Simulation, prediction and analysis of Earth rotation parameters


 Wesley Bridges
 1 years ago
 Views:
Transcription
1 Simulation, prediction and analysis of Earth rotation parameters with a dynamic Earth system model Florian Seitz Earth Oriented Space Science and Technology (ESPACE)
2 Earth rotation parameters and their physical interpretation Besides their necessity for various applications (e.g., the realisation of time and reference systems, navigation) Earth rotation parameters (ERP) are interesting for various disciplines of geosciences, since dynamic processes in the Earth system are reflected in their temporal variations. Analysis of ERP time series allows for conclusions with respect to processes and changes in the Earth system on various temporal scales However: Since ERP are integral quantities their physical interpretation is very difficult: Specific features in the time series cannot be related to contributions of individual system components particular causative processes without further information Independent information from physical modelling is required 2
3 Physical model of Earth rotation Development of the physically consistent and comprehensive Dynamic Earth System Model DyMEG: Composed of a discrete number of interacting system components Consistent modelling of rotational variations gravity field variations geometrical surface variations that are caused by various dynamic processes in the Earth system Focus of this presentation: Model results for interannual variations of polar motion caused by processes in the coupled atmospherehydrosphere h h system. 3
4 Polar motion: Signal characteristics Journées 2011 "Systèmes de référence spatio temporels" ", Vienna x component 4
5 Balance of angular momentum in the Earth system The model approach for Earth rotation is based on the balance of angular momentum in an Earthfixed coordinate system (EulerLiouville Equation): d dt with angular momentum L(t): I(t): h(t): ω(t): H( t) + ω(t) H( t) = L( t) external gravitational torques (Sun, Moon, planets) Earth s tensor of inertia relative angular momenta Earth rotation vector H( t) = I( t)ω( t) + h() t Numerical solution of the EulerLiouville Equation for ω(t) in DyMEG: Simulation of polar motion and the Earth s angular velocity (ΔLOD). 5
6 Experiment 1: Realistic atmospheric and hydrospheric forcing Numerical values for ΔI(t) and h(t) from atmospheric reanalyses of NCEP  assimilates meteorological observation data ocean circulation model ECCO  unconstrained version (c )  forced by NCEP fields of wind stress, heat and freshwater fluxes consistent representation of dynamics and mass transports in the subsystems atmosphere and ocean water, groundwater and snow fields from the global hydrological model LaD neglected: earthquakes, volcanoes, postglacial uplift, core/mantle, 6
7 Model results for polar motion xcomponent: corr.: 0,98; RMSdiff.: 29,5 mas ycomponent: corr.: 0,99; RMSdiff.: 23,3 mas 7
8 Experiment 2: ERP predictions  scenario runs over 200 years ΔI(t) and h(t) from ensemble runs of the fully coupled atmospherehydrosphere model ECOCTH of the MPI for meteorology (Hamburg, Germany) Simulation of the atmospherichydrospheric angular momentum variability over a time frame of 200 years ( ) ECOCTH has also been used for simulations in the frame of the 4th IPCC AR full consistency: conservation of mass, energy and momentum five equiprobable model runs (different initial conditions for the state of 1860) Absolutely free model: atmosphere oceans hydrology force each other mutually there is no information about real time only statistical conclusions can be drawn! 8
9 Model results for polar motion ( ) xcomponents of polar motion: All runs feature a clear beat between annual and Chandler oscillation IERS C01/C04 9
10 Model results for polar motion ( ) Chandler signal annual signal Runs show similar annual signals but twice as strong as observed Chandler components are very different 10
11 Model results for polar motion ( ) Chandler signal +26 a +54 a Background noise of ECOCTH is capable of exciting realistic Chandler amplitude variations Korr.: 0.74 Korr.:
12 Strongest contributor to Chandler excitation? (Atmosphere: Mass + Motion) (Atmosphere + Ocean: Motion) (Atmosphere: Motion) (Ocean: Mass + Motion) (Atmosphere + Ocean: Mass) (Ocean: Motion) (Atmo. + Ocean: Mass + Motion) atmosphere a bit stronger than the ocean wind dominates motion significantly stronger the mass 12
13 Final remarks and conclusions Simulations with DyMEG allow for a meaningful geophysical interpretation of ERP Naturally, the interpretability of model results depends on the applied forcing ECOCTH allows for statistical interpretations of longterm variations of ERP. ECOCTH is capable of producing realistic variations of the Chandler oscillation Experiments reveal the dominance of wind excitation (=random white noise) for the continuous forcing of the Chandler oscillation. 13
14 END Journées 2011 "Systèmes de référence spatio temporels" ", Vienna 14
15 Dynamic model for Earth rotation (DyMEG) Journées 2011 " "Systèmes de référence spatio temporels" ", Vienna 15
16 Influence of the initial values Model results for polar motion over 200 yrs ECOCTH ( ) x 0 = 0 x 0 = 0.3 x 0 =
17 White noise Chandler wobble excitation (1) ", Vienna tio temporels" référence spat Jo ournées 2011 "Systèmes de r Experiment: Substitution tion of atmospheric and oceanic forcing by uniformly distributed random numbers (white noise) Result: Resonant excitation of the Chandler oscillation over 1000 years Formation of maxima and nodes according to energy level and phase of random excitations cf. Seitz et al.,
18 White noise Chandler wobble excitation (2) ", Vienna tio temporels" référence spat "Systèmes de r ournées 2011 " Jo Observed CW Similar characteristics of simulated and observed free polar motion Atmospheric background noise due to random variability (weather) is the most likely excitation mechanism of the Chandler oscillation 18
19 Rotational deformation Modeled as temporal variation of the Earth s centrifugal potential: 2 3 Ω a ΔC 21 () t = ( R ( k 2)m 1 () t +I ( k 2)m 2 ()) t 3GM 2 3 Ω a ΔS 21( t ) = ( R( 2)m 2( ) ( 2)m 1( )) k t I 3GM k t k = k + Δk + Δk * O A with the pole tide Love number. IERSConv. 2010: k 2 = i 19
20 Quality factors in the literature CW period Q [range] Source ± [50, 400] Wilson & Haubrich (1976) Lenhardt & Groten (1985) ± [47, >1000] Wilson & Vicente (1990) ± [30, 500] Kuehne et al. (1996) ± [35, 100] Furuya & Chao (2001) Schuh et al. (2001) 82 IERSConv. (2010) 20
21 Results for k 2 ", Vienna tio temporels" référence spat "Systèmes de r ournées 2011 " Jo k2 = i Model Chandler period = d QFactor = ± ± IERSConv. 2010: k 2 = i 21
22 Forward modeling (DyMEG, ) k2 = i Model forcing: NCEP + ECCO Model Chandler period = d QFactor = 82 Full PM C01/C04 Chandler C01/C04 CorrCoef.: 0.82 RMSDiff.: 82.2 mas CorrCoef Coef.: 0.89 RMSDiff.: 55.7 mas 22
Gravity Field and Dynamics of the Earth
Milan Bursa Karel Pec Gravity Field and Dynamics of the Earth With 89 Figures SpringerVerlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Preface v Introduction 1 1 Fundamentals
More informationA. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.
Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2
More informationWhat causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating
What are Tides? Tides are very longperiod waves that move through the oceans as a result of the gravitational attraction of the Moon and the Sun for the water in the oceans of the Earth. Tides start in
More informationCPO Science and the NGSS
CPO Science and the NGSS It is no coincidence that the performance expectations in the Next Generation Science Standards (NGSS) are all actionbased. The NGSS champion the idea that science content cannot
More informationDynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005
Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital
More informationUse the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.
IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationName Class Date. true
Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized
More informationGEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN
GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN C. C. Chang Department of Surveying and Mapping Engineering Chung Cheng Institute of Technology Tahsi, Taoyuan 335,
More informationTide  rhythmic oscillation of the ocean surface due to gravitational & centrifugal forces ( inertia ) between the Earth, Moon and Sun.
Chapter 4: The Changing Level of the Sea Tides Longer Scale Variations Influence on Beaches Tide  rhythmic oscillation of the ocean surface due to gravitational & centrifugal forces ( inertia ) between
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationSolar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?
Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earthcentered
More information2. Orbits. FERZagreb, Satellite communication systems 2011/12
2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit
More informationPrerequisites 20122013
Prerequisites 20122013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.
More informationAttitude and Orbit Dynamics of High AreatoMass Ratio (HAMR) Objects and
Attitude and Orbit Dynamics of High AreatoMass Ratio (HAMR) Objects and Carolin Früh National Research Council Postdoctoral Fellow, AFRL, cfrueh@unm.edu Orbital Evolution of Space Debris Objects Main
More informationDIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION
1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding
More informationExemplar Problems Physics
Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration
More informationHomework 4. problems: 5.61, 5.67, 6.63, 13.21
Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationGravity. in the Solar System. Beyond the Book. FOCUS Book
FOCUS Book Design a test to find out whether Earth s gravity always pulls straight down. A pendulum is a weight that hangs from a string or rod that can swing back and forth. Use string and metal washers
More informationThompson/Ocean 420/Winter 2005 Tide Dynamics 1
Thompson/Ocean 420/Winter 2005 Tide Dynamics 1 Tide Dynamics Dynamic Theory of Tides. In the equilibrium theory of tides, we assumed that the shape of the sea surface was always in equilibrium with the
More informationSmart Science Lessons and Middle School Next Generation Science Standards
Smart Science Lessons and Middle School Next Generation Science Standards You have chosen the right place to find great science learning and, beyond learning, how to think. The NGSS emphasize thinking
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationPenn State University Physics 211 ORBITAL MECHANICS 1
ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there
More informationData in seismology: networks, instruments, current problems
Data in seismology: networks, instruments, current problems Seismic networks, data centres, instruments Seismic Observables and their interrelations Seismic data acquisition parameters (sampling rates,
More informationKERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD
KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD 1. DISCIPLINE AND COURSE NUMBER: PHYS C111 2. COURSE TITLE: Mechanics 3. SHORT BANWEB TITLE: Mechanics 4. COURSE AUTHOR:
More informationLecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationSIO 229 Gravity and Geomagnetism: Class Description and Goals
SIO 229 Gravity and Geomagnetism: Class Description and Goals This graduate class provides an introduction to gravity and geomagnetism at a level suitable for advanced nonspecialists in geophysics. Topics
More informationAn equivalent circuit of a loop antenna.
3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally
More information1 Newton s Laws of Motion
Exam 1 Ast 4  Chapter 2  Newton s Laws Exam 1 is scheduled for the week of Feb 19th Bring Pencil Scantron 882E (available in the Bookstore) A scientific calculator (you will not be allowed to use you
More informationOrbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
More informationLaws of Motion and Conservation Laws
Laws of Motion and Conservation Laws The first astrophysics we ll consider will be gravity, which we ll address in the next class. First, though, we need to set the stage by talking about some of the basic
More informationThe Next Generation Science Standards (NGSS) Correlation to. EarthComm, Second Edition. ProjectBased Space and Earth System Science
The Next Generation Science Standards (NGSS) Achieve, Inc. on behalf of the twentysix states and partners that collaborated on the NGSS Copyright 2013 Achieve, Inc. All rights reserved. Correlation to,
More informationOrbital Mechanics and Space Geometry
Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Coordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationPresentation of problem T1 (9 points): The Maribo Meteorite
Presentation of problem T1 (9 points): The Maribo Meteorite Definitions Meteoroid. A small particle (typically smaller than 1 m) from a comet or an asteroid. Meteorite: A meteoroid that impacts the ground
More informationREGIONAL CLIMATE AND DOWNSCALING
REGIONAL CLIMATE AND DOWNSCALING Regional Climate Modelling at the Hungarian Meteorological Service ANDRÁS HORÁNYI (horanyi( horanyi.a@.a@met.hu) Special thanks: : Gabriella Csima,, Péter Szabó, Gabriella
More informationLet s first see how precession works in quantitative detail. The system is illustrated below: ...
lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,
More informationName: Date: Period: Gravity Study Guide
Vocabulary: Define the following terms. Law of Universal Gravitation Gravity Study Guide Weight Weightlessness Gravitational Field Black hole Escape velocity Math: Be able to use the equation for the law
More informationThe TwoBody Problem
The TwoBody Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic
More informationSo if ω 0 increases 3fold, the stopping angle increases 3 2 = 9fold.
Name: MULTIPLE CHOICE: Questions 111 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,
More informationGRADE 8 SCIENCE INSTRUCTIONAL TASKS. Gravity
GRADE 8 SCIENCE INSTRUCTIONAL TASKS Gravity GradeLevel Expectations The exercises in these instructional tasks address content related to the following science gradelevel expectation(s): ESSMC3 Relate
More informationNewton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009
Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined
More informationLecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula
Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain
More informationA Model of the Rotation of Venus Based on 5 Parameters. J.Souchay, L.Cottereau (SYRTE, observatoire de Paris)
A Model of the Rotation of Venus Based on 5 Parameters J.Souchay, L.Cottereau (SYRTE, observatoire de Paris) Plan General Remarks on Venus and its rotation How to model the Venus rotation The «polar motion»
More informationAUTODESK SIMULATION MULTIPHYSICS 2013
AUTODESK SIMULATION MULTIPHYSICS 2013 Which Analysis to Use? FANKOM MÜHENDİSLİK 2/4/2013 AUTODESK SIMULATION MULTIPHYSICS Which Analysis to Use? Use the following guidelines to help choose the correct
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More informationMIDLAND ISD ADVANCED PLACEMENT CURRICULUM STANDARDS AP ENVIRONMENTAL SCIENCE
Science Practices Standard SP.1: Scientific Questions and Predictions Asking scientific questions that can be tested empirically and structuring these questions in the form of testable predictions SP.1.1
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationSection 4: The Basics of Satellite Orbits
Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,
More informationWind Turbines. Wind Turbines 2. Wind Turbines 4. Wind Turbines 3. Wind Turbines 5. Wind Turbines 6
Wind Turbines 1 Wind Turbines 2 Introductory Question Wind Turbines You and a child half your height lean out over the edge of a pool at the same angle. If you both let go simultaneously, who will tip
More informationRotational Errors in IGS Orbit & ERP Products
Rotational Errors in IGS Orbit & ERP Products Systematic rotations are a leading IGS error they affect all core products except probably clocks Sources include defects in: IERS model for 12h + 24h tidal
More informationCalifornia Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping
California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,
More informationThe Formation of Planetary Systems. Astronomy 11 Lecture 201
The Formation of Planetary Systems Astronomy 11 Lecture 201 Modeling Planet Formation Any model for solar system and planet formation must explain 1. Planets are relatively isolated in space 2. Planetary
More informationOrbital Dynamics. Orbital Dynamics 1/29/15
Orbital Dynamics Orbital Dynamics 1/29/15 Announcements Reading for next class Chapter 5: Sections 5.15.4 Homework #2 due next class (Tuesday, Feb. 3) Project #1 topic ideas due next Tuesday (Feb. 3)
More informationChapter 6. Atmospheric Moisture and Precipitation
Chapter 6 Atmospheric Moisture and Precipitation The Hydrosphere Hydrosphere water in the earthatmosphere atmosphere system Oceans and Salt Lakes 97.6% Ice Caps and Glaciers 1.9% (Not available for humans)
More informationIMU Components An IMU is typically composed of the following components:
APN064 IMU Errors and Their Effects Rev A Introduction An Inertial Navigation System (INS) uses the output from an Inertial Measurement Unit (IMU), and combines the information on acceleration and rotation
More informationMathematical Modeling and Engineering Problem Solving
Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationLecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3. 1 Basics: equations of continuum mechanics  balance equations for mass and momentum  balance equations for the energy and the chemical
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationGGOS and the Importance of the Combination of Space Techniques. Hansjörg Kutterer Federal Agency for Cartography and Geodesy, Germany
GGOS and the Importance of the Combination of Space Techniques Hansjörg Kutterer Federal Agency for Cartography and Geodesy, Germany Content Combination of spacegeodetic techniques Combination examples
More informationThe Earth System. The geosphere is the solid Earth that includes the continental and oceanic crust as well as the various layers of Earth s interior.
The Earth System The atmosphere is the gaseous envelope that surrounds Earth. It consists of a mixture of gases composed primarily of nitrogen, oxygen, carbon dioxide, and water vapor. The atmosphere and
More informationAS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
More informationLecture 4: Pressure and Wind
Lecture 4: Pressure and Wind Pressure, Measurement, Distribution Forces Affect Wind Geostrophic Balance Winds in Upper Atmosphere NearSurface Winds Hydrostatic Balance (why the sky isn t falling!) Thermal
More informationBreeding and predictability in coupled Lorenz models. E. Kalnay, M. Peña, S.C. Yang and M. Cai
Breeding and predictability in coupled Lorenz models E. Kalnay, M. Peña, S.C. Yang and M. Cai Department of Meteorology University of Maryland, College Park 20742 USA Abstract Bred vectors are the difference
More informationName: João Fernando Alves da Silva Class: 74 Number: 10
Name: João Fernando Alves da Silva Class: 74 Number: 10 What is the constitution of the Solar System? The Solar System is constituted not only by planets, which have satellites, but also by thousands
More informationb. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.
I. What is Motion? a. Motion  is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far
More information1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?
1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead
More informationOnline Courses for High School Students 18889726237
Online Courses for High School Students 18889726237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,
More informationEnvironmental Science Science Curriculum Framework. Revised 2005
Environmental Science Science Curriculum Framework Revised 2005 Course Title: Environmental Science Course/Unit Credit: 1 Course Number: 424020 Teacher Licensure: Please refer to the Course Code Management
More informationTIDES. 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours).
TIDES What causes tides? How are tides predicted? 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours). Tides are waves
More informationHigh Performance Computing for Numerical Weather Prediction
High Performance Computing for Numerical Weather Prediction Isabella Weger European Centre for MediumRange Weather Forecasts Slide 1 ECMWF ECMWF A European organisation with headquarters in the UK Established
More information超 伝 導 重 力 計  神 岡 観 測 の 意 義 Superconduction
平 成 17 年 度 共 同 利 用 研 究 成 果 発 表 研 究 会 ( 東 京 大 学 宇 宙 線 研 究 所 ) 超 伝 導 重 力 計  神 岡 観 測 の 意 義 Superconduction gravimeter observation at Kamioka  its significance in geophysics 佐 藤 忠 弘 ( 国 立 天 文 台 ) Tadahiro
More informationSound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8
References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that
More informationAstro 11001 Lecture 10 Newton s laws
Astro 11001 Lecture 10 Newton s laws Twin Sungrazing comets 9/02/09 Habbal Astro11001 Lecture 10 1 http://umbra.nascom.nasa.gov/comets/movies/soho_lasco_c2.mpg What have we learned? How do we describe
More informationPhysics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More informationPhysics of the Atmosphere I
Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uniheidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:
More informationDually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current
Summary Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current Joachim Härsjö, Massimo Bongiorno and Ola Carlson Chalmers University of Technology Energi och Miljö,
More informationInteraction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE
Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE EMR and the Dawn Mission Electromagnetic radiation (EMR) will play a major role in
More informationGNSS permanent stations as the part of integrated geodetic system in Estonia
GNSS permanent stations as the part of integrated geodetic system in Estonia Karin Kollo (MSc) Department of Geodesy Estonian Land Board United Nations/Croatia Workshop on the applications of Global Navigation
More informationPhysics 211 Lecture 4
Physics 211 Lecture 4 Today's Concepts: Newton s Laws a) Acceleration is caused by forces b) Force changes momentum c) Forces always come in pairs d) Good reference frames Mechanics Lecture 4, Slide 1
More informationEarth Sciences  Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs
Earth Sciences  Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Handson science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented
More informationThe dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w
Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration
More informationNotes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
More informationThere are three different properties associated with the mass of an object:
Mechanics Notes II Forces, Inertia and Motion The mathematics of calculus, which enables us to work with instantaneous rates of change, provides a language to describe motion. Our perception of force is
More informationColumbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
More informationThe Gravitational Field
The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř jan.hrncir@gfxs.cz Martin Klejch martin.klejch@gfxs.cz F. X. Šalda Grammar School, Liberec
More informationGeosciences  Programme subject in programme for Specialization in General Studies
Geosciences  Programme subject in programme for Specialization in General Studies Dette er en oversettelse av den fastsatte læreplanteksten. Læreplanen er fastsatt på Bokmål Laid down as a regulation
More informationOverview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B.
2. FEA and ANSYS FEA and ANSYS Overview In this chapter, we will define Finite Element Analysis and also give you an idea of ANSYS capabilities. Topics covered: A. What is FEA? B. About ANSYS FEA and ANSYS
More informationCBE 6333, R. Levicky 1 Differential Balance Equations
CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,
More informationSTATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental
More informationEssential Standards: Grade 4 Science Unpacked Content
This document is designed to help North Carolina educators teach the Essential Standards (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers.
More informationClimate modelling. Dr. Heike Huebener Hessian Agency for Environment and Geology Hessian Centre on Climate Change
Hessisches Landesamt für Umwelt und Geologie Climate modelling Dr. Heike Huebener Hessian Agency for Environment and Geology Hessian Centre on Climate Change Climate: Definition Weather: momentary state
More informationCNC Machine Control Unit
NC Hardware a NC Hardware CNC Machine Control Unit Servo Drive Control Hydraulic Servo Drive Hydraulic power supply unit Servo valve Servo amplifiers Hydraulic motor Hydraulic Servo Valve Hydraulic Servo
More informationAtmospheric Dynamics of Venus and Earth. Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory
Atmospheric Dynamics of Venus and Earth G. Schubert 1 and C. Covey 2 1 Department of Earth and Space Sciences Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory
More informationGRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:
GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant
More informationIsaac Newton s (16421727) Laws of Motion
Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First
More information