Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems

Size: px
Start display at page:

Download "Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems"

Transcription

1 Nutr Cycl Agroecosyst (21) 88: DOI 1.17/s x RESEARCH ARTICLE Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems Paulo César de Faccio Carvalho Ibanor Anghinoni Anibal de Moraes Edicarlos Damacena de Souza Reuben Mark Sulc Claudete Reisdorfer Lang João Paulo Cassol Flores Marília Lazzarotto Terra Lopes Jamir Luis Silva da Silva Osmar Conte Cristiane de Lima Wesp Renato Levien Renato Serena Fontaneli Cimelio Bayer Received: 23 May 29 / Accepted: 17 March 21 / Published online: 3 April 21 Ó Springer Science+Business Media B.V. 21 Abstract Crop-livestock systems are regaining their importance as an alternative to unsustainable intensive farming systems. Loss of biodiversity, nutrient pollution and habitat fragmentation are a few of many concerns recently reported with modern agriculture. Integrating crops and pastures in no-till systems can result in better environmental services, since P. C. de Faccio Carvalho (&) I. Anghinoni M. L. Terra Lopes O. Conte C. de Lima Wesp R. Levien C. Bayer Faculty of Agronomy, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 7712 Cx Postal 776, Porto Alegre, RS CEP , Brazil paulocfc@ufrgs.br conservation agriculture is improved by system diversity, paths of nutrient flux, and other processes common in nature. The presence of large herbivores can positively modify nutrient pathways and soil aggregation, increasing soil quality. Despite the low diversity involved, the integration of crops and pastures enhances nature s biomimicry and allows attainment of a higher system organization level. This paper illustrates these benefits focusing on the use of grazing animals integrated with crops under no-tillage systems characteristic of southern Brazil. Keywords Conservation agriculture Grazing intensity Mixed systems Nutrient cycling Soil quality A. de Moraes C. R. Lang Universidade Federal do Parana, Curitiba, Brazil J. P. C. Flores Virginia Polytechnic Institute & State University, Blacksburg, VA, USA E. D. de Souza Universidade Federal de Goias, Jatai, Brazil R. M. Sulc Ohio State University, Columbus, OH, USA J. L. S. da Silva Embrapa Clima Temperado, Pelotas, Brazil R. S. Fontaneli Embrapa, Centro Nacional de Pesquisa de Trigo, Passo Fundo, Brazil Introduction In the last century, particularly since the so-called green revolution, crop and livestock production systems became increasingly specialized (Entz et al. 25). Emphasis was put on technical efficiency, leading to significant effects on productivity, and farming systems were transformed into large-scale, specialized, energy-intensive farming operations (Kirschenmann 27). This specialization occurred not only in farming systems, but also in the research supporting agricultural production systems (Lemaire et al. 25).

2 26 Nutr Cycl Agroecosyst (21) 88: During this same period, mixed systems have become synonymous with extensive systems, which are concentrated in the poorer areas of the world with declining technical support because they are perceived as being the opposite of what is considered modern intensified agriculture. However, mixed systems have a huge social significance. Sixty percent of rural poor populations use mixed systems (Thomas 21). Depending on how we define mixed systems (Schiere and Kater 21), they represent 2.5 billion hectares across the globe, and are responsible for more than 5% of the meat and 9% of the milk consumed (Keulen and Schiere 24). Short-term consequences of intensification were highly positive and the world increased grain production massively. However, long-term consequences of intensified agriculture have not all been positive, and include lack of sustainability, primarily through the loss of biodiversity and pollution via inefficient nutrient management (Lemaire et al. 25). Russelle and Franzluebbers (27) presented the growing concern with specialized agricultural systems, because of increasingly negative responses from the environment that are manifested in (1) water contamination with excessive nutrients, pesticides, and pathogens; (2) decreasing groundwater levels due to high demand and competition from a variety of stakeholders, including specialized crop production; (3) rising greenhouse gas concentrations from soils depleted in organic matter; and (4) dysfunctional soils that have become degraded from excessive tillage, salt accumulation, and pesticide inputs. Thus, intensive agriculture and livestock production have recently become the center of debate because of their negative effects on the environment. Production is no longer the sole objective of farming systems. Environmental regulations are becoming a crucial aspect of production systems and trade markets in response to new requirements demanded by the general public. This recent concern over environmental quality has led to a renewed interest in crop-livestock systems, primarily because they provide opportunities for diversification of rotations, perenniality, nutrient recycling, and greater energy efficiency (Entz et al. 25). A number of studies have confirmed that integrated systems tend to be more sustainable, use less energy per unit area and have higher energy efficiency than either specialized crop or livestock systems (e.g. Vilela et al. 23; Entz et al. 25). Moreover, integrated crop-livestock systems can positively change the biophysical and socio-economic dynamics of farming systems (Keulen and Schiere 24), reestablishing sustainable rural development (Lemaire et al. 23) and promoting higher overall farm profitability (Entz et al. 25). Complex integrated arrangements can be designed according to the nature of the components, the objectives and the agricultural culture involved, as well as according to spatial scales in which the integration occurs (within-farm or area-wide scale). For the purposes of this review, we consider within farm integrated crop-livestock systems typical of southern Brazil (cash crop/grazing cattle rotations), in which not only does a rotation of components exist, but the components are specifically managed and oriented to provide synergistic benefits at the landscape level. Numerous publications have dealt with the integration of crops and livestock; however, there is almost no information about the use of grazing animals integrated with crops under no-tillage systems, which typifies agricultural production in southern Brazil. In this context, our paper aims to present some of the southern Brazilian research and experiences with integrated crop-livestock production systems. Integrated crop-livestock systems in perspective The integration of crops and livestock is not a new technology; rather, it is a re-emerging concept. Since the domestication of plants and animals, there is evidence that integrated crop-livestock systems where the most common pattern in the Neolithic age when humans first gathered into small village and farmstead groups. Crop production was probably first combined with animal husbandry 8 1 millennia ago (Russelle et al. 27). In Latin America, integrated crop-livestock systems originally were used to establish pastures in a rotational sequence beginning with a grain crop, usually rice (Oryza sativa L.), to take advantage of the increased fertility in the short term after clearing forested land (Entz et al. 25). Recently, integrated crop-livestock systems have been conceived as a means for reclaiming pastures degraded by overstocking and lack of fertility, which improves productivity through land use intensification and mitigates the

3 Nutr Cycl Agroecosyst (21) 88: clearing of native vegetation, particularly in the Cerrados and Amazon regions (Landers 27; Zimmer et al. 24). In those integrated systems, grain crops established on the degraded pasture lands provide the cash flow necessary for the substantial investment in lime and fertilizer needed to correct the soil fertility status. Annuals (Sorghum bicolor L. Moench, Pennisetum glaucum (L.) R. Br.) and perennial forages (Brachiaria spp., Panicum spp.) are often used in rotation with soybean (Glycine max L.), maize (Zea mays L.), cotton (Gossypium L.), sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L.). In southern Brazil, integrated crop-livestock systems have been adopted traditionally in irrigated rice grown in rotation with Italian ryegrass (Lolium multiflorum Lam) or native pastures (Reis and Saibro 24). In recent times integrated systems have been used as an alternative for reducing risk due to frequent summer cash crop failures and low winter grain cash crop market prices, thus providing the potential for increased profits and land use efficiency (Carvalho et al. 26). This Brazilian subtropical region has 8. million hectares annually cultivated with soybean, 3.4 million hectares with maize and around 1.1 million hectares with rice (Moraes et al. 27). Hence, soybean, maize and rice represent 29% of cultivated area in summer. In the last few years, approximately 3.5 million hectares have been cultivated with winter crops such as wheat (Triticum aestivum L.), oat (Avena sativa L.), barley (Hordeum vulgare L.), triticale (X triticosecale Witt.), and rye (Secale cereale L.). The remaining area, i.e. 9. million hectares, represents potential income lost during winter, with soils being exposed or simply seeded to cover crops. The cover crops used are primarily forage species, but they are rarely grazed. During that winter period, livestock face lack of feed and the existing pastures are under harsh conditions in general. Hence, there is still a vast area that could potentially integrate livestock grazing on winter cover crops in rotation with summer crops under no-tillage management in southern Brazil. No-tillage soil management is an alternative to the traditional rehabilitation of production systems, which have lead to high and unsustainable inputs (Kluthcouski and Stone 23). No-till technology is an environmentally friendly system offsetting most of modern agriculture s negative impacts. No-till systems are well recognized for controlling soil erosion, increasing carbon sequestration, lowering energy consumption and carbon dioxide emission, and decreasing the pollution of surface waters (Holland 24). Despite the positive aspects of no-tillage soil management, there are recent reports showing in some cases, particularly on tropical oxisols, that notillage is not sufficient for maintaining soil quality and a positive carbon balance within a succession of annual crops. Landers (27) stated that crop successions must maintain on average over 6 Mg/ha dry matter in crop residues within rotations. However, most rotations are not capable of maintaining that minimum level of crop residue on the soil. Salton (27) reported that crop rotations have had negative carbon balance, and continuous cropping is not able to increase, nor maintain, soil carbon stocks. According to Landers (27), incorporating pastures and animals in rotation with crops cultivated in no-tillage systems optimizes even more the beneficial characteristics of conservation agriculture, particularly via the capacity of pastures to sequester carbon (Salton 27), but also by increasing biodiversity, improving nutrient cycling, and reducing economic risk (Moraes et al. 27). Russelle et al. (27) stated that multiple agronomic and environmental benefits can be realized when land is converted from low diverse cropping systems to rotations that include forages. The author cited Randall et al. (1997) and Shiftlet and Darby (1985) to illustrate that introduction of perennial crops into previous annual crop systems reduces the risk of environmental damage during the cropping phase by decreasing nitrate leaching up to 96% and nearly eliminating soil erosion by water. Lemaire et al. (23) cited that pastures have analogous effects as forests and can help agricultural systems regulate environmental fluxes to achieve multiple environmental benefits through positive effects with regard to: (1) hydrological impacts and maintenance of surface and subterranean water quality; (2) carbon sequestration; (3) nitrogen flux regulation; (4) gas emission regulation (N 2 O, NH 3,CH 4 ); (5) organic matter stability and soil quality maintenance; (6) stimulation of soil biological activity; (7) immobilization and retention of pesticides and heavy metals. Concerning the integration of pastures in crop rotations in southern Brazil, Moraes et al. (22) reported several advantages, including maintenance of physical, chemical and biological soil characteristics,

4 262 Nutr Cycl Agroecosyst (21) 88: erosion control, more efficient use of natural resources and pollution control. In addition, the authors mentioned improvements in crop protection, increased animal and crop production, greater economic returns, better weed control and break in disease and insect cycles. Indeed, Costa and Rava (23) reported a 75% reduction in Rhizoctonia and Sclerotinia bean infections using rotations with perennial tropical forages. Integrated crop-livestock systems can increase biodiversity via the attributes of organic matter provided by pastures (Lemaire et al. 23). The resulting flora and fauna diversity, as well as microbial and faunal soil communities, change the soil and its physio-chemical properties (Lemaire et al. 23). The pastoral environment is particularly important to the colonization/extinction metapopulational processes of many organisms (eg. insects, mollusks) and is a forage resource for many birds and mammals, frequently being their reproduction site. For these reasons, Lemaire et al. (23) consider pastures essential for biodiversity maintenance at the landscape level, being the habitat of invertebrates that are important to carbon and nitrogen cycles. Despite the potential benefits reported for croplivestock integration, this technology can only be successful if some basic concepts are followed. According to Moraes et al. (22) some of the key principles that must be adopted include: (1) notillage, (2) crop rotation, (3) nutrient inputs, (4) improved animal and crop genetics, and (5) sound grazing management. From all those requirements, the pasture phase and related grazing management is commonly considered to be essential in defining the nature and intensity of potential relationships. Managing pastures and grazing animals in no-till integrated crop-livestock systems The potential effects of pastures in integrated croplivestock systems depends on the pasture phase model, where management options include grazing and/or harvesting, annual and/or perennial forages, grasses and/or legumes. In short, a huge number of combinations can be planned depending on crop type and objectives. Annual crop rotations typical of southern Brazil have alternative forage species defined according to the cash crop cycle. Oat is commonly used as the preceding crop to maize, because its early maturity fits well with early planting dates required for full season maize, whereas oat and/or Italian ryegrass are often used preceding soybean, which is planted later than maize. Italian ryegrass has the potential to perennate in those systems by annual reseeding (Carvalho et al. 25). With regard to legume utilization, Vicia spp. have been used with oats in rotation with maize aiming to increase soil nitrogen availability, whilst Trifolium spp. and Lotus spp. are most commonly seen in rotation with irrigated rice, because rice yield after those species can be equivalent to or even greater than rice fertilized with 9 kg/ha of nitrogen (Saibro and Silva 1999). There is some conflict over how much residue cover is needed for no-till establishment of cash crops following forage cover crops that are grazed. In the pasture phase, the aboveground biomass is consumed by the grazing animal, which is the same biomass vital to the health and functioning of the no-tillage crop production system. The positive linear relationship between residual biomass of the preceding cover crop and yield of the succeeding crop (Landers 27) in notill systems does not encompass pastures being used by grazing animals, which has been cause for debate. This technical dilemma, together with the concern that grazing animals will compact the soil, generates resistance to the adoption of grazing within no-tillage production areas in southern Brazil (Carvalho et al. 27). Probably the most common perception of farmers, who are hesitant to participate in integrated systems, is that cattle trampling has a negative effect on soil physical properties. This has proven to be a major obstacle to the adoption of the integrated system, despite studies that refute this claim (Moraes et al. 22; Flores et al. 27; Cardoso et al. 27; Souto 28). Bayer (1996) estimated that 1 12 Mg/ha of crop residue dry matter was needed in southern Brazil if the objective was to maintain or increase carbon stocks in no-tillage systems without grazing. Thus, the resulting question is how much, if any, and with what intensity, should biomass be removed by grazing animals in integrated crop-livestock production systems? There are no simple answers, in that the more biomass left for the succeeding crop, the less animal production can be expected. A schematic representation of grazing animal impacts on the success of crop-livestock integration

5 Nutr Cycl Agroecosyst (21) 88: is illustrated in Fig. 1, which is helpful in discussing overall relationships. Grazing intensity determines the mean herbage mass/sward height existing during the pasture utilization phase, which in turn affects solar energy intercepted, herbage accumulation rate and carbon sequestration by consequence. The same grazing intensity, by defining herbage allowance per animal and sward structure, affects herbage intake per animal and per unit area. Hence, the amount of nutrient cycling by the animal is defined by grazing intensity. In general, the more animals per unit area the fewer nutrients are fixed in animal products per unit of herbage ingested. In such situations, usually the amount of nutrients recycled per unit area increases, but it depends on how long forage production is negatively affected by higher grazing intensities. Ultimately, animal production is a result of the herbage consumed and converted into animal products. Therefore, the resulting aboveground biomass left after the pasture phase (residue cover) is an outcome of grazing management. Biomass residues in no-till systems, and the soil physical (aggregation, compaction), chemical (nutrient cycling, carbon stocks) and biological (microbiological activity and diversity) environment at the moment of sowing the succeeding crops, are all defined by the average grazing intensity used during pasture utilization. Thus, crop development is partially due to conditions created by grazing management. As a result, both crop and livestock productions are strongly affected by the way grazing animals are managed in those systems. As described above, grazing intensity is one of the main variables affecting the success of integrated croplivestock systems using no-tillage technology. Consequently, much effort has been invested in evaluating the impact of grazing animals in integrated systems in southern Brazil (e.g. Baggio et al. 29; Silva et al. 28; Moraes et al. 22; Cassol 23; Flores 24). In general, considering what is usually managed at the farm level, animals and the grazing processes can be manipulated essentially by two management actions: defining grazing intensity by establishing the amount of animal live weight per unit area (stocking rate) in relation to available forage; and distribution of animals within the area (continuous or rotational stocking management). Thus, to control grazing there are few variables to be effectively handled. From the above discussion, defining the grazing intensity to be used seems to be the most important management action affecting overall system productivity and sustainability (Carvalho et al. 25). Fig. 1 Schematic representation of how grazing intensity affects integrated crop-livestock systems under no-tillage soil management (adapted from Carvalho et al. 25)

6 264 Nutr Cycl Agroecosyst (21) 88: In general, farming systems use high grazing pressures and stocking rates are set higher than pasture carrying capacity, which negatively affects both pasture and crops in the rotation. Consequences can include steers with low carcass quality at slaughter (Aguinaga et al. 26), lack of residue cover for the crop grown in succession (Cassol 23), higher weed populations (Lunardi et al. 28) and lower water holding capacity of the soil (Conte et al. 27). The impact of grazing pressure on animal performance during the pasture phase is illustrated by a steer fattening/soybean integrated system using an oat? Italian ryegrass pasture mixture (Fig. 2). The average stocking rates were around 4.4, 3.3, 2., and 1.1 steers/ha for pasture grazing heights of 1, 2, 3 and 4 cm, respectively. Daily animal gain was similar for the 2, 3 and 4 cm pasture height treatments; however, the optimal animal performance was considered to occur at 3 cm (1.12 kg/steer/day) because it resulted in the best carcass quality (Aguinaga et al. 26). There was a linear decline in animal performance per area with increasing pasture height, resulting from declining stocking rates on those high nutritive value pastures. In this experiment, individual animal gain varied little, thus animal gain per unit area was correlated directly with stocking rate. Results showed negative effects of higher grazing intensities on soybean yield only in the first year, when the system was not yet stable (Fig. 3). By the second year of integration, the system started to behave according to expected pasture/crop succession relationships, and soybean yield became less affected by grazing intensity, despite the fact that biomass residue cover at the time of soybean sowing varied from around 1.5 to 6 Mg/ha (Carvalho et al. 25). These results indicate that the yield of successive crops in no-tillage systems is less dependent on Soyben grain yield (kg/ha) Pasture height (cm) Fig. 3 Soybean grain yield grown after cover crop pastures that were grazed at different intensities (defined by sward height). Data are 6-year yields from Cassol (23), Flores (24), Flores et al. (27), Rocha (27), Lopes (28) and Conte (unpublished data) (a) Animal daily gain (kg) (b) residue cover when the preceding cover is grazed by animals than when it is grown as a cover crop only. These results have been confirmed by many similar experiments conducted in southern Brazil (e.g. Vieira 24), the hypothesis being that the nature of nutrient cycling occurring in those systems has a greater overall positive effect that overcomes any negative effects associated with a reduction in residue cover (discussed in more detail later). With regard to grazing methods, continuous and rotational stocking are the most common used in croplivestock systems in southern Brazil. The continuous stocking method is usual on large farms while rotational stocking is used mainly on small dairy farms. Although the method of grazing is a matter of debate, there is scientific consensus that both methods are similar when optimum grazing intensities are used (Briske et al. 28). However, little information is available regarding the impact of grazing method on performance of crop-livestock systems under no- 1,2 6 1,1 1,,9 y = -,7x 2 +,48x +,4853 R² =, ,8,7, Pasture height (cm) Animal gain (kg live wt./ha) y = -11,72x + 648,4 R² =, Pasture height (cm) Fig. 2 Steer performance [liveweight gain per animal (a) and per unit area (b)] during the pasture phase of a crop-livestock system. Data are 8-year averages, calculated from Cassol (23), Aguinaga et al. (26), Rocha (27), Bravo et al. (27), Lopes et al. (28) and Wesp (unpublished data)

7 Nutr Cycl Agroecosyst (21) 88: tillage management. This issue will be exemplified using a small holder integrated crop-livestock system model based on a lamb fattening operation using Italian ryegrass for winter pasture in rotation with maize or soybean in summer (Fig. 4). Continuous stocking allows greater individual animal selectivity and individual animal intake, and thus continuous stocking with high allowance (C 5.) results in higher animal daily gains (Carvalho et al. 27). However, gain per unit area was higher with rotational stocking at lower forage allowance (R 2.5), a result of a higher stocking rate (1,54, 1,238, 99, and 854 kg LWG/ha in R2.5, C2.5, R5., and C5., respectively). While the animal performance response to grazing intensity and method followed the expected classical patterns, the impact of grazing treatments on the succeeding crop was unusual. Grazing intensity clearly affected soybean yield more than the grazing method. The higher the forage allowance, the more biomass residue cover was left after the pasture phase for the succeeding grain crop phase, resulting in higher soybean yield in the first year, similar to results presented earlier (Fig. 3). However, with maize the effect of grazing intensity and method is less evident, although maize yield tended to be slightly higher with high forage allowance with continuous stocking (C5.). No evidence was found of grazing method effects and it is noteworthy that the non-grazed treatments yielded similarly or even less than the grazed treatments (Carvalho et al. 27). Pizzolo (25) reported the response of soil mineral nitrogen pool to those grazing regimes. Extractable nitrogen ( 9 cm soil depth) at the end of the pasture phase was higher in the continuous stocking managed at higher grazing intensities (179 ± 12.5, 14 ± 3.5, 99 ± 1.1 and ±.1 kg/ha of nitrogen, respectively for C2.5, R2.5, C5. and R5.). Increased stocking rate increases the excretal returns, accelerating nitrogen cycling rates and increasing soil nitrogen in mineral forms (NH 4? -N). Throughout the soybean rotation, soil mineral nitrogen remained high (1 kg/ ha N), reaching a peak of more than 5 kg/ha of nitrogen after harvest, with the adsorbed NH 4? -N form (a) Animal daily gain (g) (b) Animal gain (kg/ha) C 2.5 C 5. R 2.5 R 5. Grazing management C 2.5 C 5. R 2.5 R 5. Grazing management (c) Soybean grain yield (kg/ha) C 2.5 C 5. R 2.5 R 5. NG Grazing management (d) Maize grain yield (kg/ha) C 2.5 C 5. R 2.5 R 5. NG Grazing management Fig. 4 Effect of grazing intensity and method on animal (a, b) and crop performance (c, d) in a small holder crop-livestock system model. C and R refer to continuous or rotational stocking methods, NG refer to non grazing, while 2.5 and 5. refer to multiplier factor that the forage allowance exceeded potential intake of the animals (data from animal performance are 4-year averages, soybean and maize from 1 year rotation, Carvalho et al. 27)

8 266 Nutr Cycl Agroecosyst (21) 88: predominating over the mobile NO 3 - -N. Pizzolo (25) concluded that soil nitrogen conservation could be accomplished in a management scheme including leniently grazed pasture followed by a high N-demand crop such as maize. Indeed, Fig. 4d illustrates the potential behavior of such a system. Lenient grazing intensities had significantly lower extractable mineral nitrogen, associated with increased levels of slow-release nitrogen in the soil organic matter. Leaving sufficient plant residues on the field favored immobilization and soil moisture, thereby providing healthy conditions for microbial biomass growth and ensuring long-term soil N reserves (Pizzolo 25). A crop with high nitrogen demand, such as maize, usually yields better after a pasture phase that is moderately grazed (Lustosa 1998; Assmann et al. 23). In general, southern Brazilian studies have shown that winter grazing does not compromise performance of succeeding crops and may even increase yield provided animal stocking and grazing are managed appropriately (Moraes et al. 23). Data from systems where the pasture phase operation includes beef backgrounding and/or fattening, lamb fattening and dairy cattle integrated with production of soybean, maize and bean demonstrate that moderate grazing is not deleterious to the succeeding crop (Lustosa 1998; Bona Filho 22; Flores et al. 27; Souto 28; Lopes et al. 28). When compared with cover cropping options, which aim only to produce biomass for residue cover in no-till systems, the utilization of cover crops for grazing should be considered because it increases profits and improves soil quality. Nutrient cycling and soil properties Calculations of nutrient fluxes in farm production systems can furnish basic information about sustainability of those systems. Evaluations of nutrient cycling and balance are more complex in integrated crop-livestock systems under no-tillage and few have been conducted in the Brazilian subtropical region. It is expected, in such systems, that the capacity of pastures for carbon sequestration and nutrient cycling is related to its management for a specific climatic zone. For example, in situations with overstocking of animals, a lower amount of aboveground residues left on the soil surface results in lower stocks of carbon input to the soil, and of other nutrients such as nitrogen, phosphorus and potassium, with a resultant decline in soil quality. It is important to consider long term studies when evaluating nutrient cycling, because addition or loss of organic matter and energy in the soil over time will modify the functioning of the soil system and the fertility status. Considering the soil as an open system in non-equilibrium, and based on its dissipative structures and auto-organization processes, emergent properties can result from order level changes mediated by fluxes of matter and energy, which are important for the regulation of soil functions and quality, as well as for the sustainability of farm production systems (Mielniczuk et al. 23). A long-term crop-livestock experiment in southern Brazil: soil carbon and nitrogen The research was conducted for 7 years in a Rhodic Hapludox (Oxisol). The previous cropping system was a soybean/oat rotation without grazing. The experimental design was a completely randomized block with three replicates. Total and particulate carbon and nitrogen stocks increased with time in an integrated crop-livestock system under no-tillage (Fig. 5). The integrated system consisted of a summer crop of soybean grain in rotation with an oat/italian ryegrass winter cover crop continuously grazed at different intensities (1, 2, 3 and 4 cm pasture height) by yearling beef steers. The rates of total carbon (1.16 Mg ha -1 year -1 ) and nitrogen (.12 Mg ha -1 year -1 ) stocks increase are considered high (Corazza et al. 1999) even for subtropical conditions. It would be expected that an increase would occur only in the particulate fractions, which are most affected by management practices, but not for total content in a relatively short time (6 years). Moderate grazing intensities (annual temperate pastures managed at 2 and 4 cm sward height) promoted an increase in all carbon and nitrogen stocks (total and particulate) in a similar fashion as occurred in the no-grazing control treatment (Fig. 6). However, in the highest grazing intensity (1 cm sward height), losses of carbon and nitrogen were observed after the third year of the experiment.

9 Nutr Cycl Agroecosyst (21) 88: Fig. 5 Carbon (a) and nitrogen (b) stocks in the total (COT e NT) and particulate (C-MOP and N-MOP) fractions of the organic matter in the 2 cm soil layer over time under no-tillage (Souza 28) Fig. 6 Carbon (a) and nitrogen (b) stocks in the total (COT and NT) and particulate (C-POM and N-MOP) fractions of the organic matter after 6 years (27) in the 2 cm soil layer, as affected by grazing intensity under no-tillage. Treatments A long-term crop-livestock experiment in southern Brazil: phosphorus fractions and availability In the same experiment previously described, total phosphorus content was high at the beginning of the experiment (Fig. 7a), reaching 88 mg kg -1 in the 2 cm soil layer. Such high values, even for a highly weathered basalt oxisol, resulted from phosphate fertilizer applications that exceeded the amount of phosphorus exported in soybean grain and beef steers. Phosphorus forms (inorganic and organic Fig. 7a) and fractions (labile, moderately labile and low labile Fig. 7b) increased in a similar fashion in the grazed and no-grazing treatments over the 6 years of the experiment, with phosphorus being accumulated primarily in the inorganic, moderately labile fraction. While the inorganic form was accumulated to the 2 cm soil depth, the organic form was accumulated only to 1 cm deep (data not shown). However, negative effects of grazing were observed in the more were grazed sward heights of 1 cm (G-1), 2 cm (G-2), 3 cm (G-3) and 4 cm (G-4 cm), and no-grazing (NG) control (Souza 28) labile (resin and bicarbonate Fig. 8) phosphorus fraction, primarily in the 1 cm soil depth layer (Table 1). A long-term crop-livestock experiment in southern Brazil: potassium balance and cycling Available potassium content, exception made for G-1 treatment, was initially high in the experimental area, above the critical level for high CEC soils (9 mg kg -1 CQFS RS/SC, 24) and was maintained over the 7 years of the experiment (Fig. 9). While there were no significant differences (P [.5) among grazing treatments for available soil potassium content, a contrasting behavior among the treatments was clear: in the no-grazing (NG) treatment there was a trend for potassium content to increase, but in all grazing treatments, especially in the G-1, there was a trend for available potassium content to decrease over

10 268 Nutr Cycl Agroecosyst (21) 88: Fig. 7 Distribution of soil phosphorus forms over time (a) and after 6 years of different grazing intensities (b) in the 2 cm soil layer, under no-tillage. Treatments were grazed sward heights of 1 cm (G-1), 2 cm (G-2), 3 cm (G-3) and 4 cm (G-4 cm), and no-grazing (NG) control (Souza 28) Table 1 Phosphorus availability (resin paper method) in soil layers after 6 years of different grazing intensities (G-1; G-2; G-3 and G-4 cm) and no-grazing (NG) under no-tillage (Souza 28) Grazing intensity Soil layer (cm) 1 (mg kg -1 ) 1 2 (mg kg -1 ) 2 (mg kg -1 ) Fig. 8 Labile soil phosphorus (resin paper? NaHCO 3 extractors, Hedley et al. 1982) evolution in the 2 cm soil layer affected by grazing intensity (G-1; G-2; G-3 and G-4 cm) and no-grazing (NG) under no-tillage (Souza 28) time. Declines in available soil potassium in integrated crop-livestock systems have been observed under subtropical conditions (Fontaneli et al. 2), characterizing a negative balance in the soil, which is related to losses, primarily as animal wastes (Wilkinson and Lowrey 1973). A potassium gradient developed in the soil profile, with levels being higher near the soil surface after pasture than after the soybean phase of the rotation (Fig. 1). In the no-grazing area, despite having less cycled potassium (Fig. 11), levels of this nutrient were higher in the soil profile than in the grazed areas, especially in those more intensively grazed, which probably was due to losses in the system under grazing. Amounts of accumulated potassium in different pools (soybean, pastures and animals) in one cycle of the crop-livestock system were high (Fig. 11). In fact, they were higher than crop demand because, as pointed out by Mielniczuk (25), more than 8% of K in plant residues is released within 3 days. G-1 33 b 11 a 22 a G-2 46 a 8 a 27 a G-4 43 a 12 a 28 a NG 46 a 9 a 27 a K available, mg dm May/1 16 n.s. May/8 n.s. 14 n.s G-1 G-2 G-4 NG Grazing intensity Fig. 9 Available potassium (Mehlich 1) in the 2 cm soil layer over time as affected by grazing intensity (G-1; G-2; G-3 and G-4 cm) and no-grazing (NG) under no-tillage (Ferreira 29) A lower amount of cycled K (21 kg ha -1 ) was detected in the no-grazing area, in contrast with the most intensively grazed area (G-1, with 327 kg ha -1 ). The observed values are comparable with those found by Rossato (24), in a corn/wheat/black oat (Avena strigosa) system in a subtropical environment. n.s.

11 Nutr Cycl Agroecosyst (21) 88: Higher values for cycled potassium in grazed areas are expected due to higher accumulated biomass and potassium content (Ferreira 29). K available, mg dm (a) A long-term crop-livestock experiment in southern Brazil: soil properties and quality indicators 5 1 After soybean Microbial biomass and activity Microbial biomass and basal respiration were stimulated with increasing grazing intensity (Table 2). According to Cattelan and Vidor (199), microbial biomass increases with accumulation of organic residues in the soil. In this research, besides the increase of animal wastes, there was also a higher pasture root mass at the end of the pasture phase with increasing grazing intensity (Souza 28). The C-MB/TOC comprised only 2 4% of TOC (Gama-Rodrigues 1999). However, this is a very dynamic fraction with significant variations without affecting such labile pool of the soil organic matter, which is essential for nutrient cycling and for the dynamics of other soil organic matter fractions. Metabolic quotient (qco 2 ) measurements are important in detecting stressful environmental conditions; however, they were not affected by grazing. Non significant effects may also be related to the small portion (15 3%) of the microbial biomass being catabolically active (Mac Donald 1986), since the rest of the microorganisms remain in latent or inactive forms (Moreira and Siqueira 26). Microbial diversity Integrated crop-livestock systems which use no-tillage and are managed under different grazing intensities can maintain similar levels of microbiological quality as those under no-tillage cash/cover crop production only. The capacity of carbon substrate utilization by soil microorganisms, as expressed by Shannon diversity index, based on the capacity of carbon substrate utilization by soil microorganisms, was not affected (P [.5) by grazing treatments. Despite that, the numerically lower Shannon index found for the no grazing control (6.52) and highest grazing intensity (6.93) treatment, may indicate that moderate grazing intensity stimulates microbial diversity. Pastures being grazed, especially Italian ryegrass, promote exudation Soil depth, cm 15 F test Treat. (p>,5; LSD= 8) Depth (p<,5; LSD= 63) Treat.x Depth (p>,5; LSD= 139) (b) 1 After grazing (c) F test Treat. (p>,5; LSD= 66) Depth (p<,5; LSD= 66) Treat.x Depth (p>,5; LSD= 147) After soybean F test Treat. (p<,5; LSD= 59) Depth (p<,5; LSD= 59) Treat.x Depth (p>,5; LSD= 131) G-1 G-2 G-3 G-4 NG Fig. 1 Available potassium (Mehlich 1) in the soil profile under different grazing intensities (G-1; G-2; G-3 and G-4 cm) and no grazing (NG) in May 27 (a), November 27 (b), and May 28 (c) (Ferreira 29). Treat. treatment, MSD minimum significant difference by Tukey (P \.5) of organic compounds by roots (Tisdall and Oades 1982), serving as energy sources for microorganisms. This positive effect on microbial activity would occur only up to the point where grazing intensity becomes great enough to cause soil compaction and a consequent decline in macroporosity and oxygen supply, as

12 27 Nutr Cycl Agroecosyst (21) 88: K cycling, kg ha a ab Soybean shoot 26/7 (n.s.) Soybean grain 26/7 (n.s.) Herbage mass (*) Mulch (n.s.) Animal carcass (n.s.) Animal wastes (n.s.) 237 b b b aggregation than non grazed or intensively grazed treatments (Table 3). The beneficial grazing effects on soil aggregation were observed in the 2 cm layer, but especially in the 5 1 cm soil layer, and increased with time the animals were kept on pasture. In general, grazing at 2 cm sward height promoted the best soil aggregation, by a higher proportion of larger size ([2 mm) or weighted mean values of water soluble aggregates. Such an effect agrees with the literature (Haynes and Beare 1996) relating improvements in aggregate stability to crop residues, soil organic matter, and greater soil microbial activity, all of which contribute to increases in the production of various binding agents for soil aggregation. G-1 G-2 G-3 G-4 NG Grazing intensity Carbon management index Fig. 11 Potassium cycled in different pools of pasture, soybean and animal (carcass and wastes) under different grazing intensities (G-1; G-2; G-3 and G-4 cm) and nograzing (NG) under no-tillage (Ferreira 29). * and NS indicate significant and not significant by F test (P \.5), respectively. Means with same letter within each pool are not significantly different, by Tukey test (P [.5) may have occurred in the G-1 treatment (Flores et al. 27). It is important emphasize the spatial variability of grazed systems that would require future studies involving more intensive sampling to avoid missing biologically meaningful differences that fail to be statistically significant. Soil aggregation Crop-livestock systems at moderate grazing intensities (2 and 4 cm sward height) promoted better soil The carbon management index (CMI) is an indicator of the quality of soil management, which allows evaluation of the process of gain or loss of soil quality: high CMI values indicate high soil quality (Blair et al. 1995). In pastures grazed at 2 and 4 cm, CMI was similar to the reference (1, for nograzing) (Table 4), indicating those areas maintained high lability of the organic matter. The most intensive grazing (1 cm) treatment had significantly lower CMI (65), indicating degradation in the quality of the soil organic matter. Low CMI values (around 56) were found by Diekow et al. (25) for soil under fallow and black oat/corn without nitrogen addition as compared to a native pasture soil (reference = 1). The CMI is a widely used indicator to characterize soil and cultural management system effects on soil properties and quality. Table 2 Microbial biomass, basal respiration and metabolic quotient (qco 2 ), and microbial biomass/total organic carbon ratios (C-MB/TOC) in a soil under a no-tillage crop-livestock integration system with different grazing intensities (G-1; G-2; and G-4 cm) and a no-grazing (NG) control (Souza et al. 28) Microbial attributes G-1 a G-2 a G-4 a NG b Microbial biomass (mg C kg -1 of soil) 648 a 574 b 515 c 465 d Basal respiration (daily mg C-CO 2 kg -1 of soil) 8.1 a 7.6 b 7.4 b 6.3 c Metabolic quotient (mg CO 2 /mg C day -1 ) ns C-MB/TOC (%) 1.98 a 1.82 a 1.51 b 1.47 b Mean values followed by the same letter on the line are not different by Duncan test (P \.5) a Pasture sward height b No-grazing area

13 Nutr Cycl Agroecosyst (21) 88: Table 3 Water stable aggregate mean values in different soil layers under a no-till crop-livestock integrated system with different grazing intensities (G-1; G-2 and G-4 cm) and a no-grazing (NG) control (Souza 28) Soil layer (cm) Final comments Grazing intensity sward height (cm) G-1 (mm) G-2 (mm) G-4 (mm) NG (mm) Mean Mean of three evaluations along pasture cycle in 27 The presence of grazing animals in grain cropped areas under no-tillage soil management with cover crops affects the system properties. Such effects can be positive or negative, depending on grazing management. The soil is the central component of the processes that indicates the direction (? or -) of such modifications. The catalyzing component is the animal, which recycles the vegetative material and modifies the dynamics of nutrient cycling when compared with systems where winter cover crops are grown solely for production of plant residues for soil cover. When grazing livestock were integrated into a cash crop rotation, and when this was done using moderate, controlled grazing intensities, soil aggregation was significantly improved, as well as the soil microbial activity. Positive impacts were also observed in the chemical attributes of associated Table 4 Carbon stock index (CSI), lability (L), lability index (LI) and carbon management index (CMI) in the 2 cm soil layer in a no-till crop-livestock integration system under different grazing intensities (G-1; G-2 and G-4 cm) and nograzing (NG) after seven grazing/crop cycles (Souza 28) Grazing intensity CSI L LI CMI G b.12 b.733 b 65 b G a.131 a 1.72 a 17 a G a.146 a 1.45 a 1 a No grazing a.14 a 1 a a Reference: CMI = 1. Mean values followed by the same letter in the column are not different by Tukey test (P \.5). G-1, G-2 and G-4 represent grazed sward heights of 1, 2 and 4 cm, respectively variables, such as total and particulate organic carbon and nitrogen, phosphorus availability and potassium cycling and balance. Some soil properties, primarily the physical ones, can be negatively impacted. Despite this, crop productivity is not necessarily reduced by the presence of grazing animals during the previous winter cover crop cycle. In the final analysis, we conclude that summer grain production integrated with animal production on cover crops during the winter season in a subtropical environment is in essence an additional harvest gathered from the same area, which increases soil quality and the efficiency of land use. Acknowledgments The authors are grateful to CNPq, FAPERGS, Fundação AGRISUS, MAPA and Agropecuária Cerro Coroado for funds, Caterina Batello and Eric Kueneman from FAO Crop and Grassland Service for their support to disseminate information in conservation agriculture, and Gilles Lemaire for being responsible for a new research generation in southern Brazil. References Aguinaga AAQ, Carvalho PCF, Anghinoni I et al (26) Produção de novilhos superprecoces em pastagem de aveia e azevém submetida a diferentes alturas de manejo. Rev Bras Zoot 35: Assmann TS, Ronzelli P, Moraes A et al (23) Rendimento de milho em área de integração lavoura-pecuária sob o sistema plantio direto, em presença e ausência de trevo branco, pastejo e nitrogênio. Rev Bras Ciên Solo 27: Baggio C, Carvalho PCF, Silva JLS et al (29) Padrões de deslocamento e captura de forragem por novilhos em pastagem de azevém anual e aveia-preta manejada sob diferentes alturas em sistema de integração lavoura-pecuária. Rev Bras Zoot 38: Bayer C (1996) Dinâmica da matéria orgânica em sistemas de manejo de solos. Thesis, Universidade Federal do Rio Grande do Sul Blair GJ, Lefroy RDB, Lisle L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index, for agricultural systems. Aust J Agric Res 46: Bona Filho A (22) Integração lavoura x pecuária com a cultura do feijoeiro e pastagem de inverno, em presença e ausência de trevo branco, pastejo e nitrogênio. Thesis, Universidade Federal do Paraná Bravo ES, Carvalho PCF, Macari S et al (27) Produção de novilho super-precoce em sistema de integração lavourapecuária submetido a diferentes alturas de pastejo. Paper presented at the international symposium on integrated crop-livestock systems. Curitiba, August 27 Briske DD, Derner JD, Brown JR et al (28) Rotational grazing on rangelands: reconciliation of perception and experimental evidence. Rangel Ecol Manage 61:3 17

14 272 Nutr Cycl Agroecosyst (21) 88: Cardoso RR, Carvalho PCF, Carassai IJ et al (27) O manejo do pastejo e seu impacto nos atributos físicos de um argissolo vermelho em integração lavoura-pecuária. Paper presented at the international symposium on integrated crop-livestock systems. Curitiba, August 27 Carvalho PCF, Anghinoni I, Moraes A et al (25) O estado da arte em integração lavoura-pecuária. In: Gottschall CS, Silva JLS, Rodrigues NC (eds) Proceedings of Produção animal: mitos, pesquisa e adoção de tecnologia. ULBRA, Canoas, 25 Carvalho PCF, Moraes A, Anghinoni I et al (26) Manejo da integração lavoura-pecuária para a região de clima subtropical. In: Proceedings of Encontro Nacional de Plantio Direto na Palha, Uberaba, 27 Carvalho PCF, Silva JLS, Moraes A et al (27) Manejo de animais em pastejo em sistemas de integração lavourapecuária In: Moraes A, Carvalho PCF et al (eds) Proceedings of the international symposium on integrated crop-livestock systems. Curitiba, 27 Cassol LC (23) Relações solo-planta-animal num sistema de integração lavoura-pecuária em semeadura direta com calcário na superfície. Thesis, Universidade Federal do Rio Grande do Sul Cattelan AJ, Vidor C (199) Flutuações na biomassa, atividade e população microbiana do solo, em função de variações ambientais. Rev Bras Ciên Solo 14: Conte O, Levien R, Trein CR et al (27) Demanda de tração em haste sulcadora na integração lavoura-pecuária com diferentes pressões de pastejo e a sua relação com o estado de compactação do solo. Eng Agríc 27: Corazza EJ, Silva JE, Resk DVS et al (1999) Comportamento de diferentes sistemas de manejo como fonte ou deposito de carbono em relação a vegetação de Cerrado. Rev Bras Ciên Solo 23: Costa JLS, Rava CA (23) Influência da Braquiária no manejo de doenças do feijoeiro com origem no solo. In: Kluthcouski J, Stone LF, Aidar H (eds) Integração Lavoura-Pecuária. Embrapa Arroz e Feijão, Santo Antônio de Goiás, pp Diekow J, Mielniczuk J, Knicker H et al (25) Carbon and nitrogen stocks in physical fractions of a subtropical Acrisol as influenced by long-term no-till cropping systems and N fertilization. Plant Soil 268: Entz MH, Bellotti WD, Powell JM (25) Evolution of integrated crop-livestock production systems. In: McGilloway DA et al (eds) Grassland: a global resource. Wageningen Academic Publishers, The Netherlands, pp Ferreira EVO (29) Dinâmica de potássio em sistema de integração lavoura-pecuária em plantio direto sob intensidades de pastejo. Dissertation, Universidade Federal do Rio Grande do Sul Flores JPC (24) Atributos de solo e rendimento de soja em um sistema de integração lavoura-pecuária com diferentes pressões de pastejo em plantio direto com calcário aplicado na superfície. Dissertation, Universidade Federal do Rio Grande do Sul Flores JPC, Anghinoni I, Cassol LC et al (27) Atributos físicos e rendimento de soja em sistema plantio direto em integração lavoura-pecuária com diferentes pressões de pastejo. Rev Bras Ciên Solo 31: Fontaneli RS, Santos HP, Ambrosi I et al (2) Sistemas de produção de grãos com pastagens anuais de inverno, sob plantio direto. Embrapa Trigo, Passo Fundo Gama-Rodrigues EF (1999) Biomassa microbiana e ciclagem de nutrientes. In: Santos GA, Camargo FAO (eds) Fundamentos da matéria orgânica: ecossistemas tropicais e subtropicais. Genesis, Porto Alegre, pp Haynes RJ, Beare MH (1996) Aggregation and organic matter storage in mesothermal humid soils. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agricultural soils. CRC Press, Boca Raton, pp Hedley MJ et al (1982) Changes in inorganic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46: Holland JM (24) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 13:1 25 Keulen H, Schiere H (24) Crop-livestock systems: old wine in new bottles? In: Fischer T et al (eds) New directions for a diverse planet. Proceedings of the IV international crop science congress, Australia, 24 Kirschenmann FL (27) Potential for a new generation of biodiversity in agroecosystems of the future. Agron J 99: Kluthcouski J, Stone LF (23) Desempenho de culturas anuais sobre palhada de braquiária. In: Kluthcouski J, Stone LF, Aidar H (eds) Integração Lavoura-Pecuária. Embrapa Arroz e Feijão, Santo Antônio de Goiás, pp Landers JN (27) Tropical crop-livestock systems in conservation agriculture: the Brazilian experience. Integr Crop Manag 5:1 92 Lemaire G, Benoit M, Vertès F (23) Rechercher de nouvelles organisations à l échelle d un territoire pour concilier autonomie protéique et préservation de l environment. Fourrag 175: Lemaire G, Wilkins R, Hodgson J (25) Challenges for grassland science: managing research priorities. Agric Syst Environ 18:99 18 Lopes MLT (28) Sistema de integração lavoura-pecuária: desempenho de novilhos superprecoces e rendimento subseqüente da cultura de soja. Dissertation, Universidade Federal do Rio Grande do Sul Lopes MLT, Carvalho PCF, Anghinoni I et al (28) Sistema de integração lavoura-pecuária: desempenho e qualidade da carcaça de novilhos superprecoces terminados em pastagem de aveia e azevém manejada sob diferentes alturas. Ciên Rur 38: Lunardi R, Carvalho PCF, Trein CR et al (28) Rendimento de soja em sistema de integração lavoura-pecuária: efeito de métodos e intensidades de pastejo. Ciên Rur 38: Lustosa SBC (1998) Efeito do pastejo nas propriedades químicas do solo e na produção de soja e milho sobre pastagem consorciada de inverno no sistema de integração lavoura-pecuária. Dissertation, Universidade Federal do Paraná Mac Donald RM (1986) Extraction of microorganisms from soil. Biol Agric Hortic 3: Mielniczuk J (25) Manejo conservacionista da adubação potássica. In: Yamada T, Roberts T (eds) Potássio na

15 Nutr Cycl Agroecosyst (21) 88: Agricultura Brasileira. Instituto da Potassa e Fosfato, Piracicaba, pp Mielniczuk J, Bayer C, Vezzani FM et al (23) Manejo de solo e culturas e sua relação com os estoques de carbono e nitrogênio do solo. In: Curi N et al (eds) Tópicos em Ciência do Solo, vol 3. UFV, Viçosa, pp Moraes A, Pelissari A, Alves SJ et al (22) Integração lavoura-pecuária no Sul do Brasil. In: Mello NA, Assmann TS (eds) Proceedings of Integração Lavoura-pecuária no Sul do Brasil. Pato Branco, 22 Moraes A, Alves SJ, Pelissari A et al (23) Atualidades na integração lavoura e pecuária na região sul do Brasil. In: Gottschall CS, Silva JLS, Centeno NR (eds) Proceedings of VIII Ciclo de Palestras em Produção e manejo de Bovinos. ULBRA, Canoas, 23 Moraes A, Lang CR, Carvalho PCF et al (27) Integrated croplivestock systems in the subtropics. In: Moraes A, Carvalho PCF et al (eds) Proceedings of the international symposium on integrated crop-livestock systems. Curitiba, 27 Moreira FMS, Siqueira JO (26) Microbiologia e bioquímica do solo. UFLA, Lavras Pizzolo L (25) Evolution of nitrogen profiles under an agropastoral system in Rio Grande do Sul. Mémoire d études, Université Catholique de Louvain-la-Neuve Randall GW, Huggins DR, Russelle MP et al (1997) Nitrate losses through subsurface tile drainage in conservation reserve program, alfalfa, and row crop systems. J Environ Qual 26: Reis JCL, Saibro JC (24) Integração do arroz com pastagens cultivadas e pecuária. In: Gomes AS, Magalhães AM Jr (eds) Arroz Irrigado no Sul do Brasil. Embrapa Clima Temperado, Pelotas, pp Rocha LM (27) Altura de manejo do pasto e suas conseqüências sobre a produção animal e a dinâmica de uma pastagem anual de inverno. Dissertation, Universidade Federal do Rio Grande do Sul Rossato RR (24) Potencial de ciclagem de nitrogênio e potássio pelo nabo forrageiro intercalar ao cultivo do milho e trigo sob plantio direto. Dissertation, Universidade Federal de Santa Maria Russelle MP, Franzluebbers AJ (27) Introduction to symposium: integrated crop-livestock systems for profit and sustainability. Agron J 99: Russelle MP, Entz M, Franzluebbers AJ (27) Reconsidering integrated crop-livestock systems in North America. Agron J 99: Saibro JC, Silva JLS (1999) Integração sustentável do sistema arroz x pastagens utilizando misturas forrageiras de estação fria no litoral norte do Rio Grande do Sul. In: Gottschall CS, Silva JLS, Rodrigues NC (eds) IV Proceedings of the Ciclo de Palestras em Produção e manejo de Bovinos de Corte, Porto Alegre, 1999 Salton JC (27) Dinâmica do carbono em sistemas de integração lavoura-pecuária. In: Moraes A, Carvalho PCF et al (eds) Proceedings of the international symposium on integrated crop-livestock systems. Curitiba, 27 Schiere JB, Kater L (21) Mixed crop-livestock farming: a review of traditional technologies based on literature and field experience. FAO Animal Production and Health Papers No FAO, Rome Shiftlet TN, Darby GM (1985) Forages and soil conservation. In: Heath ME et al (eds) Forages: the science of grassland agriculture, 4th edn. Iowa State University Press, Ames, pp Silva HA, Koehler HS, Moraes A et al (28) Análise da viabilidade econômica da produção de leite a pasto e com suplementos na região dos Campos Gerais Paraná. Ciên Rur 38: Souto MS (28) Pastagem de aveia e azevém na integração lavoura-pecuária: produção de leite e características do solo. Dissertation, Universidade Federal do Paraná Souza ED (28) Evolução da matéria orgânica, do fósforo e da agregação em sistema de integração agricultura-pecuária em plantio direto, submetido a intensidades de pastejo. Thesis, Universidade Federal do Rio Grande do Sul Souza ED, Costa SEVGA, Lima CVS et al (28) Carbono orgânico e fósforo microbiano em sistemas de integração agricultura-pecuária submetidos a intensidades de pastejo em plantio direto. Rev Bras Ciên Solo 32: Thomas D (21) Editorial. Agric Syst 71:1 4 Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33: Vieira FTS (24) Produção da pastagem de inverno, rendimento animal e produtividade da soja em integração lavoura-pecuária. Dissertation, Universidade Federal do Paraná Vilela L, Macedo MCM, Martha GB Jr (23) Benefícios da Integração Lavoura-pecuária. In: Kluthcouski J, Stone LF, Aidar H et al (eds) Integração Lavoura-pecuária. Embrapa Arroz e Feijão, Santo Antônio de Goiás, pp Wilkinson SR, Lowrey RW (1973) Cycling of mineral nutrients in pasture ecosystems. In: Butler GW, Bailey RW (eds) Chemistry and biochemistry of herbage. Academic Press, New York, pp Zimmer AH, Macedo MCM, Kichel AN et al (24) Integrated agropastoral production systems. In: Guimarães EP et al (eds) Agropastoral systems for the tropical savannas of Latin America. CIAT, Colombia, pp

Status of the World s Soil Resources

Status of the World s Soil Resources 5 December 2015 Status of the World s Soil Resources The Intergovernmental Technical Panel on Soils (ITPS), the main scientific advisory body to the Global Soil Partnership (GSP) hosted by the Food and

More information

What is Conservation Agriculture?

What is Conservation Agriculture? What is Conservation Agriculture? CA is a concept for resource-saving agricultural crop production that strives to achieve acceptable profits together with high and sustained production levels while concurrently

More information

THE KILL DATE AS A MANAGEMENT TOOL TO INCREASE COVER CROPS BENEFITS IN WATER QUALITY & NITROGEN RECYCLING

THE KILL DATE AS A MANAGEMENT TOOL TO INCREASE COVER CROPS BENEFITS IN WATER QUALITY & NITROGEN RECYCLING THE KILL DATE AS A MANAGEMENT TOOL TO INCREASE COVER CROPS BENEFITS IN WATER QUALITY & NITROGEN RECYCLING María ALONSO-AYUSO José Luis GABRIEL Miguel QUEMADA Technical University of Madrid (Spain) INDEX

More information

Water Footprint Calculations for Pasture Based Beef Production

Water Footprint Calculations for Pasture Based Beef Production Water Footprint Calculations for Pasture Based Beef Production Dr. Horst Jürgen Schwartz Professor (retired), Chair of Livestock Ecology Humboldt University of Berlin Faculty of Agriculture, Institute

More information

The agro-ecological transition at INRA

The agro-ecological transition at INRA The agro-ecological transition at INRA Olivier Le Gall Nouvelles orientations pour la recherche agronomique Montpellier, Agropolis International, 10Sep13 #nora13.01 The agro-ecological transition at INRA

More information

Harvesting energy with fertilizers

Harvesting energy with fertilizers Harvesting energy with fertilizers Sustainable agriculture in Europe 1 Harvesting energy with fertilizers The reason for agriculture s existence is to supply energy to mankind. Agriculture converts solar

More information

Farming at dairy farms (produktion på mælkelandbrug)

Farming at dairy farms (produktion på mælkelandbrug) Farming at dairy (produktion på mælkelandbrug) Process description The present data refer to production on eight typical Danish Dairy in 2000, which combines dairy and (cash) crop production in a mixed

More information

Integrated crop-livestock farming systems

Integrated crop-livestock farming systems Livestock Thematic Papers Tools for project design Integrated crop-livestock farming systems Population growth, urbanization and income growth in developing countries are fuelling a substantial global

More information

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan ENVIRONMENTAL IMPACT OF FOOD PRODUCTION AND CONSUMPTION Palaniappa Krishnan Bioresources Engineering Department, University of Delaware, USA Keywords: Soil organisms, soil fertility, water quality, solar

More information

Economic and environmental analysis of the introduction of legumes in livestock farming systems

Economic and environmental analysis of the introduction of legumes in livestock farming systems Aspects of Applied Biology 79, 2006 What will organic farming deliver? COR 2006 Economic and environmental analysis of the introduction of legumes in livestock farming systems By C REVEREDO GIHA, C F E

More information

Emerging BioFuel Crops and Technology Kurt Thelen Michigan State University, East Lansing, Michigan ABSTRACT

Emerging BioFuel Crops and Technology Kurt Thelen Michigan State University, East Lansing, Michigan ABSTRACT Emerging BioFuel Crops and Technology Kurt Thelen Michigan State University, East Lansing, Michigan ABSTRACT United States energy policy requires 36 billion gallons of ethanol by the year 2022, with 21

More information

III. THE MICROBIAL BIOMASS

III. THE MICROBIAL BIOMASS III. THE MICROBIAL BIOMASS Required Readings: Ley, R.E., D.A. Lipson and S.K. Schmidt. 2001. Microbial biomass levels in barren and vegetated high altitude talus soils. Soil Sci. Soc. Am. J. 65:111 117.

More information

ENERGY IN FERTILIZER AND PESTICIDE PRODUCTION AND USE

ENERGY IN FERTILIZER AND PESTICIDE PRODUCTION AND USE Farm Energy IQ Conserving Energy in Nutrient Use and Pest Control INTRODUCTION Fertilizers and pesticides are the most widely used sources of nutrients and pest control, respectively. Fertilizer and pesticides

More information

Advanced Soil Organic Matter Management

Advanced Soil Organic Matter Management Extension Bulletin E-3137 New February 2011 Advanced Soil Organic Matter Management Managing Soils Soil organic matter (SOM) is the foundation for productive soil. It promotes healthy crops, supplies resources

More information

FARMING FOR THE FUTURE How mineral fertilizers can feed the world and maintain its resources in an Integrated Farming System

FARMING FOR THE FUTURE How mineral fertilizers can feed the world and maintain its resources in an Integrated Farming System How mineral fertilizers can feed the world and maintain its resources in an Integrated Farming System european fertilizer manufacturers association Global trends in population growth (Population 1000 million),

More information

Environmental Outcomes of Conservation Agriculture in North Italy

Environmental Outcomes of Conservation Agriculture in North Italy Environmental Outcomes of Conservation Agriculture in North Italy Stefano Brenna ERSAF Regional Agency for Agriculture and Forests of Lombardy (Italy) 6th World Congress on Conservation Agriculture Winnipeg,

More information

EFFECTS OF NITROGEN FERTILIZATION ON THE PRODUCTION OF Panicum. maximum cv. IPR 86 UNDER GRAZING

EFFECTS OF NITROGEN FERTILIZATION ON THE PRODUCTION OF Panicum. maximum cv. IPR 86 UNDER GRAZING ID #22-35 EFFECTS OF NITROGEN FERTILIZATION ON THE PRODUCTION OF Panicum maximum cv. IPR 86 UNDER GRAZING S.M.B. Lugão 1, L.R. de A. Rodrigues 2, E. B. Malheiros 3, J.J. dos S. Abrahão 4, and A. de Morais

More information

Speaker Summary Note

Speaker Summary Note 2020 CONFERENCE MAY 2014 Session: Speaker: Speaker Summary Note Building Resilience by Innovating and Investing in Agricultural Systems Mark Rosegrant Director, Environment and Production Technology Division

More information

Can Grazing Make Organic No-Till Possible?

Can Grazing Make Organic No-Till Possible? Can Grazing Make Organic No-Till Possible? Harun Cicek, Caroline Halde, Kristen Podolsky, Martin Entz, Keith Bamford, Joanne Thiessen Martens and David Feindel WCCA, Winnipeg 2014 ICARDA reduced tillage

More information

Understanding the. Soil Test Report. Client and Sample Identification

Understanding the. Soil Test Report. Client and Sample Identification Understanding the Soil Test Report Page 1 of 7 Crops absorb the nutrients required from soil in order to grow, so ensuring that your soil is meeting the crops needs is critical. Having the proper level

More information

Crop rotation and legumes cultivation: Effective measures to increase the environmental performance and long-term viability of European agriculture.

Crop rotation and legumes cultivation: Effective measures to increase the environmental performance and long-term viability of European agriculture. Crop rotation and legumes cultivation: Effective measures to increase the environmental performance and long-term viability of European agriculture. Christine Watson (SAC), Donal Murphy-Bokern (DMB), Fred

More information

Towards climate-smart agriculture

Towards climate-smart agriculture Towards climate-smart agriculture Background notes for the informal meeting of the Ministers of Agriculture Luxembourg, 15 September 2015 Table of contents Agricultural impact on climate change Climate

More information

Enhancing Biodiversity. Proactive management of biodiversity in intensive agriculture

Enhancing Biodiversity. Proactive management of biodiversity in intensive agriculture Enhancing Biodiversity Proactive management of biodiversity in intensive agriculture Contents Introduction Increasing food security in a sustainable way 3 The importance of biodiversity The vitality and

More information

Managing of Annual Winter Forages in Southwest Texas

Managing of Annual Winter Forages in Southwest Texas r r r rr EDUCATION RESEARCH EXTENSION The Texas A&M University System Soil & Crop Sciences Managing of Annual Winter Forages in Southwest Texas Mr Charles Stichler Assocaite Professor and Extension Agronomist

More information

GSB PROJECT. Latin American Vision The next 50 years SUSTAINABILITY: WATER USE, FERTILIZER, SOIL CARBON

GSB PROJECT. Latin American Vision The next 50 years SUSTAINABILITY: WATER USE, FERTILIZER, SOIL CARBON GSB PROJECT The Latin American Convention of the Global Sustainable Bioenergy Project 23 to 25 March 2010 Latin American Vision The next 50 years SUSTAINABILITY: WATER USE, FERTILIZER, SOIL CARBON Heitor

More information

Sustainability in Agricultural Marketing:

Sustainability in Agricultural Marketing: International Journal of scientific research and management (IJSRM) Special Issue On National Level Conference Business Growth and Social Development Pages 19-24 2014 Website: www.ijsrm.in ISSN (e): 2321-3418

More information

PRESCRIBED GRAZING NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD. (Acre) Code 528

PRESCRIBED GRAZING NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD. (Acre) Code 528 NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD PRESCRIBED GRAZING (Acre) Code 528 DEFINITION Managing the harvest of vegetation with grazing and/or browsing animals. PURPOSE Improve

More information

ECONOMICAL EVALUATION THROUGH GROSS PROFIT AND CASH FLOW IN DIFFERENT BEEF CATTLE SYSTEMS IN RIO GRANDE DO SUL

ECONOMICAL EVALUATION THROUGH GROSS PROFIT AND CASH FLOW IN DIFFERENT BEEF CATTLE SYSTEMS IN RIO GRANDE DO SUL ECONOMICAL EVALUATION THROUGH GROSS PROFIT AND CASH FLOW IN DIFFERENT BEEF CATTLE SYSTEMS IN RIO GRANDE DO SUL SUMMARY Vicente Celestino Pires Silveira 1 João Garibaldi Viana 2 Carolina Balbé de Oliveira

More information

Introduction: Growth analysis and crop dry matter accumulation

Introduction: Growth analysis and crop dry matter accumulation PBIO*3110 Crop Physiology Lecture #2 Fall Semester 2008 Lecture Notes for Tuesday 9 September How is plant productivity measured? Introduction: Growth analysis and crop dry matter accumulation Learning

More information

Bottom-up: Responding to climate change through livestock in integrated agriculture

Bottom-up: Responding to climate change through livestock in integrated agriculture Bottom-up: Responding to climate change through livestock in integrated agriculture Katrien van t Hooft, ETC Adviesgroep, Netherlands Personal introduction Veterinary medicine in Utrecht, NL MSc Management

More information

Climate-Smart Agriculture - Science for Action 24-26 October 2011 - Ede / Wageningen - The Netherlands

Climate-Smart Agriculture - Science for Action 24-26 October 2011 - Ede / Wageningen - The Netherlands The Wageningen Statement: Climate-Smart Agriculture - Science for Action 24-26 October 2011 - Ede / Wageningen - The Netherlands The Wageningen Statement: Climate-Smart Agriculture Science for Action The

More information

DRYLAND SYSTEMS Science for better food security and livelihoods in the dry areas

DRYLAND SYSTEMS Science for better food security and livelihoods in the dry areas DRYLAND SYSTEMS Science for better food security and livelihoods in the dry areas CGIAR Research Program on Dryland Agricultural Production Systems The global research partnership to improve agricultural

More information

The Food-Energy-Water Nexus in Agronomy, Crop and Soil Sciences

The Food-Energy-Water Nexus in Agronomy, Crop and Soil Sciences The Food-Energy-Water Nexus in Agronomy, Crop and Soil Sciences February 4, 2016 In the fall of 2015 the Agronomy, Crop Science and Soil Science societies put out a call for white papers to help inform

More information

Data Mining and Meta-analysis as Tools to Evaluate the Impact of Management Practices on Dynamic Soil Properties

Data Mining and Meta-analysis as Tools to Evaluate the Impact of Management Practices on Dynamic Soil Properties Data Mining and Meta-analysis as Tools to Evaluate the Impact of Management Practices on Dynamic Soil Properties Carmen Ugarte, Michelle M. Wander University of Illinois at Urbana-Champaign National Cooperative

More information

USING HUMIC COMPOUNDS TO IMPROVE EFFICIENCY OF FERTILISER NITROGEN

USING HUMIC COMPOUNDS TO IMPROVE EFFICIENCY OF FERTILISER NITROGEN USING HUMIC COMPOUNDS TO IMPROVE EFFICIENCY OF FERTILISER NITROGEN Phillip Schofield 1, Nicky Watt 2 and Max Schofield 3 1 Abron Farm Consultant, 3/129 Maraekakaho Rd Hastings Phillip.schofield@abron.co.nz

More information

- focus on green house gas emission

- focus on green house gas emission Life cycle assessment of milk at farm gate - focus on green house gas emission Troels Kristensen Institute of Agroecology Århus University, Denmark EAAP 2011 Stavanger Norway Session 7 Structure of the

More information

Research to improve the use and conservation of agricultural biodiversity for smallholder farmers

Research to improve the use and conservation of agricultural biodiversity for smallholder farmers Research to improve the use and conservation of agricultural biodiversity for smallholder farmers Agricultural biodiversity the variability of crops and their wild relatives, trees, animals, arthropods,

More information

ARIMNet 2 Call 2014-15

ARIMNet 2 Call 2014-15 Coordination of the Agricultural Research In the Mediterranean Area Call i text ARIMNet 2 Call 2014-15 SUBMISSION Pre-proposal by December 1 st, 2014 Full Proposal by May 11 th 2015 on http://arimnet-call.eu/

More information

Beyond biological nitrogen fixation: Legumes and the Sustainable Intensification of smallholder farming systems

Beyond biological nitrogen fixation: Legumes and the Sustainable Intensification of smallholder farming systems Beyond biological nitrogen fixation: Legumes and the Sustainable Intensification of smallholder farming systems B Vanlauwe, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya [with

More information

Soil Sampling for Nutrient Management

Soil Sampling for Nutrient Management Soil Sampling for Nutrient Management Nutrient Management Factsheet No. 2 in Series Revised September 2010 Order Reference No. 631-500-1 For nutrient management, soil sampling is done to collect a soil

More information

various P levels for the past two years. Treatments were a one time application

various P levels for the past two years. Treatments were a one time application SOIL FERTILITY AND ITS RELATIONSHIP TO CROP PRODUCTION COST IN NO-TILLAGE SYSTEMS J.T. Touchton The rapidly increasing cost of crop production is forcing an interest in practices that reduce or eliminate

More information

Agri Commodities ABN AMRO Bank NV

Agri Commodities ABN AMRO Bank NV Agri Commodities ABN AMRO Bank NV Fausto Caron Head of Commodities Brazil Chicago, June 2013 1 Agenda Brazilian Agriculture A Historical Perspective Infra-Structure: The Brazilian quest for competitiveness

More information

Yield and quality of parsley depend on water quality

Yield and quality of parsley depend on water quality 337 Bulgarian Journal of Agricultural Science, 20 (No 2) 2014, 337-341 Agricultural Academy Yield and quality of parsley depend on water quality Institute of Soil Science, Agrotechnologies and Plant Protection

More information

Nitrogen Fixing Bacteria in Agriculture Now a Real Option Guy Webb B.Sc. REM Agricultural Consultant

Nitrogen Fixing Bacteria in Agriculture Now a Real Option Guy Webb B.Sc. REM Agricultural Consultant Nitrogen Fixing Bacteria in Agriculture Now a Real Option Guy Webb B.Sc. REM Agricultural Consultant The Pursuit of Protein and Profit All agricultural enterprises, in essence, are based on the pursuit

More information

Self-Study Course. Continuing Education. Water balance and nitrate leaching under corn in kura clover living mulch

Self-Study Course. Continuing Education. Water balance and nitrate leaching under corn in kura clover living mulch Earn 1 CEU in Soil & Water Management Water balance and nitrate leaching under corn in kura clover living mulch n the midwestern United States, corn production I is a dominant land use. In 2008, approximately

More information

Humidtropics Kiboga/Kyankwanzi Soybean production training

Humidtropics Kiboga/Kyankwanzi Soybean production training Humidtropics Kiboga/Kyankwanzi Soybean production training Makerere University and Humidtropics collaboration Soybean Seed production Training of Kiboga-Kyankwanzi platform members in Soybean Seed Production

More information

Evaluation of Biofertilizer and Manure Effects on Quantitative Yield of Nigella Sativa L.

Evaluation of Biofertilizer and Manure Effects on Quantitative Yield of Nigella Sativa L. Evaluation of Biofertilizer and Manure Effects on Quantitative Yield of Nigella Sativa L. Mohammad Reza Haj Seyed Hadi Fereshteh Ghanepasand Mohammad Taghi Darzi Dept. of Agronomy, Roudehen Branch, Islamic

More information

Greenhouse Gas Mitigation on Diversified Farms. Elwin G. Smith and B. Mani Upadhyay

Greenhouse Gas Mitigation on Diversified Farms. Elwin G. Smith and B. Mani Upadhyay Greenhouse Gas Mitigation on Diversified Farms Elwin G. Smith and B. Mani Upadhyay Agriculture and Agri-Food Canada. Lethbridge Research Centre, PO Box 3000, Lethbridge, AB, Canada. T1J 4B1. Selected Paper

More information

GRAZING AND FIRE MANAGEMENT FOR NATIVE PERENNIAL GRASS RESTORATION IN CALIFORNIA GRASSLANDS

GRAZING AND FIRE MANAGEMENT FOR NATIVE PERENNIAL GRASS RESTORATION IN CALIFORNIA GRASSLANDS Time-controlled, short duration, high-intensity sheep or cattle grazing for several days in the early spring removes substantial amounts of alien annual plant seed and favors young short-statured seedling

More information

DOE Office of Biological & Environmental Research: Biofuels Strategic Plan

DOE Office of Biological & Environmental Research: Biofuels Strategic Plan DOE Office of Biological & Environmental Research: Biofuels Strategic Plan I. Current Situation The vast majority of liquid transportation fuel used in the United States is derived from fossil fuels. In

More information

INFLUENCES OF WINTER COVER CROP RESIDUES AND TILLAGE ON COTTON LINT YIELD AND QUALITY

INFLUENCES OF WINTER COVER CROP RESIDUES AND TILLAGE ON COTTON LINT YIELD AND QUALITY Pak. J. Bot., 37(4): 905-911, 2005. INFLUENCES OF WINTER COVER CROP RESIDUES AND TILLAGE ON COTTON LINT YIELD AND QUALITY AYDIN UNAY, ENGIN TAN *, CAHIT KONAK AND ESEN CELEN ** Department of Agronomy,

More information

BSc in Environmental and Conservation Sciences Wildlife and Rangeland Resources Management Major

BSc in Environmental and Conservation Sciences Wildlife and Rangeland Resources Management Major Faculty of Agricultural, Life & Environmental Sciences Undergraduate Student Services 2-31 General Services Building www.ales.ualberta.ca Tel: 780.492.4933 Edmonton, Alberta, Canada T6G 2H1 new2ales@ualberta.ca

More information

Nutrient and Fertilizer Value of Dairy Manure

Nutrient and Fertilizer Value of Dairy Manure Agriculture and Natural Resources FSA4017 Nutrient and Fertilizer Value of Dairy Manure Jodie A. Pennington Professor - Dairy and Goats Karl VanDevender Professor - Waste Management John A. Jennings Professor

More information

Deforestation in the Amazon

Deforestation in the Amazon Deforestation in the Amazon By Rhett A Butler Rainforests once covered 14% of the earth's land surface; now they cover a mere 6% and experts estimate that the last remaining rainforests could be consumed

More information

U.S. SOYBEAN SUSTAINABILITY ASSURANCE PROTOCOL

U.S. SOYBEAN SUSTAINABILITY ASSURANCE PROTOCOL US SOYBEAN SUSTAINABILITY ASSURANCE PROTOCOL A Sustainability System That Delivers MARCH 2013 Since 1980, US farmers increased soy production by 96% while using 8% less energy US SOYBEAN SUSTAINABILITY

More information

Crop residue management (CRM), a cultural practice that

Crop residue management (CRM), a cultural practice that Chapter V Crop Residue Management Practices Crop residue management (CRM), a cultural practice that involves fewer and/or less intensive tillage operations and preserves more residue from the previous

More information

Outline. What is IPM Principles of IPM Methods of Pest Management Economic Principles The Place of Pesticides in IPM

Outline. What is IPM Principles of IPM Methods of Pest Management Economic Principles The Place of Pesticides in IPM Improving Control Systems in Thailand for Plant and Plants Products Intended for Export to the European Union co-funded by the European Union and Thai Department of Agriculture Preharvest Use of Pesticides

More information

Effects of Climate Change on Grasslands. Jeff Thorpe Saskatchewan Research Council June 27, 2012

Effects of Climate Change on Grasslands. Jeff Thorpe Saskatchewan Research Council June 27, 2012 Effects of Climate Change on Grasslands Jeff Thorpe Saskatchewan Research Council June 27, 2012 Grassland work under the Prairies Regional Adaptation Collaborative Two components: How vulnerable are prairie

More information

Natural Resource Scarcity:

Natural Resource Scarcity: Food Security in a World of Natural Resource Scarcity: The Role of Agricultural Technologies Daniel Mason-D Croz IFPRI - Environment and Production Technology Division Presentation Overview 1- Rationale

More information

Open Meeting of the Club of Bologna Farm Machinery to Feed the World. 21 September 2015 Teatro della Terra, Biodiversity Park, EXPO Milano 2015

Open Meeting of the Club of Bologna Farm Machinery to Feed the World. 21 September 2015 Teatro della Terra, Biodiversity Park, EXPO Milano 2015 Open Meeting of the Club of Bologna 21 September 2015 Teatro della Terra, Biodiversity Park, EXPO Milano 2015 Farm of the Future Giuseppe Gavioli giuseppe.gavioli@gmail.com Challenges Child and maternal

More information

A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES

A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES Narong Chinabut Office of Science for Land Development Land Development Department, Ministry of Agriculture and Cooperatives, Bangkok

More information

FERTILISER RESPONSES OF MAIZE AND WINTER WHEAT AS A FUNCTION OF YEAR AND FORECROP

FERTILISER RESPONSES OF MAIZE AND WINTER WHEAT AS A FUNCTION OF YEAR AND FORECROP FERTILISER RESPONSES OF MAIZE AND WINTER WHEAT AS A FUNCTION OF YEAR AND FORECROP TAMÁS ÁRENDÁS 1, PÉTER BÓNIS 1, PÉTER CSATHÓ 2, DÉNES MOLNÁR 1 and ZOLTÁN BERZSENYI 1 1 AGRICULTURAL RESEARCH INSTITUTE

More information

What Is Humic Acid? Where Does It Come From?

What Is Humic Acid? Where Does It Come From? What Is Humic Acid? Humic and Fulvic acids are the final break-down constituents of the natural decay of plant and animal materials. These organic acids are found in pre-historic deposits. Humic matter

More information

Supplementary information on the Irish Dairy sector in support of

Supplementary information on the Irish Dairy sector in support of Research and Information Service Paper 30/15 26 th January 2015 NIAR 21-15 Mark Allen Supplementary information on the Irish Dairy sector in support of 1 Background 29/15 NIAR 912-14 This briefing note

More information

THE SCIENCE THE FUTURE OF CANADIAN CANOLA: APPLY THE SCIENCE OF AGRONOMICS TO MAXIMIZE GENETIC POTENTIAL.

THE SCIENCE THE FUTURE OF CANADIAN CANOLA: APPLY THE SCIENCE OF AGRONOMICS TO MAXIMIZE GENETIC POTENTIAL. THE SCIENCE THE FUTURE OF CANADIAN CANOLA: APPLY THE SCIENCE OF AGRONOMICS TO MAXIMIZE GENETIC POTENTIAL. WHERE WE HAVE BEEN CANOLA PRODUCTION HAS SURPASSED THE INDUSTRY TARGET OF 15 MMT. This was achieved

More information

What Is Holistic Planned Grazing?

What Is Holistic Planned Grazing? What Is Holistic Planned Grazing? Holistic Planned Grazing is a planning process for dealing simply with the great complexity livestock managers face daily in integrating livestock production with crop,

More information

Living & Working Managing Natural Resources and Waste

Living & Working Managing Natural Resources and Waste Living & Working Managing Natural Resources and Waste 5.13 Managing Natural Resources and Waste Background 5.13.1 This chapter focuses on how we manage resources within the AONB. It includes renewable

More information

Agriculture, Food Security and Climate Change A Triple Win?

Agriculture, Food Security and Climate Change A Triple Win? Agriculture, Food Security and Climate Change A Triple Win? Dr. Andrew Steer Special Envoy for Climate Change The World Bank Group Your Royal Highnesses, Excellencies, Ladies and Gentlemen, Let me begin

More information

CORN IS GROWN ON MORE ACRES OF IOWA LAND THAN ANY OTHER CROP.

CORN IS GROWN ON MORE ACRES OF IOWA LAND THAN ANY OTHER CROP. CORN IS GROWN ON MORE ACRES OF IOWA LAND THAN ANY OTHER CROP. Planted acreage reached a high in 1981 with 14.4 million acres planted for all purposes and has hovered near 12.5 million acres since the early

More information

Food Security in a Volatile World

Food Security in a Volatile World Issues in Brief Food Security in a Volatile World Developments in agriculture over the last fifty years have increased yields sufficiently to provide on average more than enough food for every person on

More information

Brief report on the Happy Strategies Game

Brief report on the Happy Strategies Game Brief report on the Happy Strategies Game Nile Basin Development Challenge Program Stakeholder Forum and Project Meetings October 5-7 2011 Held at Amhara Region Agricultural Research Institute (ARARI),

More information

Global Environment Facility GEF OPERATIONAL PROGRAM #13 ON CONSERVATION AND SUSTAINABLE USE OF BIOLOGICAL DIVERSITY IMPORTANT TO AGRICULTURE

Global Environment Facility GEF OPERATIONAL PROGRAM #13 ON CONSERVATION AND SUSTAINABLE USE OF BIOLOGICAL DIVERSITY IMPORTANT TO AGRICULTURE Global Environment Facility GEF OPERATIONAL PROGRAM #13 ON CONSERVATION AND SUSTAINABLE USE OF BIOLOGICAL DIVERSITY IMPORTANT TO AGRICULTURE CONTENTS Introduction..1 Convention Guidance... 2 Agricultural

More information

The Contribution of Global Agriculture to Greenhouse Gas Emissions

The Contribution of Global Agriculture to Greenhouse Gas Emissions The Contribution of Global Agriculture to Greenhouse Gas Emissions Dr. Tommy Boland, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4 tommy.boland@ucd.ie Acknowledge

More information

BEC Feed Solutions. Steve Blake BEC Feed Solutions

BEC Feed Solutions. Steve Blake BEC Feed Solutions BEC Feed Solutions Presenter: Steve Blake BEC Feed Solutions Nutritional Role of Phosphorus Phosphorus (P) is present in all cells in the body Essential for many digestive and metabolic processes, including

More information

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES Question 3 The active ingredients in many pesticides are chemical compounds that kill organisms such as insects, molds, and weeds. Proponents claim that

More information

ACCOUNTING FOR ASIA S NATURAL CAPITAL

ACCOUNTING FOR ASIA S NATURAL CAPITAL ACCOUNTING FOR S NATURAL CAPITAL DRIVING THE TRANSITION TO A RESOURCE-EFFICIENT GREEN ECONOMY Asia s rapid economic growth during recent decades has been accompanied by serious depletion of the region

More information

When little becomes much! Jimma and Cornell Universities join hands in developing climate smart Programs in Ethiopia using US Embassy s seed grant

When little becomes much! Jimma and Cornell Universities join hands in developing climate smart Programs in Ethiopia using US Embassy s seed grant When little becomes much! Jimma and Cornell Universities join hands in developing climate smart Programs in Ethiopia using US Embassy s seed grant Figure 1: Degraded and restored landscapes Global climate

More information

Farming. In the Standard Grade Geography exam there are three types of farming you need to know about arable, livestock and mixed.

Farming. In the Standard Grade Geography exam there are three types of farming you need to know about arable, livestock and mixed. Types of Farming In the Standard Grade Geography exam there are three types of farming you need to know about arable, livestock and mixed. Arable farms are ones where the main way of making money is by

More information

RICE CULTIVATION: ENVIRONMENTAL ISSUES AND WATER SAVING APPROACHES

RICE CULTIVATION: ENVIRONMENTAL ISSUES AND WATER SAVING APPROACHES RICE CULTIVATION: ENVIRONMENTAL ISSUES AND WATER SAVING APPROACHES Ragab Ragab 1 Introduction Globally, rice is the most important food crop with more than 90% produced in Asia. In most of Asian countries,

More information

Environmental Role of Poplar and Willow Drusilla Riddell-Black Lupus Science United Kingdom

Environmental Role of Poplar and Willow Drusilla Riddell-Black Lupus Science United Kingdom Environmental Role of Poplar and Willow Drusilla Riddell-Black Lupus Science United Kingdom Environmental roles include Buffer zones Riparian zone protection Slope stabilisation Flooding reduction Carbon

More information

Liquid Biofuels for Transport

Liquid Biofuels for Transport page 1/11 Scientific Facts on Liquid Biofuels for Transport Prospects, risks and opportunities Source document: FAO (2008) Summary & Details: GreenFacts Context - Serious questions are being raised about

More information

CHAPTER 7 AGRICULTURAL SECTOR - ENERGY USES

CHAPTER 7 AGRICULTURAL SECTOR - ENERGY USES CHAPTER 7 AGRICULTURAL SECTOR - ENERGY USES 7.1 INTRODUCTION The agriculture sector has at its core the production process for foodstuff (e.g., grains, fruits and vegetables, meat, fish, poultry, and milk),

More information

Agricultural Production and Research in Heilongjiang Province, China. Jiang Enchen. Professor, Department of Agricultural Engineering, Northeast

Agricultural Production and Research in Heilongjiang Province, China. Jiang Enchen. Professor, Department of Agricultural Engineering, Northeast 1 Agricultural Production and Research in Heilongjiang Province, China Jiang Enchen Professor, Department of Agricultural Engineering, Northeast Agricultural University, Harbin, China. Post code: 150030

More information

The 2001-2002 Canadian Drought Experience: Lessons Learned

The 2001-2002 Canadian Drought Experience: Lessons Learned The 2001-2002 Canadian Drought Experience: Lessons Learned Invited Presentation to the North American Drought Monitor-Canadian Workshop 15 October 2008 Ottawa Ontario G. Koshida**, E. Wheaton* +, V. Wittrock*

More information

Chapter D9. Irrigation scheduling

Chapter D9. Irrigation scheduling Chapter D9. Irrigation scheduling PURPOSE OF THIS CHAPTER To explain how to plan and schedule your irrigation program CHAPTER CONTENTS factors affecting irrigation intervals influence of soil water using

More information

Latin American Feedstocks

Latin American Feedstocks Latin American Feedstocks Professor: Márcia Miguel Castro Ferreira. PhD Student: Magale Rambo. University of Campinas (UNICAMP), Institue of Chemistry, Labor for Theoretical and Applied Chemometrics LQTA

More information

Academic Offerings. Agriculture

Academic Offerings. Agriculture Academic Offerings This section contains descriptions of programs, majors, minors, areas of concentration, fields of specialization, and courses. Semesters following course titles indicate when each course

More information

Birmingham City University / Students Union Aspects and Impacts Register. Waste. Impacts description

Birmingham City University / Students Union Aspects and Impacts Register. Waste. Impacts description Birmingham City University / Students Union and Impacts Register Waste Production of non - hazardous waste Production of hazardous waste Storage of non - hazardous waste Potential for waste to be disposed

More information

FINAL REPORT. Identification of termites causing damage in maize in small-scale farming systems M131/80

FINAL REPORT. Identification of termites causing damage in maize in small-scale farming systems M131/80 FINAL REPORT Identification of termites causing damage in maize in small-scale farming systems M131/80 Project Manager: Dr MS Mphosi Co-workers: SH Nthangeni, UM du Plessis, AL Rossouw DETAILS PROJECT

More information

Frank Mitloehner, PhD Air Quality CE Specialist Animal Science, UC Davis

Frank Mitloehner, PhD Air Quality CE Specialist Animal Science, UC Davis Mitigation Solutions for Nitrous Oxide Emissions from Animal Waste International Symposium on Near-Term Solutions for Climate Change Mitigation in California March 5-7, 2007 Frank Mitloehner, PhD Air Quality

More information

MANAGEMENT OF MEADOW FESCUE PASTURE FOR HIGH-PRODUCING DAIRY COWS IN NORTHERN JAPAN

MANAGEMENT OF MEADOW FESCUE PASTURE FOR HIGH-PRODUCING DAIRY COWS IN NORTHERN JAPAN ID #22-25 MANAGEMENT OF MEADOW FESCUE PASTURE FOR HIGH-PRODUCING DAIRY COWS IN NORTHERN JAPAN K. Sudo 1, K. Ochiai 2 and T. Ikeda 3 1 Hokkaido National Agricultural Experiment Station, Hitsujigaoka, Toyohira,

More information

The Impact of Climate Variability and Change on Crop Production

The Impact of Climate Variability and Change on Crop Production The Impact of Climate Variability and Change on Crop Production Zoran Dimov Faculty of Agricultural Sciencies and Food Facing with Unprecedented Conditions Climate Change are recognized as a serious environmental

More information

CHALLENGE 7. STRATEGIES AND TOOLS FOR SUSTAINABLE SOIL AND SUBSTRATE MANAGEMENT. Janjo de Haan (Wageningen UR) Alice Abjean-Uguen (CERAFEL)

CHALLENGE 7. STRATEGIES AND TOOLS FOR SUSTAINABLE SOIL AND SUBSTRATE MANAGEMENT. Janjo de Haan (Wageningen UR) Alice Abjean-Uguen (CERAFEL) CHALLENGE 7. STRATEGIES AND TOOLS FOR SUSTAINABLE SOIL AND SUBSTRATE MANAGEMENT Janjo de Haan (Wageningen UR) Alice Abjean-Uguen (CERAFEL) International year of the soil Soil and substrate crucial role

More information

PUTTING FORAGES TOGETHER FOR YEAR ROUND GRAZING

PUTTING FORAGES TOGETHER FOR YEAR ROUND GRAZING PUTTING FORAGES TOGETHER FOR YEAR ROUND GRAZING Jimmy C. Henning A good rotational grazing system begins with a forage system that allows the maximum number of grazing days per year with forages that are

More information

Environmental impacts of harvesting biomass from the Nordic forests. Nicholas Clarke Norwegian Forest and Landscape Institute

Environmental impacts of harvesting biomass from the Nordic forests. Nicholas Clarke Norwegian Forest and Landscape Institute 1 Environmental impacts of harvesting biomass from the Nordic forests Nicholas Clarke Norwegian Forest and Landscape Institute Background 2 Increased use of forest biomass for energy might lead to conflict

More information

suscon Green One application. 3 years control against grass grub. Grass grub damaged pasture

suscon Green One application. 3 years control against grass grub. Grass grub damaged pasture suscon Green One application. 3 years control against grass grub. Grass grub damaged pasture suscon Green is a dust free, controlled release granule that controls Grass Grub in newly established pasture

More information

AGRICULTURAL PROBLEMS OF JAPAN

AGRICULTURAL PROBLEMS OF JAPAN AGRICULTURAL PROBLEMS OF JAPAN Takeshi Kimura, Agricultural Counselor Embassy of Japan, Washington, D. C. I would like, first, to sketch the Japanese agricultural situation and, second, to review Japan's

More information

Soil Management and Fertilization Process

Soil Management and Fertilization Process Vorstellung des Fachgebiets Umweltchemie Dr. Mirjam Helfrich 04.06.08 Department of Environmental Chemistry Dynamics of nutrients and pollutants in the atmosphere, hydrosphere, pedosphere, and biosphere

More information

DSM Position on Sustainable Biomass

DSM Position on Sustainable Biomass Corporate Public Affairs Het Overloon 1, 6411 TE Heerlen, the Netherlands www.dsm.com April 2012 DSM Position on Sustainable Biomass Key messages DSM is a leading Life Sciences and Materials Sciences company

More information

Agroforestry and climate change. Emmanuel Torquebiau FAO webinar 5 February 2013

Agroforestry and climate change. Emmanuel Torquebiau FAO webinar 5 February 2013 Agroforestry and climate change Emmanuel Torquebiau FAO webinar 5 February 2013 Agroforestry: well-known buffering and resilience effects Climate variability is well buffered by agroforestry because of

More information