babič, Martin Sarnovský, Peter Butka, Cecília Havrilová, Miroslava Muchová, Michal Puheim, Martin Mikula, Gabriel Tutoky Technical

More information

Utilising Ontology-based Modelling for Learning Content Management

Utilising Ontology-based Modelling for Learning Content Management Utilising -based Modelling for Learning Content Management Claus Pahl, Muhammad Javed, Yalemisew M. Abgaz Centre for Next Generation Localization (CNGL), School of Computing, Dublin City University, Dublin

More information

Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information

Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information Eric Hsueh-Chan Lu Chi-Wei Huang Vincent S. Tseng Institute of Computer Science and Information Engineering

More information

Efficient Query Optimizing System for Searching Using Data Mining Technique

Efficient Query Optimizing System for Searching Using Data Mining Technique Vol.1, Issue.2, pp-347-351 ISSN: 2249-6645 Efficient Query Optimizing System for Searching Using Data Mining Technique Velmurugan.N Vijayaraj.A Assistant Professor, Department of MCA, Associate Professor,

More information

The 2006 IEEE / WIC / ACM International Conference on Web Intelligence Hong Kong, China

The 2006 IEEE / WIC / ACM International Conference on Web Intelligence Hong Kong, China WISE: Hierarchical Soft Clustering of Web Page Search based on Web Content Mining Techniques Ricardo Campos 1, 2 Gaël Dias 2 Célia Nunes 2 1 Instituto Politécnico de Tomar Tomar, Portugal 2 Centre of Human

More information

A Method of Caption Detection in News Video

A Method of Caption Detection in News Video 3rd International Conference on Multimedia Technology(ICMT 3) A Method of Caption Detection in News Video He HUANG, Ping SHI Abstract. News video is one of the most important media for people to get information.

More information

SEMANTIC VIDEO ANNOTATION IN E-LEARNING FRAMEWORK

SEMANTIC VIDEO ANNOTATION IN E-LEARNING FRAMEWORK SEMANTIC VIDEO ANNOTATION IN E-LEARNING FRAMEWORK Antonella Carbonaro, Rodolfo Ferrini Department of Computer Science University of Bologna Mura Anteo Zamboni 7, I-40127 Bologna, Italy Tel.: +39 0547 338830

More information

Survey: Retrieval of Video Using Content (Speech &Text) Information

Survey: Retrieval of Video Using Content (Speech &Text) Information Survey: Retrieval of Video Using Content (Speech &Text) Information Bhagwant B. Handge 1, Prof. N.R.Wankhade 2 1. M.E Student, Kalyani Charitable Trust s Late G.N. Sapkal College of Engineering, Nashik

More information

A Comparative Approach to Search Engine Ranking Strategies

A Comparative Approach to Search Engine Ranking Strategies 26 A Comparative Approach to Search Engine Ranking Strategies Dharminder Singh 1, Ashwani Sethi 2 Guru Gobind Singh Collage of Engineering & Technology Guru Kashi University Talwandi Sabo, Bathinda, Punjab

More information

An Ontology Based Text Analytics on Social Media

An Ontology Based Text Analytics on Social Media , pp.233-240 http://dx.doi.org/10.14257/ijdta.2015.8.5.20 An Ontology Based Text Analytics on Social Media Pankajdeep Kaur, Pallavi Sharma and Nikhil Vohra GNDU, Regional Campus, GNDU, Regional Campus,

More information

Word Taxonomy for On-line Visual Asset Management and Mining

Word Taxonomy for On-line Visual Asset Management and Mining Word Taxonomy for On-line Visual Asset Management and Mining Osmar R. Zaïane * Eli Hagen ** Jiawei Han ** * Department of Computing Science, University of Alberta, Canada, zaiane@cs.uaberta.ca ** School

More information

Method of Fault Detection in Cloud Computing Systems

Method of Fault Detection in Cloud Computing Systems , pp.205-212 http://dx.doi.org/10.14257/ijgdc.2014.7.3.21 Method of Fault Detection in Cloud Computing Systems Ying Jiang, Jie Huang, Jiaman Ding and Yingli Liu Yunnan Key Lab of Computer Technology Application,

More information

New Matrix Approach to Improve Apriori Algorithm

New Matrix Approach to Improve Apriori Algorithm New Matrix Approach to Improve Apriori Algorithm A. Rehab H. Alwa, B. Anasuya V Patil Associate Prof., IT Faculty, Majan College-University College Muscat, Oman, rehab.alwan@majancolleg.edu.om Associate

More information

Visualizing the Top 400 Universities

Visualizing the Top 400 Universities Int'l Conf. e-learning, e-bus., EIS, and e-gov. EEE'15 81 Visualizing the Top 400 Universities Salwa Aljehane 1, Reem Alshahrani 1, and Maha Thafar 1 saljehan@kent.edu, ralshahr@kent.edu, mthafar@kent.edu

More information

Digital Asset Management. Content Control for Valuable Media Assets

Digital Asset Management. Content Control for Valuable Media Assets Digital Asset Management Content Control for Valuable Media Assets Overview Digital asset management is a core infrastructure requirement for media organizations and marketing departments that need to

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014 RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer

More information

Web Document Clustering

Web Document Clustering Web Document Clustering Lab Project based on the MDL clustering suite http://www.cs.ccsu.edu/~markov/mdlclustering/ Zdravko Markov Computer Science Department Central Connecticut State University New Britain,

More information

GRAPHICAL USER INTERFACE, ACCESS, SEARCH AND REPORTING

GRAPHICAL USER INTERFACE, ACCESS, SEARCH AND REPORTING MEDIA MONITORING AND ANALYSIS GRAPHICAL USER INTERFACE, ACCESS, SEARCH AND REPORTING Searchers Reporting Delivery (Player Selection) DATA PROCESSING AND CONTENT REPOSITORY ADMINISTRATION AND MANAGEMENT

More information

Topic Maps Visualization

Topic Maps Visualization Topic Maps Visualization Bénédicte Le Grand, Laboratoire d'informatique de Paris 6 Introduction Topic maps provide a bridge between the domains of knowledge representation and information management. Topics

More information

Cloud Storage-based Intelligent Document Archiving for the Management of Big Data

Cloud Storage-based Intelligent Document Archiving for the Management of Big Data Cloud Storage-based Intelligent Document Archiving for the Management of Big Data Keedong Yoo Dept. of Management Information Systems Dankook University Cheonan, Republic of Korea Abstract : The cloud

More information

Framework model on enterprise information system based on Internet of things

Framework model on enterprise information system based on Internet of things International Journal of Intelligent Information Systems 2014; 3(6): 55-59 Published online December 22, 2014 (http://www.sciencepublishinggroup.com/j/ijiis) doi: 10.11648/j.ijiis.20140306.11 ISSN: 2328-7675

More information

Web Database Integration

Web Database Integration Web Database Integration Wei Liu School of Information Renmin University of China Beijing, 100872, China gue2@ruc.edu.cn Xiaofeng Meng School of Information Renmin University of China Beijing, 100872,

More information

REVIEW ON QUERY CLUSTERING ALGORITHMS FOR SEARCH ENGINE OPTIMIZATION

REVIEW ON QUERY CLUSTERING ALGORITHMS FOR SEARCH ENGINE OPTIMIZATION Volume 2, Issue 2, February 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: A REVIEW ON QUERY CLUSTERING

More information

Semantic Search in Portals using Ontologies

Semantic Search in Portals using Ontologies Semantic Search in Portals using Ontologies Wallace Anacleto Pinheiro Ana Maria de C. Moura Military Institute of Engineering - IME/RJ Department of Computer Engineering - Rio de Janeiro - Brazil [awallace,anamoura]@de9.ime.eb.br

More information

1 Introduction. Rhys Causey 1,2, Ronald Baecker 1,2, Kelly Rankin 2, and Peter Wolf 2

1 Introduction. Rhys Causey 1,2, Ronald Baecker 1,2, Kelly Rankin 2, and Peter Wolf 2 epresence Interactive Media: An Open Source elearning Infrastructure and Web Portal for Interactive Webcasting, Videoconferencing, & Rich Media Archiving Rhys Causey 1,2, Ronald Baecker 1,2, Kelly Rankin

More information

Business Intelligence in E-Learning

Business Intelligence in E-Learning Business Intelligence in E-Learning (Case Study of Iran University of Science and Technology) Mohammad Hassan Falakmasir 1, Jafar Habibi 2, Shahrouz Moaven 1, Hassan Abolhassani 2 Department of Computer

More information

USING SEMANTIC WEB MINING TECHNOLOGIES FOR PERSONALIZED E-LEARNING EXPERIENCES

USING SEMANTIC WEB MINING TECHNOLOGIES FOR PERSONALIZED E-LEARNING EXPERIENCES USING SEMANTIC WEB MINING TECHNOLOGIES FOR PERSONALIZED E-LEARNING EXPERIENCES Penelope Markellou 1,2, Ioanna Mousourouli 2, Sirmakessis Spiros 1,2,3, Athanasios Tsakalidis 1,2 1 Research Academic Computer

More information

LinksTo A Web2.0 System that Utilises Linked Data Principles to Link Related Resources Together

LinksTo A Web2.0 System that Utilises Linked Data Principles to Link Related Resources Together LinksTo A Web2.0 System that Utilises Linked Data Principles to Link Related Resources Together Owen Sacco 1 and Matthew Montebello 1, 1 University of Malta, Msida MSD 2080, Malta. {osac001, matthew.montebello}@um.edu.mt

More information

Qualitative Corporate Dashboards for Corporate Monitoring Peng Jia and Miklos A. Vasarhelyi 1

Qualitative Corporate Dashboards for Corporate Monitoring Peng Jia and Miklos A. Vasarhelyi 1 Qualitative Corporate Dashboards for Corporate Monitoring Peng Jia and Miklos A. Vasarhelyi 1 Introduction Electronic Commerce 2 is accelerating dramatically changes in the business process. Electronic

More information

Intelligent Analysis of User Interactions in a Collaborative Software Engineering Context

Intelligent Analysis of User Interactions in a Collaborative Software Engineering Context Intelligent Analysis of User Interactions in a Collaborative Software Engineering Context Alejandro Corbellini 1,2, Silvia Schiaffino 1,2, Daniela Godoy 1,2 1 ISISTAN Research Institute, UNICEN University,

More information

Approaches of Using a Word-Image Ontology and an Annotated Image Corpus as Intermedia for Cross-Language Image Retrieval

Approaches of Using a Word-Image Ontology and an Annotated Image Corpus as Intermedia for Cross-Language Image Retrieval Approaches of Using a Word-Image Ontology and an Annotated Image Corpus as Intermedia for Cross-Language Image Retrieval Yih-Chen Chang and Hsin-Hsi Chen Department of Computer Science and Information

More information

Visualization methods for patent data

Visualization methods for patent data Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes

More information

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT

More information

Analysis of Data Mining Concepts in Higher Education with Needs to Najran University

Analysis of Data Mining Concepts in Higher Education with Needs to Najran University 590 Analysis of Data Mining Concepts in Higher Education with Needs to Najran University Mohamed Hussain Tawarish 1, Farooqui Waseemuddin 2 Department of Computer Science, Najran Community College. Najran

More information

Analysis and Visualization with Large Scale Temporal Web Archives

Analysis and Visualization with Large Scale Temporal Web Archives 1 st Int. Alexandria Workshop (15th. Sep. 2014) Multiple Media Analysis and Visualization with Large Scale Temporal Web Archives Masashi Toyoda Center for Socio Global Informatics, Institute t of Industrial

More information

STATISTICA. Financial Institutions. Case Study: Credit Scoring. and

STATISTICA. Financial Institutions. Case Study: Credit Scoring. and Financial Institutions and STATISTICA Case Study: Credit Scoring STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table of Contents INTRODUCTION: WHAT

More information

JOURNAL OF OBJECT TECHNOLOGY

JOURNAL OF OBJECT TECHNOLOGY JOURNAL OF OBJECT TECHNOLOGY Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering JOT, 2005 Vol. 4, No.2, March-April 2005 On Metadata Management Technology: Status and Issues

More information

Using Google Analytics

Using Google Analytics Using Google Analytics Overview Google Analytics is a free tracking application used to monitor visitors to your website in order to provide site designers with a fuller knowledge of their audience. At

More information

A STUDY REGARDING INTER DOMAIN LINKED DOCUMENTS SIMILARITY AND THEIR CONSEQUENT BOUNCE RATE

A STUDY REGARDING INTER DOMAIN LINKED DOCUMENTS SIMILARITY AND THEIR CONSEQUENT BOUNCE RATE STUDIA UNIV. BABEŞ BOLYAI, INFORMATICA, Volume LIX, Number 1, 2014 A STUDY REGARDING INTER DOMAIN LINKED DOCUMENTS SIMILARITY AND THEIR CONSEQUENT BOUNCE RATE DIANA HALIŢĂ AND DARIUS BUFNEA Abstract. Then

More information

Using Library Dependencies for Clustering

Using Library Dependencies for Clustering Using Library Dependencies for Clustering Jochen Quante Software Engineering Group, FB03 Informatik, Universität Bremen quante@informatik.uni-bremen.de Abstract: Software clustering is an established approach

More information

MULTIMEDIA DATABASE APPLICATIONS: ISSUES AND CONCERNS FOR CLASSROOM TEACHING

MULTIMEDIA DATABASE APPLICATIONS: ISSUES AND CONCERNS FOR CLASSROOM TEACHING MULTIMEDIA DATABASE APPLICATIONS: ISSUES AND CONCERNS FOR CLASSROOM TEACHING Chien Yu and Teri Brandenburg Department of Instructional Systems & Workforce Development, Mississippi State University cyu@colled.msstate.edu;

More information

HOW TO MAKE SENSE OF BIG DATA TO BETTER DRIVE BUSINESS PROCESSES, IMPROVE DECISION-MAKING, AND SUCCESSFULLY COMPETE IN TODAY S MARKETS.

HOW TO MAKE SENSE OF BIG DATA TO BETTER DRIVE BUSINESS PROCESSES, IMPROVE DECISION-MAKING, AND SUCCESSFULLY COMPETE IN TODAY S MARKETS. HOW TO MAKE SENSE OF BIG DATA TO BETTER DRIVE BUSINESS PROCESSES, IMPROVE DECISION-MAKING, AND SUCCESSFULLY COMPETE IN TODAY S MARKETS. ALTILIA turns Big Data into Smart Data and enables businesses to

More information

Component visualization methods for large legacy software in C/C++

Component visualization methods for large legacy software in C/C++ Annales Mathematicae et Informaticae 44 (2015) pp. 23 33 http://ami.ektf.hu Component visualization methods for large legacy software in C/C++ Máté Cserép a, Dániel Krupp b a Eötvös Loránd University mcserep@caesar.elte.hu

More information

Knowledge Discovery from patents using KMX Text Analytics

Knowledge Discovery from patents using KMX Text Analytics Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs anton.heijs@treparel.com Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers

More information

A) What Web Browser do I need? B) Why I cannot view the most updated content? C) What can we find on the school website? Index Page Layout:

A) What Web Browser do I need? B) Why I cannot view the most updated content? C) What can we find on the school website? Index Page Layout: A) What Web Browser do I need? - Window 7 / Window 8.1 => Internet Explorer Version 9 or above (Best in Version 11+) Download Link: http://windows.microsoft.com/zh-hk/internet-explorer/download-ie - Window

More information