Available online at SCIENCE Evaluation of crack initiation angle under mixed mode loading at diverse strain rates

Size: px
Start display at page:

Download "Available online at www.sciencedirect.com SCIENCE @DIRECT@ Evaluation of crack initiation angle under mixed mode loading at diverse strain rates"

Transcription

1 Available online at SCIENCE ELSEVIER Theoretical and Applied Fracture Mechanics 42 (2004) 53-6 theoretical and applied fracture mechanics Evaluation of crack initiation angle under mixed mode loading at diverse strain rates LH. Hernández-Gómez *, I. Sauceda-Meza, G. Urriolagoitia-Calderón, A.S. Balankin, O. Susarrey Instituto Politécnico Nacional. Sección de Estudios de Posgrado e Investigación de la ESIME, Edificio 5, 3er. Piso de la Unidad Profesional Adolfo López.Mateos, Col. Lindavista México, DF, Mexico Abstraet Crack initiation angle, under mixed mode loading at several strain rates, is analysed using an experimental-numerical approach. The physical phenomenon for the problem at hand is influenced by the local and global conditions. Qne of such factors is the strain rafe at the crack tipo For this purpose, PMMA plates with centred angled cracks under mixed mode loading were tested. The strain rafe at the neighbourhood of the crack tip before crack propagation was evaluated. Considering that this material is strain rate sensitive, the numerical models were calibrated with the modulus of eiasticity measured in tension tests at the observed strain Tales. Numerical evaluations were performed with the finite eiement method in conjunction with the volume energy density criterion. An improvement in the evaluation of the crack propagation angle was observed. In order to complete the analysis, the crack initiation angle was algo evaluated with the strain energy density factor S, considering the mechanical properties of PMMA, as evaluated at the observed strain rates, and the stress intensity factors k, and k2. Results are in agreement with those observed 2004 Elsevier Ltd. AII rights reserved.. Introduction ing work in []. lt considered the crack initiation Crack propagation stability is an engineering direction for an angled crack which was predicted with the maximum circumferential stress criterion. problem that has attracted attention for many This work inspired the investigation of several years. Much work has been done since the pioneer- additional factors that are involved in the fracture process. Crack extension stability was studied. Corresponding author. using the eigenfunction series expansion [2,3]. This address: luishetor56@hotmail.com (LH. Hernández- approach wasalso considered in [4] to study the Gómez). influence of transversely applied stress by /$ - see front 2004 Elsevier Ltd. Al! rights reserved. doi: 0.06/j.tafmec

2 54 LB. Hernández-Gómez et al. I Theoretica/ and Applied Fracture Mechanics 42 (2004) 53-6 including the second term of the series obtained in [2,3]. This was extended for the case oftension and bending [5,6]. Regarding crack path extension, the work in [7] investigated effects caused by the applied load direction,the curvature crack radius and the complete stress and/or energy field. Later, crack growth instability was evaluated numerically [8,9] and experimentally [lo]. All this work is based on the single edge Batch specimen under biaxial loading. Recently, crack initiation and propagation in beams with edge crack under mixed loading was analysed []. This was done by using an energetic approach based on the S-theory [2]. The aforementioned works have shown that there are many factors involved. Some of them are local while others are global. These different factors have to be separated in arder to establish their individual contribution to the fracture process. This complicates further when mixed mode loading conditions are developed. In all these cases, quasi-static loading conditions were assumed. However, when the time of load application varíes, strain rate conditions are developed at the crack tipo In materials, which are rate sensitive, mechanical properties change with the loading rateo In other words, fracture energy decreases with increasing strain rateo This has been observed by others [3,4]. As a consequence, the evaluation of the crack initiation angle must take into account these factors. Under these consideraliaos, the question being: how will the crack initiation angle be affected under mixed mode loading? This situation is analysed in this work following an experimental-numerical approach. The results are then compared with those obtained by means of the strain energy density factor S [5]. 2. Experimental analysis The experimental work has been divided in two parís. The first part evaluates the PMMA modulus of elasticity at different strain rates and the second part evaluates the crack initiation angle. The objective is to first evaluate the mechanical properlíes under tensile load at the observed strain rates at the crack tip when crack initiation takes place. Table PMMA modulus of elasticityat dilferentstrain Tales Strain rate Ref. (S-I) Modulus of elasticity (GPa) [6] [6] This work This work This work [7] [7] This was done with an 8502 Instron machine with several loading rates. Appropriate tension specimens were tested. Table swiunarises this data. For the comparison of this data, it has to be borne in mind, atleast, two points, namely () the compliance of the testing machine and (2) the batch variation characteristics of the raw material. These factors were minimized as much as possible by making direct readings of the specimen deformation on the gage length of the specimen with a strain gage. Resides, all the specimens were produced from the same sheet. For the analysis of crack propagation direction, PMMA plates with central angledcracks were loaded under tension, along its majar axis of symmetry. The crack angle with respect to the horizontal plane was set to be 0, 30, 45 and 60. Fig. shows the dimensions of the specimens. In all these cases, the strain field was evaluated with a strain gage located at the crack tip neighbourhood. Specimens were tested with a 8502 Instron machifle with the following loading rates: 300 and 3000mm!min and the strain field variation was recorded with a SYSTEM O0 of Vishay of Measurement Group, Inc. Reproducibility of the results was checked, by testing 0 specimens with the same geometrical conditions. It is important to keep in mind that, it is difficult to establish the strain rate at the very crack tiposo, an average evaluation was obtained with a 3mm strain gage located as clase as possible to the very crack tipo The case of 0 is well known and the results were used to validate the experimental and numerical results. A typical strain rate history is shown in Fig. 2. This corresponds to a specimen tested at 3000mm/min with an horizontal crack. As it can

3 L.H. Hernández-Gómez et al I Theoreticaland Applied Fracture Mechanics 42 (2004) 53-6/ 55 I~ 50mm.,~ 50mm. 5mm ~ ~p 8~ 28mm. 5~mm I~ ~ 8mm I-.:! mm 28mm (a) (b) I~ 50mm. I~ 50mm., :Jp 8m~~ 8mm 28mm jp 8 mmjj~ ~~mm 28 min (e) (d) Fig.l. Dimension ofthe cracked specimens and strain gage location.ln al! cases the thickness is 6.35mm. (a) 0, (b) 30, (c) 45 and (d) 60. be seen, the strain cate varies as the loading process takes place. Crack initiation is well defined with a curve peak. 3. Numerical analysis The numerical work has been divided in three parts: () Model development, (2) Model calibration and (3) Evaluation of crack initiation direction.more specifically,franc code [8] was used for this purpose. A finite element model with 4300 nodes was generated. This mesh has rectangular elements of eight nodes and eight quarter point elements were used at the crack tipo The whole plate was simulated because there no sym- metry prevails when angled cracks are introduced. Crack initiation angle was evaluated with the energy density criterion. In this case, K and Ku are required for these calculations. In order to validate FRANC for this purpose, these parameters were evaluated under quasi-static loading with the same geometry of the cracked specimens. They were loaded quasi-statically.. in the same range. The numerical results were compared with those obtained with photoelasticity, using polycarbonate specimens. Convergence between the experimental and numerical results was obtained. This suggests that FRANC is adequate for such calculations. In a second step, the model calibration was done. Its purpose was to obtain the numerical reproduction of the strain cate recorded by the

4 56 LB. Hernández-Gómez et al. I Theoretica/ and Applied Fracture Mechanics 42 (2004) 53-fi E e E Cñ o TIme (sec.) Fig. 2. Strain rate at the crack tip neighbourhood of a specimen with an horizontal crack, and tested with a loading rate of 3000mm/min. strain gages bonded near the crack tipo All the calculations were performed with the same loading rate that was applied by the testing machine. Besides, in order to make a comparison, another finite element analysis was done with the typical modulus of easticity under quasi-static loading (2.9GPa) commonlyreported in the open literature, as in [6]. In Fig. 3, it is shown the typical divergence between these results. This situation was improved when the value of the modulus of elasticity at the observed strain rate, during the loading process, was introduced in the calculations. As shown in Fig. 4, both results are in agreement. In the third step, the fracture analysis of the centred angled crack plate, loaded under tension, '\ E e "(ij Cñ Experimental ---.Numerical o. Time (sec.) 0. Fig. 3. Divergence between the numerical evaluation of the strain rate under quasi-static conditions and the experimental resu!ts.

5 LH. Hernández-GÓmez et al. I Theoretícaland Applied Fracture Medlanícs 42 (2004) 53-6/ E E -; éi Experimental Numerical O (a) Time (sec) E 0.00 Ē c: 'ro éi Experimental Numerical (b) O Time (sec) Fig.4. Converge between numerical and experimental evaluation of the strain rafe at the crack tip neighbourhood, (a) 300mm/min, (b) 3000mm/min. was done. KI and Kn were evaluated. In arder to make a comparison, this evaluation was made with the mechanical properties at the observed strain rates and under quasi-static loading. In the last case, a modulus of elasticity, equals to 2.9GPa was also taken into account. Crack initiation angle was evaluated in accordance with the energy criterían with the following equation: -2KIKII () = arc tan 2 2 [ KI + KII] The results are summarised in Table 2. () 4. Analysis with the strain energy density concept Another way to evaluate the crack initiation angle is with the fracture theory based on the field strength of the local strain energy density pro po sed in [5]. In this case, the energy release rate is not required and mixed moje crack extension problems may be treated. The fundamental parameter of this theory, the strain energy density factor S, is direction sensitive and it is evaluated in two dimensions with the following relation:

6 58 LB. Hernández-Gómez et al. I Tlzeoretical and Applied Fracture Meclzanics 42 (2004) 53~ Table 2 Crack initiation angle evaluated with the energy criterion under quasi-static and dynamic loading Crack Load speed K quasi-static K observed KII quasi-static KII observed Crack Crack initiation angle (O) (mm/min) (MpamI/2) strain raje (MPamI/2) strain raje initiation angle angle at observed (MPamI/2) (MpamI/2) quasi-static (O) strain rate (O) O O s = al!~ + 2al2kk2+ a22~ (2) where k and k2 are the stress intensity factors under loading mode I and, respectively. These parameters are related to the energy release rafe, in generalized plane stress, there results G= (nk )/E and Gil = (n~)/e. The coefficients aij (i,j =,2) are given by al! = l6jl [(3-4v - cos 0)( + cos O)] a2 = ~Jl2 sin O[cos O- ( - 2v)] a22 = l6jl[4(- v)(l - coso) + ( + cos 0)(3cos O-)] (3) where Ois the polar angle, which varies around the crack tip, v is the Poisson's ratio and Jlis the shear modulus of elasticity. Fig. 5 shows the parameters involved in the crack initiation angle evaluation at the crack tip neighbourhood. Once S is established, crack initiation will take place in a radial direction O, from the crack tip, along which the strain energy density is minimum. Hence the crack initiation angle determined from as =0 00 (4) In this work, the crack inciination angle is taken into account in the calculations by means of the values of the SIF k and kz, because their values are function of the orientation of the crack planeo These parameters were caiculated numerically with the finite element method. Besides, the shear mody Fig. 5. Parameters involved in the calculation of the crack initiation angle. ulus is strain rafe dependent, therefore it was calculated from the modulus of elasticity observed during the experimental tests. The results obtained are shown in Table 3 and they are comparedwith those obtained with the maximum circumferential stress criterion. In all the cases reported in Table 3, the load speed was 3000rnm/min. These are the situations, which are more sensitive to the strain rafe. 5. Discussion of the results The tension tests have shown that PMMA becomes more rigid as the strain rafe increases. This is reflected with the increment of the modulus of elasticity as the strain rafe growths. Comparing KI and Kn evaluations at the observed strain rates ay ay 'Ixy ax x

7 Table 3 L.H. Hernández-Gómez et al. / Theoretical and Applied Fracture Mechanics 42 (2004) 53-ól 59 Crack initiation angle evaluated with the strain energy density factor S and the rnaxirnurn circurnferential stress criterion Crack inclination angle Crack initiation angle This work Strain energy density concept Maxirnurn circurnferential stress with those made under quasi-static conditions (Table 2) a divergence of results is found. In fact, the biggest difference of K values is for angles lesser than 45. This is the range in which K is a dominant factor in the fracture process. On the other hand, the upper divergence of Kn líes on the range of angles greater than 45. This is the case in which this parameter plays an important role in crack direction. In the case of the specimen with an horizontal crack, Kn should be zero. Nonetheless, the numerical results show that this value is small. This can be explained by the fact that the whole plate was modelled and some nades may not lay on the crack plane, especially with those that are used in the fracture parameters calculation. Regarding the crack initiation angle, it is neariy O. This was expected. In spite of these differences, it can be considered that the numerical evaluations are in line with reality. With respect to the other cases, the specimens have been made in such a way that the crack runs along the horizontal plane, because Fig. 6. Fracture surface of a 60 cracked specirnen tested at 3rnrn/rnin.

8 60 LH. Hernández-Gómez et al. I Theoretical ami App/ied Fracture Mechanics 42 (2004) 53-{j Fig. 7. Fracture surface of a 60 cracked specimen tested at 3000mm/min. it is perpendicular to the applied tension loado This situation is observed when all the calculations are made with the parameters obtained with the calibrated mojel at the observed strain rateo When quasi-static conditions are applied it can be seen there is some divergence. The crack surfaces were microscopically analysed. Typical results are shown in Figs. 6 and 7, in which the real image is magnified 35 times. In both cases, the initial crack front is on the top of each picture. This is the limit between the mark left by tool that completed the crack front, and the crack surface. In the last afea, different sofí of marks are depicted. In the case of the specimen tested at low strain rate (Fig. 6), the crack surface clase to the crack front has many ribs. On the other hand, the crack loaded with the biggest strain rate (Fig. 7), has a surface which is "clean". This reflects that the latter has used less energy. As the crack propagates, there is a bright regían and at a far distance from the crack front the surface becomes rough. Nonetheless, in the case where a lower strain rate was applied (Fig. 6), there are deeper marks. In other words, as the strain rate increases, the crack surface is smoother. It is important to mentían that this evaluation reflects the fact that less fracture energy is required as the strain rate increases. To complete the discussion, the results with the highest strain rate were compared with those obtained with the strain energy density factor S and the maximum circurnferential stress. As it can be seen, the results of this work and those obtained with the S factor are in agreement. Besides, the case of the horizontal crack (0 ), the crack initiation angle is 0, as it was expected. In accordance with the author's opinion, two points have to be kept in mind when this approach is followed. Namely, () the material mechanical properties at the observed strain rates are easily introduced in the calculations by means of the coefficients all, a2 and a22and (2) the SIF's have to be evaluated as accurate as possible. These should lead to an exact evaluation of the crack angle initiation under

9 L.H. Hernández-Gómez et al. I Theoretical and Applied Fracture Mechanics 42 (2004) mixed loading mode, as the material is strain rafe dependent. Finally, the work in [5]has shown that the predictions based on the maximum stress criterion do deviate from those obtained by the strain energy density criterion. The results reported in Table 3 are in agreement with ibis statement. 6. Concusions The accurate evaluation. of the stress intensity factors of a crack under mixed mode loading is relevant in arder to establish the crack initiation angle. However, when the strain rafe increases at the crack tip, a quasi-static evaluation may no be valido Under ibis scheme, the crack direction angle of propagation calculated varíes in relation with the one observed in quasi-static conditions. This is confirmed with the values of fracture parameters, such as K and KIl' The calculations are improved when the changes of mechanical properties with strain rafe are taken into account. This situation is also valid when the strain energy density factor S is applied. The crack initiation angle was calculated along the radial direction on which the strain energy density is a mínimum. The obtained results are in agreement with those observed experimentally. AIso, ibis confirms the fact that the stationary value of Smin can be used as an intrinsic material parameter, and from ibis a mixed mode fracture criterion can be stated. Resides, the expected divergence with maximum circumferential stress was also observed. Acknowledgments The grant U awarded by Consejo Nacional de Ciencia y Tecnología and the support given to ibis project by COF AA and CGEPI of Instituto Politécnico Nacional are gratefui acknowledged. AIso, the authors thank Mr. Cándido Zamora for the final numerical cal- - culations. References [] F. Erdogan, O.e. Sih, On crack extension in plates under plane loading and transverse shear, J. Basic Eng. Trans. ASME 85(D) (963) [2] B. Cotterell, On brittle fracture paths, In!. J. Fract. Mech. (965) [3] B. Cotterell, Notes on the paths and stability of cracks, Int. J. Fract. TechnoI. 2 (966) [4] J.O. Williams, P.D. Ewing, Fracture under complex stress: The angled crack problem, Int. J. Frac!. Mech. 8 (972) [5] L Finnie, A. Saith, A note on the angled crack problem and directional stability of a crack, In!. J. Frac!. 9 (973) [6] P.D. Ewing, J.L Swedlow, Further results on the angled crack problem, In!. J. Fract. 2 (976) [7] M.E. Kipp, O.C. Sih, The strain energy density failure criterion applied to notched elastic solids, Int. J. Solids Struc!. (975) [8] O. Urriolagoitia-Calderón, LH. Hernández-Oómez, Evaluation of crack propagation stability with the Williams stress function. Part, Int. J. Compu!. Struct. 6 (4) (996) [9] O. Urriolagoitia-Calderón, L.H. Hernández-Oómez, Evaluation of crack propagation stability with the Williams stress function. Part II, Int. J. Computo Struct. 63 (5) (997) [0] O. Urriolagoitia-Calderón, LH. Hernández Oómez, Experimental analysis of crack propagation stability in single edge notch specimens, Theor. AppI. Fract. Mech. 28 (997) [] L Nobile, Mixed mode crack initiation and direction in beams with edge crack, Theor. AppI. Fract. Mech. 33 (2000) [2] O.C. Sih, Strain density factor applied to mixed mode crack problems, Int. J. Frac!. 0 (974) [3] O.C. Sih, D.Y. Tzou, Dynamic fracture tale of Charpy V- notch specimen, Theor. AppI. Fract. Mech. 5 (986) [4] L.H. Hernández-Oómez, C. Ruiz, Assessment of data for dynamic crack initiation under shock pressure loading: Part I-Experiment, Theor. AppI. Fract. Mech. 9 (993) [5] O.C. Sih, Mechanics of Fracture Initiation and Propagation, Kluwer Academic Publishers, Dordrecht, 99, pp [6] LCJ. The properties of "Pespex" acrylic materials, Plastics Division, Welwyn. [7] LH. Hernández-Oómez, C. Ruiz, Assessment of data for dypamic crack initiation under shock pressure loading: Part II-Analysis, Theor. AppI. Fract. Mech. 9 (993) [8] D. Swenson, J. Mark, FRANC2D/L: A crack propagation simulator for plane layered structures, version.3 User's guide, Kansas State University.

Tensile fracture analysis of blunt notched PMMA specimens by means of the Strain Energy Density

Tensile fracture analysis of blunt notched PMMA specimens by means of the Strain Energy Density Engineering Solid Mechanics 3 (2015) 35-42 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm Tensile fracture analysis of blunt notched PMMA specimens

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria

Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria Focussed on characterization of crack tip fields Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria L. Malíková, V. Veselý Brno University of Technology,

More information

NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1

NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 NOTCHES AND THEIR EFFECTS Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 CHAPTER OUTLINE Background Stress/Strain Concentrations S-N Approach for Notched Members

More information

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Numerical modelling of shear connection between concrete slab and sheeting deck

Numerical modelling of shear connection between concrete slab and sheeting deck 7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres

More information

Bending, Forming and Flexing Printed Circuits

Bending, Forming and Flexing Printed Circuits Bending, Forming and Flexing Printed Circuits John Coonrod Rogers Corporation Introduction: In the printed circuit board industry there are generally two main types of circuit boards; there are rigid printed

More information

Short and Large Crack, Mixed-Mode Fatigue-Crack Growth Thresholds in Ti-6Al-4V 1

Short and Large Crack, Mixed-Mode Fatigue-Crack Growth Thresholds in Ti-6Al-4V 1 Short and Large Crack, Mixed-Mode Fatigue-Crack Growth Thresholds in Ti-6Al-4V 1 Mr. R. K. Nalla, Dr. J. P. Campbell and Professor R. O. Ritchie 2 Department of Materials Science and Engineering University

More information

LOAD-CARRYING CAPACITY OF AXIALLY LOADED RODS GLUED-IN PERPENDICULAR TO THE GRAIN

LOAD-CARRYING CAPACITY OF AXIALLY LOADED RODS GLUED-IN PERPENDICULAR TO THE GRAIN LOAD-CARRYING CAPACITY OF AXIALLY LOADED RODS GLUED-IN PERPENDICULAR TO TE GRAIN Prof. Dr.-Ing..J. Blaß, Dipl.-Ing. B. Laskewitz Universität Karlsruhe (T), Germany Abstract Glued-in rods have been used

More information

Multiaxial Fatigue. Professor Darrell Socie. 2008-2014 Darrell Socie, All Rights Reserved

Multiaxial Fatigue. Professor Darrell Socie. 2008-2014 Darrell Socie, All Rights Reserved Multiaxial Fatigue Professor Darrell Socie 2008-2014 Darrell Socie, All Rights Reserved Outline Stresses around holes Crack Nucleation Crack Growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

ELASTO-PLASTIC ANALYSIS OF A HEAVY DUTY PRESS USING F.E.M AND NEUBER S APPROXIMATION METHODS

ELASTO-PLASTIC ANALYSIS OF A HEAVY DUTY PRESS USING F.E.M AND NEUBER S APPROXIMATION METHODS International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 50-56, Article ID: IJMET_06_11_006 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

Technology of EHIS (stamping) applied to the automotive parts production

Technology of EHIS (stamping) applied to the automotive parts production Laboratory of Applied Mathematics and Mechanics Technology of EHIS (stamping) applied to the automotive parts production Churilova Maria, Saint-Petersburg State Polytechnical University Department of Applied

More information

MASTER DEGREE PROJECT

MASTER DEGREE PROJECT MASTER DEGREE PROJECT Finite Element Analysis of a Washing Machine Cylinder Thesis in Applied Mechanics one year Master Degree Program Performed : Spring term, 2010 Level Author Supervisor s Examiner :

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

Measurement of Residual Stress in Plastics

Measurement of Residual Stress in Plastics Measurement of Residual Stress in Plastics An evaluation has been made of the effectiveness of the chemical probe and hole drilling techniques to measure the residual stresses present in thermoplastic

More information

EFFECTS OF SHOT-PEENING ON HIGH CYCLE FRETTING FATIGUE BEHAVIOR OF Ti-6Al-4V

EFFECTS OF SHOT-PEENING ON HIGH CYCLE FRETTING FATIGUE BEHAVIOR OF Ti-6Al-4V JOURNAL OF AERONAUTICS AND SPACE TECHNOLOGIES JANUARY 2003 VOLUME 1 NUMBER 1 (51-64) EFFECTS OF SHOT-PEENING ON HIGH CYCLE FRETTING FATIGUE BEHAVIOR OF Ti-6Al-4V Halil Ibrahim Air Services Schools and

More information

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels.

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. IMPACT TESTING Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. Equipment Coolants Standard Charpy V-Notched Test specimens Impact tester

More information

STATIC AND DYNAMIC ANALYSIS OF CENTER CRACKED FINITE PLATE SUBJECTED TO UNIFORM TENSILE STRESS USING FINITE ELEMENT METHOD

STATIC AND DYNAMIC ANALYSIS OF CENTER CRACKED FINITE PLATE SUBJECTED TO UNIFORM TENSILE STRESS USING FINITE ELEMENT METHOD INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

MATERIALS AND SCIENCE IN SPORTS. Edited by: EH. (Sam) Froes and S.J. Haake. Dynamics

MATERIALS AND SCIENCE IN SPORTS. Edited by: EH. (Sam) Froes and S.J. Haake. Dynamics MATERIALS AND SCIENCE IN SPORTS Edited by: EH. (Sam) Froes and S.J. Haake Dynamics Analysis of the Characteristics of Fishing Rods Based on the Large-Deformation Theory Atsumi Ohtsuki, Prof, Ph.D. Pgs.

More information

EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR PRODUCTION ON THE PIERCED FLAT SHEET METAL USING LASER FORMING PROCESS

EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR PRODUCTION ON THE PIERCED FLAT SHEET METAL USING LASER FORMING PROCESS JOURNAL OF CURRENT RESEARCH IN SCIENCE (ISSN 2322-5009) CODEN (USA): JCRSDJ 2014, Vol. 2, No. 2, pp:277-284 Available at www.jcrs010.com ORIGINAL ARTICLE EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

More information

Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole

Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole Mr.V.G.Aradhye 1, Prof.S.S.Kulkarni 2 1 PG Scholar, Mechanical department, SKN Sinhgad

More information

ScienceDirect. The Numerical Analysis of the Joint of the Steel Beam to the Timber Girder

ScienceDirect. The Numerical Analysis of the Joint of the Steel Beam to the Timber Girder Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 91 (2014 ) 160 164 XXIII R-S-P seminar, Theoretical Foundation of Civil Engineering (23RSP) (TFoCE 2014) The Numerical Analysis

More information

Analysis of Stresses and Strains

Analysis of Stresses and Strains Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we

More information

The Bending Strength of Pasta

The Bending Strength of Pasta The Bending Strength of Pasta 1.105 Lab #1 Louis L. Bucciarelli 9 September, 2003 Lab Partners: [Name1] [Name2] Data File: Tgroup3.txt On the cover page, include your name, the names of your lab partners,

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer. RESEARCH ARTICLE ISSN: 2321-7758 DESIGN AND DEVELOPMENT OF A DYNAMOMETER FOR MEASURING THRUST AND TORQUE IN DRILLING APPLICATION SREEJITH C 1,MANU RAJ K R 2 1 PG Scholar, M.Tech Machine Design, Nehru College

More information

LABORATORY EXPERIMENTS TESTING OF MATERIALS

LABORATORY EXPERIMENTS TESTING OF MATERIALS LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective

More information

Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

More information

Research on the fracture behavior of PBX under static tension

Research on the fracture behavior of PBX under static tension Available online at www.sciencedirect.com ScienceDirect Defence Technology 10 (2014) 154e160 www.elsevier.com/locate/dt Research on the fracture behavior of PBX under static tension Hu GUO*, Jing-run LUO,

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 117 127, Article ID: IJCIET_07_02_009 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Strip Flatness Prediction in a 4 High Tandem Mill Using a Dynamic Model.

Strip Flatness Prediction in a 4 High Tandem Mill Using a Dynamic Model. Strip Flatness Prediction in a 4 High Tandem Mill Using a Dynamic Model. M. A. Bello-Gomez 1, M. P. Guerrero-Mata 1, L. A. Leduc Lezama 1, T. P. Berber- Solano 1, L. Nieves 2, F. Gonzalez 2, H. R. Siller

More information

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN Titulación: INGENIERO INDUSTRIAL Título del proyecto: MODELING CRACKS WITH ABAQUS Pablo Sanchis Gurpide Pamplona, 22 de Julio del

More information

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural

More information

Solved with COMSOL Multiphysics 4.3

Solved with COMSOL Multiphysics 4.3 Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

Applying the Wheatstone Bridge Circuit

Applying the Wheatstone Bridge Circuit Applying the Wheatstone Bridge Circuit by Karl Hoffmann W1569-1.0 en Applying the Wheatstone Bridge Circuit by Karl Hoffmann Contents: 1 Introduction...1 2 Elementary circuits with strain gages...5 2.1

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREE-DIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM

More information

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.

More information

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 11-20, Article ID: IJCIET_06_11_002 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

FDM Part Quality Manufactured with Ultem*9085

FDM Part Quality Manufactured with Ultem*9085 FDM Part Quality Manufactured with Ultem*9085 A. Bagsik 1,2, V. Schöppner 1, E. Klemp 2 1 Kunststofftechnik Paderborn (KTP),Universität Paderborn, D-33102 Paderborn, Germany 2 Direct Manufacturing Research

More information

Fatigue. 3. Final fracture (rough zone) 1. Fatigue origin. 2. Beach marks (velvety zone)

Fatigue. 3. Final fracture (rough zone) 1. Fatigue origin. 2. Beach marks (velvety zone) Fatigue Term fatigue introduced by Poncelet (France) 1839 progressive fracture is more descriptive 1. Minute crack at critical area of high local stress (geometric stress raiser, flaws, preexisting cracks)

More information

Stress and deformation of offshore piles under structural and wave loading

Stress and deformation of offshore piles under structural and wave loading Stress and deformation of offshore piles under structural and wave loading J. A. Eicher, H. Guan, and D. S. Jeng # School of Engineering, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

Tensile Testing Laboratory

Tensile Testing Laboratory Tensile Testing Laboratory By Stephan Favilla 0723668 ME 354 AC Date of Lab Report Submission: February 11 th 2010 Date of Lab Exercise: January 28 th 2010 1 Executive Summary Tensile tests are fundamental

More information

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783

Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783 Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 SSNP161 Biaxial tests of Summarized Kupfer: Kupfer [1] was interested to characterize the performances of the concrete under biaxial

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY)

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Ali Fatemi, Jonathan Williams and Farzin Montazersadgh Professor and Graduate

More information

NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY

NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY Ilaria Giusti University of Pisa ilaria.giusti@for.unipi.it Andrew J. Whittle Massachusetts Institute of Technology ajwhittl@mit.edu Abstract This paper

More information

Introduction to Plates

Introduction to Plates Chapter Introduction to Plates Plate is a flat surface having considerabl large dimensions as compared to its thickness. Common eamples of plates in civil engineering are. Slab in a building.. Base slab

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

BEHAVIOR OF WELDED T-STUBS SUBJECTED TO TENSILE LOADS

BEHAVIOR OF WELDED T-STUBS SUBJECTED TO TENSILE LOADS BEHAVIOR OF WELDED T-STUBS SUBJECTED TO TENSILE LOADS R.A. Herrera 1, G. Desjouis 2, G. Gomez 2, M. Sarrazin 3 1 Assistant Professor, Dept. of Civil Engineering, University of Chile, Santiago, Chile 2

More information

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS Nordic Steel Construction Conference 212 Hotel Bristol, Oslo, Norway 5-7 September 212 ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS Marouene Limam a, Christine Heistermann a and

More information

Fatigue Crack Growth in Metals under Pure Mode III: Reality or Fiction?

Fatigue Crack Growth in Metals under Pure Mode III: Reality or Fiction? Fatigue Crack Growth in Metals under Pure Mode III: Reality or Fiction? J. Pokluda 1, R. Pippan 2, K. Slámecka 1 and O. Kolednik 2 1 Institute of Engineering Physics, Brno University of Technology, Technická

More information

Lap Fillet Weld Calculations and FEA Techniques

Lap Fillet Weld Calculations and FEA Techniques Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

CRITERIA FOR PRELOADED BOLTS

CRITERIA FOR PRELOADED BOLTS National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 REVISION A JULY 6, 1998 REPLACES BASELINE SPACE SHUTTLE CRITERIA FOR PRELOADED BOLTS CONTENTS 1.0 INTRODUCTION..............................................

More information

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels Estimation of Adjacent Building During Drilling of Urban Tunnels Shahram Pourakbar 1, Mohammad Azadi 2, Bujang B. K. Huat 1, Afshin Asadi 1 1 Department of Civil Engineering, University Putra Malaysia

More information

Mechanical Properties and Fracture Analysis of Glass. David Dutt Chromaglass, Inc.

Mechanical Properties and Fracture Analysis of Glass. David Dutt Chromaglass, Inc. Mechanical Properties and Fracture Analysis of Glass David Dutt Chromaglass, Inc. IES ALC Williamsburg 2006 2 IES ALC Williamsburg 2006 3 Outline The Ideal The Practical The Reality IES ALC Williamsburg

More information

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

Open Channel Flow Measurement Weirs and Flumes

Open Channel Flow Measurement Weirs and Flumes Open Channel Flow Measurement Weirs and Flumes by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here Measuring the flow rate of water in an open channel typically involves some type of

More information

THE DETERMINATION OF DELAMINATION STRAIN ENERGY RELEASE RATE OF COMPOSITE BI-MATERIAL INTERFACE

THE DETERMINATION OF DELAMINATION STRAIN ENERGY RELEASE RATE OF COMPOSITE BI-MATERIAL INTERFACE THE DETERMINATION OF DELAMINATION STRAIN ENERGY RELEASE RATE OF COMPOSITE BI-MATERIAL INTERFACE Jaroslav Juracka, Vladimir Matejak Brno University of Technology, Institute of Aerospace Engineering juracka@fme.vutbr.cz;

More information

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 34-44, Article ID: IJCIET_07_02_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

CRASH ANALYSIS OF AN IMPACT ATTENUATOR FOR RACING CAR IN SANDWICH MATERIAL

CRASH ANALYSIS OF AN IMPACT ATTENUATOR FOR RACING CAR IN SANDWICH MATERIAL F2008-SC-016 CRASH ANALYSIS OF AN IMPACT ATTENUATOR FOR RACING CAR IN SANDWICH MATERIAL Boria, Simonetta *, Forasassi, Giuseppe Department of Mechanical, Nuclear and Production Engineering, University

More information

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

More information

DUCTILE DAMAGE PARAMETERS IDENTIFICATION FOR NUCLEAR POWER PLANTS EXPERIMENTAL PART. Antonín PRANTL, Jan DŽUGAN, Pavel KONOPÍK

DUCTILE DAMAGE PARAMETERS IDENTIFICATION FOR NUCLEAR POWER PLANTS EXPERIMENTAL PART. Antonín PRANTL, Jan DŽUGAN, Pavel KONOPÍK DUCTILE DAMAGE PARAMETERS IDENTIFICATION FOR NUCLEAR POWER PLANTS EXPERIMENTAL PART Antonín PRANTL, Jan DŽUGAN, Pavel KONOPÍK Škoda JS a.s., Pilsen, Czech Republic, EU, antonin.prantl@skoda-js.cz COMTES

More information

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force

More information

Journal of Nuclear Materials

Journal of Nuclear Materials Journal of Nuclear Materials 436 (3) 3 9 Contents lists available at SciVerse ScienceDirect Journal of Nuclear Materials journal homepage: www.elsevier.com/locate/jnucmat Review Determination of the hoop

More information

Shell Elements in ABAQUS/Explicit

Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics Appendix 2 Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics A2.2 Overview ABAQUS/Explicit: Advanced Topics ABAQUS/Explicit: Advanced Topics A2.4 Triangular

More information

Investigation of Stress Intensity Factor of Axial Compressor Blade of Helicopter

Investigation of Stress Intensity Factor of Axial Compressor Blade of Helicopter Investigation of Stress Intensity Factor of Axial Compressor Blade of Helicopter Neelesh V K Mr. Manjunath M V Mr. Devaraj Dept. of Mechanical Engineering Asst prof, Dept. of Mechanical Engineering Asst

More information

Fracture and strain rate behavior of airplane fuselage materials under blast loading

Fracture and strain rate behavior of airplane fuselage materials under blast loading EPJ Web of Conferences 6, 6 42017 (2010) DOI:10.1051/epjconf/20100642017 Owned by the authors, published by EDP Sciences, 2010 Fracture and strain rate behavior of airplane fuselage materials under blast

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus Abaqus Technology Brief Automobile Roof Crush Analysis with Abaqus TB-06-RCA-1 Revised: April 2007. Summary The National Highway Traffic Safety Administration (NHTSA) mandates the use of certain test procedures

More information

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS 1 th Canadian Masonry Symposium Vancouver, British Columbia, June -5, 013 DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS Vladimir G. Haach 1, Graça Vasconcelos and Paulo

More information

3 Concepts of Stress Analysis

3 Concepts of Stress Analysis 3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements.

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information

CosmosWorks Centrifugal Loads

CosmosWorks Centrifugal Loads CosmosWorks Centrifugal Loads (Draft 4, May 28, 2006) Introduction This example will look at essentially planar objects subjected to centrifugal loads. That is, loads due to angular velocity and/or angular

More information

Fundamentals of grain boundaries and grain boundary migration

Fundamentals of grain boundaries and grain boundary migration 1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which

More information

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses 3D Stress Components From equilibrium principles:, z z, z z The most general state of stress at a point ma be represented b 6 components Normal Stresses Shear Stresses Normal stress () : the subscript

More information

ANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON ENERGY DISSIPATION

ANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON ENERGY DISSIPATION EPJ Web of Conferences 6, 6 38009 (00) DOI:0.05/epjconf/000638009 Owned by the authors, published by EDP Sciences, 00 ANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON

More information

Plate waves in phononic crystals slabs

Plate waves in phononic crystals slabs Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

Influence of Crash Box on Automotive Crashworthiness

Influence of Crash Box on Automotive Crashworthiness Influence of Crash Box on Automotive Crashworthiness MIHAIL DANIEL IOZSA, DAN ALEXANDRU MICU, GHEORGHE FRĂȚILĂ, FLORIN- CRISTIAN ANTONACHE University POLITEHNICA of Bucharest 313 Splaiul Independentei

More information

FATIGUE FRACTURE IN CONCRETE STRUCTURES

FATIGUE FRACTURE IN CONCRETE STRUCTURES FATIGUE FRACTURE IN CONCRETE STRUCTURES Fabrizio Barpi and Silvio Valente Dipartimento di Ingegneria Strutturale e Geotecnica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino. E-mail:

More information

9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE

9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE 9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE A machine part or structure will, if improperly designed and subjected to a repeated reversal or removal of an applied load, fail at a stress much lower than

More information

A quadrilateral 2-D finite element based on mixed interpolation of tensorial

A quadrilateral 2-D finite element based on mixed interpolation of tensorial A quadrilateral 2-D finite element based on mixed interpolation of tensorial components Eduardo N. Dvorkin and Sara I. Vassolo* Instituto de Materiales y Estructuras, Facultad de Ingenieria, Universidad

More information

Field Damage Inspection and Static Load Test Analysis of Jiamusi Highway Prestressed Concrete Bridge in China

Field Damage Inspection and Static Load Test Analysis of Jiamusi Highway Prestressed Concrete Bridge in China Advanced Materials Research Vols. 163-167 (2011) pp 1147-1156 Online available since 2010/Dec/06 at www.scientific.net (2011) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.163-167.1147

More information

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods G. Kaklauskas, Vilnius Gediminas Technical University, 1223 Vilnius, Lithuania (gintaris.kaklauskas@st.vtu.lt) V.

More information