RiskNeutral Valuation of Participating Life Insurance Contracts


 Alyson Jennings
 1 years ago
 Views:
Transcription
1 RiskNeutral Valuation of Participating Life Insurance Contracts DANIEL BAUER with R. Kiesel, A. Kling, J. Russ, and K. Zaglauer ULM UNIVERSITY RTG 1100 AND INSTITUT FÜR FINANZ UND AKTUARWISSENSCHAFTEN APRIA Annual Meeting, Tokyo, August 2006
2 Contents Introduction 1 Introduction 2 Insurance Company and Insurance Contract Development of the Liabilities 3 4 Financial Market Monte Carlo Approach Discretization Approach 5 6 APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 2 / 28
3 Contents Introduction 1 Introduction 2 Insurance Company and Insurance Contract Development of the Liabilities 3 4 Financial Market Monte Carlo Approach Discretization Approach 5 6 APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 3 / 28
4 Guarantees and Options in Participating Contracts Interest rate guarantee cliquet style. Participation guarantee: Policyholders participate on the company s surplus. Influenced by regulatory prerequisites and insurer s management decisions about surplus distribution. Surrender option. Problems: Plunging stock markets, low interest rates. Insurers are stuck with old, nonhedged guarantees. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 4 / 28
5 Guarantees and Options in Participating Contracts Interest rate guarantee cliquet style. Participation guarantee: Policyholders participate on the company s surplus. Influenced by regulatory prerequisites and insurer s management decisions about surplus distribution. Surrender option. Problems: Plunging stock markets, low interest rates. Insurers are stuck with old, nonhedged guarantees. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 4 / 28
6 What s new? Introduction Financial strength is taken into account (via the reserve quota). Surplus distribution model(s) adequate for many markets, in particular the German market. Decomposition of the contract, separation of the embedded options. Allows for the separate securitization/hedging of the embedded options. We can derive an equilibrium condition for a fair contract. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 5 / 28
7 Contents Introduction Insurance Company and Insurance Contract Development of the Liabilities 1 Introduction 2 Insurance Company and Insurance Contract Development of the Liabilities 3 4 Financial Market Monte Carlo Approach Discretization Approach 5 6 APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 6 / 28
8 of insurer s financial situation Insurance Company and Insurance Contract Development of the Liabilities Assets A t A t Liabilities L t R t A t Insurer s assets A t, where A + t = A t d t is the value right after dividend payments d t. The evolution of the liabilities and the dividends depend on the evolution of the assets and the reserve quota x t = R t L t, i.e. ( L t+1 = L t+1 A t+1, A+ t, L t, x t,... ) and ( d t+1 = d t+1 A t+1, A+ t, L t, x t,... ). APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 7 / 28
9 of insurer s financial situation Insurance Company and Insurance Contract Development of the Liabilities Assets A t A t Liabilities L t R t A t Insurer s assets A t, where A + t = A t d t is the value right after dividend payments d t. The evolution of the liabilities and the dividends depend on the evolution of the assets and the reserve quota x t = R t L t, i.e. ( L t+1 = L t+1 A t+1, A+ t, L t, x t,... ) and ( d t+1 = d t+1 A t+1, A+ t, L t, x t,... ). APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 7 / 28
10 Insurance Contract Introduction Insurance Company and Insurance Contract Development of the Liabilities Assets A t A t Liabilities L t R t A t The insured pays a single premium L 0 at time t = 0 and receives L T at maturity, independent of whether he/she is alive or not. Analyze this contract under different surplus distribution schemes. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 8 / 28
11 Distribution schemes 1 Insurance Company and Insurance Contract Development of the Liabilities 1 MUSTcase (only obligatory payments considered): Yeartoyear cliquet style guarantee on the liabilities (minimum rate g). Proportion δ of earnings on book value have to be credited to policyholder s account. "Rest" of the earnings on book values paid out as dividend. "Rest" of the earnings on market values remains in the company (reserves). 2 IScase (typical behavior of German insurer modeled): Target rate z is credited to the policyholder s account as long as the reserve quota stays within a given range [a, b]. If quota is outside the range this rate is adjusted. Dividends amount to a portion α of any surplus credited to the policy reserves. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 9 / 28
12 Distribution schemes 1 Insurance Company and Insurance Contract Development of the Liabilities 1 MUSTcase (only obligatory payments considered): Yeartoyear cliquet style guarantee on the liabilities (minimum rate g). Proportion δ of earnings on book value have to be credited to policyholder s account. "Rest" of the earnings on book values paid out as dividend. "Rest" of the earnings on market values remains in the company (reserves). 2 IScase (typical behavior of German insurer modeled): Target rate z is credited to the policyholder s account as long as the reserve quota stays within a given range [a, b]. If quota is outside the range this rate is adjusted. Dividends amount to a portion α of any surplus credited to the policy reserves. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 9 / 28
13 Distribution schemes 1 Insurance Company and Insurance Contract Development of the Liabilities 1 MUSTcase (only obligatory payments considered): Yeartoyear cliquet style guarantee on the liabilities (minimum rate g). Proportion δ of earnings on book value have to be credited to policyholder s account. "Rest" of the earnings on book values paid out as dividend. "Rest" of the earnings on market values remains in the company (reserves). 2 IScase (typical behavior of German insurer modeled): Target rate z is credited to the policyholder s account as long as the reserve quota stays within a given range [a, b]. If quota is outside the range this rate is adjusted. Dividends amount to a portion α of any surplus credited to the policy reserves. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 9 / 28
14 Distribution schemes 1 Insurance Company and Insurance Contract Development of the Liabilities 1 MUSTcase (only obligatory payments considered): Yeartoyear cliquet style guarantee on the liabilities (minimum rate g). Proportion δ of earnings on book value have to be credited to policyholder s account. "Rest" of the earnings on book values paid out as dividend. "Rest" of the earnings on market values remains in the company (reserves). 2 IScase (typical behavior of German insurer modeled): Target rate z is credited to the policyholder s account as long as the reserve quota stays within a given range [a, b]. If quota is outside the range this rate is adjusted. Dividends amount to a portion α of any surplus credited to the policy reserves. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 9 / 28
15 Contents Introduction 1 Introduction 2 Insurance Company and Insurance Contract Development of the Liabilities 3 4 Financial Market Monte Carlo Approach Discretization Approach 5 6 APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 10 / 28
16 The usual approach: Usual assumptions: There exists a riskneutral measure Q and a numéraire process (B t ) t [0,T ] (bank account). General [ pricing formula: ] (riskneutral valuation formula) V 0 = E Q B 1 T L T F 0 Problem 1: Underlying security not traded! Approximate underlying by traded benchmark portfolio. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 11 / 28
17 The usual approach: Usual assumptions: There exists a riskneutral measure Q and a numéraire process (B t ) t [0,T ] (bank account). General [ pricing formula: ] (riskneutral valuation formula) V 0 = E Q B 1 T L T F 0 Problem 1: Underlying security not traded! Approximate underlying by traded benchmark portfolio. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 11 / 28
18 The usual approach: Usual assumptions: There exists a riskneutral measure Q and a numéraire process (B t ) t [0,T ] (bank account). General [ pricing formula: ] (riskneutral valuation formula) V 0 = E Q B 1 T L T F 0 Problem 1: Underlying security not traded! Approximate underlying by traded benchmark portfolio. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 11 / 28
19 Problem 2: Feedback effect Insurer determines price and adjusts his portfolio to hedge the liabilities. Portfolio composition changes and thus underlying changes. Both, price and hedging strategy change since the underlying changes. Insurer determines price and adjusts his portfolio to hedge the liabilities.... Solution: Decomposition of the contract. Securitization of the separated guarantees outside of the insurer s balance sheet. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 12 / 28
20 Problem 2: Feedback effect Insurer determines price and adjusts his portfolio to hedge the liabilities. Portfolio composition changes and thus underlying changes. Both, price and hedging strategy change since the underlying changes. Insurer determines price and adjusts his portfolio to hedge the liabilities.... Solution: Decomposition of the contract. Securitization of the separated guarantees outside of the insurer s balance sheet. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 12 / 28
21 Problem 2: Feedback effect Insurer determines price and adjusts his portfolio to hedge the liabilities. Portfolio composition changes and thus underlying changes. Both, price and hedging strategy change since the underlying changes. Insurer determines price and adjusts his portfolio to hedge the liabilities.... Solution: Decomposition of the contract. Securitization of the separated guarantees outside of the insurer s balance sheet. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 12 / 28
22 Problem 2: Feedback effect Insurer determines price and adjusts his portfolio to hedge the liabilities. Portfolio composition changes and thus underlying changes. Both, price and hedging strategy change since the underlying changes. Insurer determines price and adjusts his portfolio to hedge the liabilities.... Solution: Decomposition of the contract. Securitization of the separated guarantees outside of the insurer s balance sheet. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 12 / 28
23 Problem 2: Feedback effect Insurer determines price and adjusts his portfolio to hedge the liabilities. Portfolio composition changes and thus underlying changes. Both, price and hedging strategy change since the underlying changes. Insurer determines price and adjusts his portfolio to hedge the liabilities.... Solution: Decomposition of the contract. Securitization of the separated guarantees outside of the insurer s balance sheet. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 12 / 28
24 Problem 2: Feedback effect Insurer determines price and adjusts his portfolio to hedge the liabilities. Portfolio composition changes and thus underlying changes. Both, price and hedging strategy change since the underlying changes. Insurer determines price and adjusts his portfolio to hedge the liabilities.... Solution: Decomposition of the contract. Securitization of the separated guarantees outside of the insurer s balance sheet. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 12 / 28
25 Decomposition Introduction Dividends are paid out and reduce the value of the reference portfolio (but not the asset allocation): Cumulated present value: D 0. If the return of the reference portfolio is so poor that granting the minimum interest rate guarantee would result in negative reserves, capital is needed in order to fulfill obligations (capital shots c t ) these increase the value of the reference portfolio; however, the asset allocation stays the same: Cumulated present value: C 0. Value of the surrender option is the supremum of all possible gains from surrendering w t : Cumulated present value: W 0. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 13 / 28
26 Decomposition Introduction Dividends are paid out and reduce the value of the reference portfolio (but not the asset allocation): Cumulated present value: D 0. If the return of the reference portfolio is so poor that granting the minimum interest rate guarantee would result in negative reserves, capital is needed in order to fulfill obligations (capital shots c t ) these increase the value of the reference portfolio; however, the asset allocation stays the same: Cumulated present value: C 0. Value of the surrender option is the supremum of all possible gains from surrendering w t : Cumulated present value: W 0. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 13 / 28
27 Decomposition Introduction Dividends are paid out and reduce the value of the reference portfolio (but not the asset allocation): Cumulated present value: D 0. If the return of the reference portfolio is so poor that granting the minimum interest rate guarantee would result in negative reserves, capital is needed in order to fulfill obligations (capital shots c t ) these increase the value of the reference portfolio; however, the asset allocation stays the same: Cumulated present value: C 0. Value of the surrender option is the supremum of all possible gains from surrendering w t : Cumulated present value: W 0. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 13 / 28
28 Equilibrium Condition for a fair contract We call a contract fair, if the (cumulated) value of the guarantees/options for the policyholder... (interest rate guarantee, surrender option, participation on initial reserve)...equals the (cumulated) value of the respective guarantees/options for the shareholders/insurer... ( dividend payments, remaining final reserve): [ ]! C 0 + W 0 + R 0 = D 0 + E Q B 1 T R T [ ] [ and since E Q B 1 T L T = L 0 + C 0 + W 0 + R 0 E Q [ ]! L 0 = E Q B 1 T L T B 1 T R T ] D 0 APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 14 / 28
29 Contents Introduction Financial Market Monte Carlo Approach Discretization Approach 1 Introduction 2 Insurance Company and Insurance Contract Development of the Liabilities 3 4 Financial Market Monte Carlo Approach Discretization Approach 5 6 APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 15 / 28
30 Market s Introduction Financial Market Monte Carlo Approach Discretization Approach Assets: Geometric Brownian motion with constant volatility σ A : da t = A t (r t dt + σ A dw t ) Here, r t denotes the short rate of interest models: 1 Classical BlackScholes model: Constant rate r t = r. 2 Stochastic interest rates: Vasicek : OrnsteinUhlenbeck process for r t, i.e. dr t = a(b r t ) dt + σ r dz t CoxIngersollRoss : Squareroot process for r t, i.e. dr t = a(b r t ) dt + r t σ r dz t APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 16 / 28
31 Market s Introduction Financial Market Monte Carlo Approach Discretization Approach Assets: Geometric Brownian motion with constant volatility σ A : da t = A t (r t dt + σ A dw t ) Here, r t denotes the short rate of interest models: 1 Classical BlackScholes model: Constant rate r t = r. 2 Stochastic interest rates: Vasicek : OrnsteinUhlenbeck process for r t, i.e. dr t = a(b r t ) dt + σ r dz t CoxIngersollRoss : Squareroot process for r t, i.e. dr t = a(b r t ) dt + r t σ r dz t APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 16 / 28
32 Monte Carlo Simulation Financial Market Monte Carlo Approach Discretization Approach For classical BlackScholes model and Vasicek model: Distributions of random variables that describe the evolution of the contract over one period are known "Exact" simulation possible. CIR model: "Exact" simulation not possible. Integrals are discretized. Problem: Valuation of surrender option! APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 17 / 28
33 Monte Carlo Simulation Financial Market Monte Carlo Approach Discretization Approach For classical BlackScholes model and Vasicek model: Distributions of random variables that describe the evolution of the contract over one period are known "Exact" simulation possible. CIR model: "Exact" simulation not possible. Integrals are discretized. Problem: Valuation of surrender option! APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 17 / 28
34 Monte Carlo Simulation Financial Market Monte Carlo Approach Discretization Approach For classical BlackScholes model and Vasicek model: Distributions of random variables that describe the evolution of the contract over one period are known "Exact" simulation possible. CIR model: "Exact" simulation not possible. Integrals are discretized. Problem: Valuation of surrender option! APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 17 / 28
35 Discretization Approach (1) Financial Market Monte Carlo Approach Discretization Approach Between two policy anniversaries, the evolution of the value V t of the insurance contract solely depends on the evolution of the underlying assets r t and A t. Given the state variables (reserve quota, account value) at the beginning of the period, the value of the contract at the beginning of the period can be determined using PDE methods given the value at the end of the period (FeynmanKac type). For constant short rate: BlackScholes PDE, integral solution (heat equation). For stochastic short rate: Numerical methods (finite difference scheme). APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 18 / 28
36 Discretization Approach (1) Financial Market Monte Carlo Approach Discretization Approach Between two policy anniversaries, the evolution of the value V t of the insurance contract solely depends on the evolution of the underlying assets r t and A t. Given the state variables (reserve quota, account value) at the beginning of the period, the value of the contract at the beginning of the period can be determined using PDE methods given the value at the end of the period (FeynmanKac type). For constant short rate: BlackScholes PDE, integral solution (heat equation). For stochastic short rate: Numerical methods (finite difference scheme). APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 18 / 28
37 Discretization Approach (1) Financial Market Monte Carlo Approach Discretization Approach Between two policy anniversaries, the evolution of the value V t of the insurance contract solely depends on the evolution of the underlying assets r t and A t. Given the state variables (reserve quota, account value) at the beginning of the period, the value of the contract at the beginning of the period can be determined using PDE methods given the value at the end of the period (FeynmanKac type). For constant short rate: BlackScholes PDE, integral solution (heat equation). For stochastic short rate: Numerical methods (finite difference scheme). APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 18 / 28
38 Discretization Approach (2) Financial Market Monte Carlo Approach Discretization Approach Arbitrage Arguments Continuity of the contract value on the policy anniversaries. Similar to Tanskanen and Lukkarinen (2004) 1, a backward iteration can be used to compute the value of the contract via a discretization of the state space using interpolation methods at the anniversaries. 1 Fair Valuation of PathDependent Participating Life Insurance Contracts. IME, 33: , APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 19 / 28
39 Contents Introduction 1 Introduction 2 Insurance Company and Insurance Contract Development of the Liabilities 3 4 Financial Market Monte Carlo Approach Discretization Approach 5 6 APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 20 / 28
40 Parameters Introduction Parameter Value Constant interest rate g 3.5% Participation rate δ 90% Book value restriction y 50% Initial reserve quota x 0 10% Target rate IS case z 5% Reserve corridor IS case [a, b] [5%,30%] Dividend rate α Is case 5% Asset Volatility σ A 7.5% Riskfree rate (BlackScholes) 4% Maturity 10 years APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 21 / 28
41 Influence of the guaranteed rate g on the contract value in the MUST case APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 22 / 28
42 Influence of the guaranteed rate g on the contract value in the IS case APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 23 / 28
43 Contract Values MUST BS MUST OU IS BS IS OU init. inv. 10,000 10,000 10,000 10,000 + C , , , D R E Q Eur. 10, , , , W E Q 10, , , , APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 24 / 28
44 Influence of the initial reserve quota x 0 on the contract value (constant interest rate) APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 25 / 28
45 Contents Introduction 1 Introduction 2 Insurance Company and Insurance Contract Development of the Liabilities 3 4 Financial Market Monte Carlo Approach Discretization Approach 5 6 APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 26 / 28
46 Future research Include more advanced asset processes (e.g., Lévy processes). Practical Implementation: How to hedge book of liabilities. Empirical Studies: How good is the model, how good is the hedge! Include (stochastic) mortality effects. APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 27 / 28
47 Thank you! APRIA Tokyo, August 2006 D. Bauer RNV of Participating Life Insurance Contracts 28 / 28
Participating Life Insurance Contracts under Risk Based. Solvency Frameworks: How to increase Capital Efficiency.
Participating Life Insurance Contracts under Risk Based Solvency Frameworks: How to increase Capital Efficiency by Product Design Andreas Reuß Institut für Finanz und Aktuarwissenschaften Helmholtzstraße
More informationEmbedded Value in Life Insurance
Embedded Value in Life Insurance Gilberto Castellani Università di Roma La Sapienza Massimo De Felice Università di Roma La Sapienza Franco Moriconi Università di Perugia Claudio Pacati Università di Siena
More informationFinancial Risk Management of Guaranteed Minimum Income Benefits Embedded in Variable Annuities
Financial Risk Management of Guaranteed Minimum Income Benefits Embedded in Variable Annuities by Claymore James Marshall A thesis presented to the University of Waterloo in fulfillment of the thesis requirement
More informationFAIR PRICING OF LIFE INSURANCE PARTICIPATING POLICIES WITH A MINIMUM INTEREST RATE GUARANTEED ANNA RITA BACINELLO
FAIR PRICING OF LIFE INSURANCE PARTICIPATING POLICIES WITH A MINIMUM INTEREST RATE GUARANTEED BY ANNA RITA BACINELLO Dipartimento di Matematica Applicata alle Scienze Economiche Statistiche ed Attuariali
More informationUnderstanding Fixed Indexed Annuities
Fact Sheet for Consumers: Understanding Fixed Indexed Annuities PRESENTED BY Insured Retirement Institute Fact Sheet for Consumers: Understanding Fixed Indexed Annuities Put simply, a Fixed Indexed Annuity
More informationFinancialfacts. London Life participating life insurance. Accountability Strength Performance
2014 Financialfacts London Life participating life insurance Accountability Strength Performance This guide provides key financial facts about the management, strength and performance of the London Life
More informationNumerical Simulation for AssetLiability Management in Life Insurance
Numerical Simulation for AssetLiability Management in Life Insurance T. Gerstner 1, M. Griebel 1, M. Holtz 1, R. Goschnic 2, and and M. Haep 2 1 Institut für Numerische Simulation, Universität Bonn griebel@ins.unibonn.de
More informationACCOUNTING FOR INSURANCE
lt:\oslo\lifeos..doc 28.10.96 ACCOUNTING FOR INSURANCE Joanne Horton and Richard Macve University of Bristol and LSE OECD Seminar on Accounting Reform In the Baltic Rim Oslo, 13 th 15 th November 1996
More informationCredit Risk and Bank Margins in Structured Financial Products: Evidence from the German Secondary Market for Discount Certificates
Credit Risk and Bank Margins in Structured Financial Products: Evidence from the German Secondary Market for Discount Certificates Rainer Baule + University of Goettingen Oliver Entrop ++ Catholic University
More informationBuilding Wealth: Using Premium Financed Indexed Life Insurance (PFIUL)
Building Wealth: Using Premium Financed Indexed Life Insurance (PFIUL)     INTRODUCTION What is PremiumFinanced Indexed Universal Life Insurance and how is it used in various wealth building strategies
More informationPrinciples and Practices Of Financial Management
Principles and Practices Of Financial Management Wesleyan Assurance Society (Open Fund) Effective from 1 August 2008 Wesleyan Assurance Society Head Office: Colmore Circus, Birmingham B4 6AR Telephone:
More informationQuantifying Risk in the Electricity Business: A RAROCbased Approach
Quantifying Risk in the Electricity Business: A RAROCbased Approach M.Prokopczuk, S.Rachev and S.Trück October 11, 2004 Abstract The liberalization of electricity markets has forced the energy producing
More informationUnderstanding Variable Annuities
JUNE 2015 5 Benefits and Features of a Variable Annuity 9 Other Features, Benefits and Considerations 12 Before You Decide to Buy a Variable Annuity Understanding Variable Annuities What is a Variable
More informationGuaranteed Lifetime Income Annuities
THE NORTHWESTERN MUTUAL LIFE INSURANCE COMPANY (NORTHWESTERN MUTUAL) Guaranteed Lifetime Income Annuities Guaranteed Income Today Select Immediate Income Annuity Select Portfolio Immediate Income Annuity
More informationNBER WORKING PAPER SERIES WHY DO LIFE INSURANCE POLICYHOLDERS LAPSE? THE ROLES OF INCOME, HEALTH AND BEQUEST MOTIVE SHOCKS. Hanming Fang Edward Kung
NBER WORKING PAPER SERIES WHY DO LIFE INSURANCE POLICYHOLDERS LAPSE? THE ROLES OF INCOME, HEALTH AND BEQUEST MOTIVE SHOCKS Hanming Fang Edward Kung Working Paper 17899 http://www.nber.org/papers/w17899
More informationBINOMIAL OPTION PRICING
Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex optionpricing
More informationMarketConsistent Embedded Value in NonLife Insurance: How to Measure it and Why
MarketConsistent Embedded Value in NonLife Insurance: How to Measure it and Why Dorothea Diers, Martin Eling, Christian Kraus und Andreas Reuss Preprint Series: 200922 Fakultät für Mathematik und Wirtschaftswissenschaften
More informationInternational Financial Reporting Standard 2 (IFRS 2), Sharebased Payment
International Financial Reporting Standard 2 (IFRS 2), Sharebased Payment By STEPHEN SPECTOR, MA, FCGA This article is part of a series by Brian & Laura Friedrich and Stephen Spector on International
More informationOptimal Portfolio Choice with Annuities and Life Insurance for Retired Couples
Optimal Portfolio Choice with Annuities and Life Insurance for Retired Couples Andreas Hubener, Raimond Maurer, and Ralph Rogalla Finance Department, Goethe University, Frankfurt am Main, Germany This
More informationThe MultiYear NonLife Insurance Risk
The MultiYear NonLife Insurance Risk Dorothea Diers, Martin Eling, Christian Kraus und Marc Linde Preprint Series: 201111 Fakultät für Mathematik und Wirtschaftswissenschaften UNIVERSITÄT ULM The MultiYear
More informationWhy Do Life Insurance Policyholders Lapse? The Roles of Income, Health and Bequest Motive Shocks
Why Do Life Insurance Policyholders Lapse? The Roles of Income, Health and Bequest Motive Shocks Hanming Fang Edward Kung March 22, 2012 Abstract We present and empirically implement a dynamic discrete
More informationAN INSTITUTIONAL EVALUATION OF PENSION FUNDS AND LIFE INSURANCE COMPANIES
AN INSTITUTIONAL EVALUATION OF PENSION FUNDS AND LIFE INSURANCE COMPANIES DIRK BROEDERS, AN CHEN, AND BIRGIT KOOS Abstract. This paper analyzes two different types of annuity providers. In the first case,
More informationTIAA Traditional Annuity: Adding safety and stability to retirement portfolios
Summer 2012 TIAACREF Asset Management TIAA Traditional Annuity: Adding safety and stability to retirement portfolios Overview Launched with the founding of TIAA in 1918, the TIAA Traditional Annuity is
More informationOptimal Portfolio Choice with Annuities and Life Insurance for Retired Couples*
Review of Finance (2014) 18: pp. 147 188 doi:10.1093/rof/rfs046 Advance Access publication: February 1, 2013 Optimal Portfolio Choice with Annuities and Life Insurance for Retired Couples* ANDREAS HUBENER,
More informationQuantitative Strategies Research Notes
Quantitative Strategies Research Notes March 999 More Than You Ever Wanted To Know * About Volatility Swaps Kresimir Demeterfi Emanuel Derman Michael Kamal Joseph Zou * But Less Than Can Be Said Copyright
More informationUnderstanding Annuities: A Lesson in Indexed Annuities
Understanding Annuities: A Lesson in Indexed Annuities Did you know that an annuity can be used to systematically accumulate money for retirement purposes, as well as to guarantee a retirement income that
More informationWhich Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios
Which Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios Riaz Ahmad Course Director for CQF, 7city, London Paul Wilmott Wilmott Associates, London Abstract:
More informationHOW MUCH WILL MY PENSION BE?
HOW MUCH WILL MY PENSION BE? The monthly pension you receive will depend on: How much of retirement benefit you decide to use for a pension benefit In the case of a life annuity the provision you make
More informationAgent s Guide to Understanding Indexed Annuity Pricing
Agent s Guide to Understanding Indexed Annuity Pricing Producer Use Only. Not For Public Use. Index rates are subject to a cap.policies issued by Fidelity and Guaranty Life Insurance Company, Baltimore,
More informationAmerican Legacy Fusion variable annuity
American Legacy Fusion variable annuity May 1, 2015 Product Prospectus This document and many others can be read online by signing up for edelivery! Make a positive environmental impact by signing up today!
More information