Supporting Information of. Observation of enhanced optical spin Hall effect in a. vertical hyperbolic metamaterial


 Barrie Kelley
 8 days ago
 Views:
Transcription
1 Supporting Information of Observation of enhanced optical spin Hall effect in a vertical hyperbolic metamaterial Minkyung Kim 1, Dasol Lee 1, Tae Hak Kim 2, Younghwan Yang 1, Hui Joon Park 2, and Junsuk Rho 1,3 1 Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea 2 Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Korea 3 Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea This document contains 7 pages with 6 figures. S1
2 Transmission coefficients from effective medium theory s p k y z x ε 2 = Medium 1 (ε 1 ) ε x Medium 2 ε y z=0 Medium 3 (ε 3 ) z=d Figure S1: Schematics Transmission coefficients of a slab of a hyperbolic metamaterial are calculated analytically by solving Maxwell s equations at interfaces (Fig. S1). If transmission and reflection coefficients at two interfaces (z = 0 and z = d) are given, then total transmission coefficients can be obtained by taking multiple reflections into account. We first consider the first interface (z = 0). Transmission and reflection coefficients of s and ppolarization across the single interface are r p = εx cos θ ε 1 1 ε 1 sin 2 θ εx cos θ + ε 1 1 ε 1 sin 2 θ t s = r s + 1 (S1) (S2) r s = ε1 cos θ ε y ε 1 sin 2 θ ε1 cos θ + ε y ε 1 sin 2 θ (S3) t p = (r p + 1) ε 1 ε1 ( 1 1 ε x ) sin 2 θ + 1 ε x (S4) where θ is an incident angle. Substituting ε 3 for ε 1 in Eqs. S1 to S4 gives transmission and reflection coefficients when light is injected from medium 3 to medium 2. Therefore, we can calculate transmission and reflection coefficients ( t j and r j where j = s, p) of the S2
3 second interface (z = d) by replacing ε 3 with ε 1 and applying the Stokes relation. Then the transmission coefficient of the hyperbolic metamaterial slab can be calculated as T j = t j t j exp(ik j d) 1 + r j r j exp(2ik j d) (S5) where k j is a zcomponent of the wave vector given as k p = k 0 ε x ε 1ε x sin 2 θ (S6) k s = k 0 ε y ε 1 sin 2 θ (S7) where k 0 is the wave vector in free space. Effective permittivities and dispersion of a vertical hyperbolic metamaterial consisting of gold and air Effective permittivities of gold and air with the same volume fraction are calculated using Eq. 3 in the main manuscript. Equifrequency contours shown in Fig. S2(b) and S2(c) prove typeii hyperbolic dispersion. a b c Figure S2: (a) Effective permittivities, (b) equifrequency contour and (c) equifrequency curve in k x k z plane of a vertical hyperbolic metamaterial composed of gold and air. Black curve in (c) represents equifrequency curve of air. Metal filling ratio is 0.5. S3
4 Optical spin Hall effect in a typei hyperbolic metamaterial In the main text, we demonstrate the enhancement of optical spin Hall effect in a type II vertical hyperbolic metamaterial. To clarify that the enhancement is not restricted to a specific type of hyperbolicity, optical spin Hall effect of typei hyperbolic metamaterial is presented in this section. A hyperbolic metamaterial consisting of silver and titanium dioxide, whose optical properties and shift are presented in Fig. 2 in the main manuscript, exhibits typei hyperbolicity in the smaller wavelength. Around 450 nm, ε < 0 and ε > 0 (Fig. S3(a)). Therefore, equifrequency surface of the hyperbolic metamaterial is composed of two branches with a momentum gap along the stacked direction (Fig. S3(b) and (c)). Transmission coefficients and shift of the horizontal and vertical hyperbolic metamaterial are plotted in Fig. S3(d)(f). Thickness of the hyperbolic metamaterials is set as 5 nm to avoid nearly zero transmission originating from high optical losses. Gigantic optical spin Hall effect with high wavelengthselectivity is obtained. a b c d e f t p (hhmm) t p (vhmm) t s (hhmm) t s (vhmm) Figure S3: (a) Effective permittivities. Equifrequency contour of a (a) horizontal and (b) vertical hyperbolic metamaterial composed of silver and titanium dioxide at 450 nm. (d) Amplitude and (e) phase of transmission coefficients and (f) shift when incident angle is 5 and thickness of hyperbolic metamaterials are 5 nm. S4
5 Shift and shift enhancement at small incident angle Since cotangent function diverges as its argument goes to zero, the assumption k1w cot 2 θ i is not true for sufficiently small θ i. Then, Eq. (1) in the main manuscript cannot be simplified to Eq. (2). We compare the transverse shift calculated by the exact and approximate formula (Eq. (1) and Eq. (2) in the main manuscript respectively) at small θ i. Fig. S4(a) and S4(b) show that when θ i is sufficiently small (< 0.2 here), the shift calculated by the exact form deviates from that by the approximate form and converges to zero as θ i goes to zero, whereas the shift calculated by the approximate form diverges. For completeness, the shift enhancement when θ i 5 is shown in Fig. S4(c). Shift enhancement, which is defined as δ vhmm /δ hhmm, increases as θ i decreases. a b c Figure S4: Shift and shift enhancement at small θ i. Shift calculated by the approximate (dashed lines) and exact (solid lines) formula when (a) θ i 20 and (b) θ i 0.2 (c) Shift enhancement when θ i 5 Comparison between vertically and horizontallystacked dielectric multilayer In the main manuscript, we present an analysis based on effective medium theory to explain the enhanced optical spin Hall effect in a vertical hyperbolic metamaterial. However, a vertical multilayer of two different dielectric materials also exhibits enhanced optical spin Hall effect compared to a horizontally stacked dielectric multilayer (Fig. S5). Due to the S5
6 weak anisotropy in the horizontally stacked dielectric multilayer, the absolute value of the shift is smaller than that of a vertical hyperbolic metamaterial. a b c t ph t sh t pv t sv d e Figure S5: Dispersion, transmission coefficients and shift of dielectric multilayer composed of titanium dioxide and silicon dioxide. (a) Equifrequency contour at 600 nm. (b) Amplitude and (c) phase of transmission coefficients and (d) shift when incident angle is 5. (e) Shift enhancement at four incident angles. Effect of diffraction in the measurement β t Air (index: 1) θ t k t Substrate (index: n) k i θ i β i p Figure S6: A schematic of diffraction in grating In order to prove that the shift originates solely from the optical spin Hall effect, we consider the diffraction which may be caused by the grating pattern (Fig. S6). The trans S6
7 mitted angle θ t of the diffracted beam can be obtained by applying boundary equation. Since tangential component should be continuous at the interface, β t = β i + 2πm/p (S8) where m is an integer characterizing the diffractive modes; β i and β t are transverse wave vectors of incident and transmitted beams defined as β i = k i sin θ i = 2πn λ sin θ i (where n is a refractive index of the substrate) and β t = k t sin θ t = 2π λ sin θ t respectively. Therefore, θ t can be expressed as ( θ t = sin 1 n sin θ i + m λ ) p (S9) Because λ/p > 2 and incident angle is small (θ i < 10 ) in our experiment, the argument of sin 1 in Eq. S9 has an absolute value larger than unity for nonzero m. Therefore, one can conclude that the diffraction does not occur (m = 0), and the transverse shift indeed results from the optical spin Hall effect. S7
Spectroscopic Ellipsometry:
Spectroscopic : What it is, what it will do, and what it won t do by Harland G. Tompkins Introduction Fundamentals Anatomy of an ellipsometric spectrum Analysis of an ellipsometric spectrum What you can
More informationPlate waves in phononic crystals slabs
Acoustics 8 Paris Plate waves in phononic crystals slabs J.J. Chen and B. Bonello CNRS and Paris VI University, INSP  14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We
More informationFundamentals of Electromagnetic Fields and Waves: I
Fundamentals of Electromagnetic Fields and Waves: I Fall 2007, EE 30348, Electrical Engineering, University of Notre Dame Mid Term II: Solutions Please show your steps clearly and sketch figures wherever
More informationInterferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)
Interferometers The true worth of an experimenter consists in his pursuing not only what he seeks in his experiment, but also what he did not seek. Claude Bernard (18131878) OBJECTIVES To examine the
More information2 Absorbing Solar Energy
2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could
More informationAcoustooptic modulator
1 of 3 Acoustooptic modulator F An acoustooptic modulator (AOM), also called a Bragg cell, uses the acoustooptic effect to diffract and shift the frequency of light using sound waves (usually at radiofrequency).
More informationDOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGHSOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGHSOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREEDIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM
More informationQuestion based on Refraction and Refractive index. Glass Slab, Lateral Shift.
Question based on Refraction and Refractive index. Glass Slab, Lateral Shift. Q.What is refraction of light? What are the laws of refraction? Ans: Deviation of ray of light from its original path when
More informationPolarization of Light
Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights
More informationUsing light scattering method to find The surface tension of water
Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector
More informationA wave lab inside a coaxial cable
INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S01430807(04)76273X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera
More informationAmplification of the Radiation from Two Collocated Cellular System Antennas by the Ground Wave of an AM Broadcast Station
Amplification of the Radiation from Two Collocated Cellular System Antennas by the Ground Wave of an AM Broadcast Station Dr. Bill P. Curry EMSciTek Consulting Co., W101 McCarron Road Glen Ellyn, IL 60137,
More informationPHYA2. General Certificate of Education Advanced Subsidiary Examination June 2010. Mechanics, Materials and Waves
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 2 For this paper you must have: a ruler a calculator a Data and Formulae Booklet.
More information2 Metamaterials: Fundamental Revolution and Potential Future
3 2 Metamaterials: Fundamental Revolution and Potential Future Materials properties have troubled scientists since old ages [1]. From an electromagnetic outlook, researchers have had different concerns
More informationIntroduction to acoustic imaging
Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3
More informationRefractive Index Measurement Principle
Refractive Index Measurement Principle Refractive index measurement principle Introduction Detection of liquid concentrations by optical means was already known in antiquity. The law of refraction was
More informationELECTROMAGNETIC ANALYSIS AND COLD TEST OF A DISTRIBUTED WINDOW FOR A HIGH POWER GYROTRON
ELECTROMAGNETIC ANALYSIS AND COLD TEST OF A DISTRIBUTED WINDOW FOR A HIGH POWER GYROTRON M.A.Shapiro, C.P.Moeller, and R.J.Temkin Plasma Science and Fusion Ceer, Massachusetts Institute of Technology,
More informationAP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
More informationUltrasonic Detection Algorithm Research on the Damage Depth of Concrete after Fire Jiangtao Yu 1,a, Yuan Liu 1,b, Zhoudao Lu 1,c, Peng Zhao 2,d
Advanced Materials Research Vols. 368373 (2012) pp 22292234 Online available since 2011/Oct/24 at www.scientific.net (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.368373.2229
More informationTrigonometry Hard Problems
Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.
More informationpotential in the centre of the sphere with respect to infinity.
Umeå Universitet, Fysik 1 Vitaly Bychkov Prov i fysik, Electricity and Waves, 20060927, kl 16.0022.00 Hjälpmedel: Students can use any book. Define the notations you are using properly. Present your
More informationLongwave IR focalplane binary optics
Longwave IR focalplane binary optics Z. Sikorski, H. Polakowski Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 98 Warsaw, email: zsikorsk@wat.waw.pl Abstract In
More informationGSOLVER V5.2 Diffraction Grating Analysis Program
GSOLVER V5.2 Diffraction Grating Analysis Program Principle Features Full 3D vector solution (with choice of solution method) Arbitrary polarization including TE, TM, Elliptical Conical mounts Arbitrary
More informationLaboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors  September 23, 2014
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors  September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control
More informationGraphs of Polar Equations
Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate
More informationInterference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
More informationAdvancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications
Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications Janet E. Semmens Sonoscan, Inc. 2149 E. Pratt Boulevard Elk Grove Village, IL 60007 USA Phone: (847)
More informationThe Role of Electric Polarization in Nonlinear optics
The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research
More informationGPR Polarization Simulation with 3D HO FDTD
Progress In Electromagnetics Research Symposium Proceedings, Xi an, China, March 6, 00 999 GPR Polarization Simulation with 3D HO FDTD Jing Li, ZhaoFa Zeng,, Ling Huang, and Fengshan Liu College of Geoexploration
More informationComposite Electromagnetic Wave Absorber Made of Permalloy or Sendust and Effect of Sendust Particle Size on Absorption Characteristics
PIERS ONLINE, VOL. 4, NO. 8, 2008 846 Composite Electromagnetic Wave Absorber Made of Permalloy or Sendust and Effect of Sendust Particle Size on Absorption Characteristics K. Sakai, Y. Wada, and S. Yoshikado
More informationP R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)
INSURANCE SCAM OPTICS  LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as
More information6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?
Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 105 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through
More informationAspherical Lens Design by Using a Numerical Analysis
Journal of the Korean Physical Society, Vol. 51, No. 1, July 27, pp. 93 13 Aspherical Lens Design by Using a Numerical Analysis GyeongIl Kweon Department of Optoelectronics, Honam University, Gwangju
More informationPreview of Period 3: Electromagnetic Waves Radiant Energy II
Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How
More informationPhase Characterization of TiO 2 Powder by XRD and TEM
Kasetsart J. (Nat. Sci.) 42 : 357361 (28) Phase Characterization of TiO 2 Powder by XRD and TEM Kheamrutai Thamaphat 1 *, Pichet Limsuwan 1 and Boonlaer Ngotawornchai 2 ABSTRACT In this study, the commercial
More informationMode Patterns of Parallel plates &Rectangular wave guides Mr.K.Chandrashekhar, Dr.Girish V Attimarad
International Journal of Scientific & Engineering Research Volume 3, Issue 8, August2012 1 Mode Patterns of Parallel plates &Rectangular wave guides Mr.K.Chandrashekhar, Dr.Girish V Attimarad AbstractParallel
More information3.5.4.2 One example: Michelson interferometer
3.5.4.2 One example: Michelson interferometer mirror 1 mirror 2 light source 1 2 3 beam splitter 4 object (n object ) interference pattern we either observe fringes of same thickness (parallel light) or
More informationUltrabroadband Microwave Metamaterial Absorber
Ultrabroadband Microwave Metamaterial Absorber Fei Ding 1, Yanxia Cui 1,3, Xiaochen Ge 1, Feng Zhang 1, Yi Jin 1*, and Sailing He 1,2 1 Centre for Optical and Electromagnetic Research, State Key Laboratory
More informationXray diffraction techniques for thin films
Xray diffraction techniques for thin films Rigaku Corporation Application Laboratory Takayuki Konya 1 Today s contents (PM) Introduction Xray diffraction method OutofPlane InPlane Pole figure Reciprocal
More informationAgilent Split Post Dielectric Resonators for Dielectric Measurements of Substrates. Application Note
Agilent Split Post Dielectric Resonators for Dielectric Measurements of Substrates Application Note l Introduction The split post dielectric resonator (SPDR) provides an accurate technique for measuring
More informationChapter 6 Metal Films and Filters
Chapter 6 Metal Films and Filters 6.1 Mirrors The first films produced by vacuum deposition as we know it were aluminum films for mirrors made by John Strong in the 1930s; he coated mirrors for astronomical
More informationBandwidth analysis of multimode fiber passive optical networks (PONs)
Optica Applicata, Vol. XXXIX, No. 2, 2009 Bandwidth analysis of multimode fiber passive optical networks (PONs) GRZEGORZ STEPNIAK *, LUKASZ MAKSYMIUK, JERZY SIUZDAK Institute of Telecommunications, Warsaw
More informationarxiv:1111.4354v2 [physics.accph] 27 Oct 2014
Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.accph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic
More informationDETERMINING THE POLARIZATION STATE OF THE RADIATION CROSSING THROUGH AN ANISOTROPIC POLY (VINYL ALCOHOL) FILM
DETERMINING THE POLARIZATION STATE OF THE RADIATION CROSSING THROUGH AN ANISOTROPIC POLY (VINYL ALCOHOL) FILM ECATERINA AURICA ANGHELUTA Faculty of Physics,,,Al.I. Cuza University, 11 Carol I Bd., RO700506,
More informationBasic Optics System OS8515C
40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 01209900B Basic Optics System
More informationReflection & Transmission of EM Waves
Reflection & Transmission of EM Waves Reading Shen and Kong Ch. 4 Outline Everyday Reflection Reflection & Transmission (Normal Incidence) Reflected & Transmitted Power Optical Materials, Perfect Conductors,
More informationExperimental results for the focal waveform and beam width in the focusing lens with a 100 ps filter
EM Implosion Memos Memo 51 July, 2010 Experimental results for the focal waveform and beam width in the focusing lens with a 100 ps filter Prashanth Kumar, Carl E. Baum, Serhat Altunc, Christos G. Christodoulou
More informationWAVELENGTH OF LIGHT  DIFFRACTION GRATING
PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant
More informationBlackbody Radiation References INTRODUCTION
Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt
More informationNumerical Analysis of Perforated Microring Resonator Based Refractive Index Sensor
Numerical Analysis of Perforated Microring Resonator Based Refractive Index Sensor M. Gabalis *1, D. Urbonas 1, and R. Petruškevičius 1 1 Institute of Physics of Center for Physical Sciences and Technology,
More informationExperiment: Crystal Structure Analysis in Engineering Materials
Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of Xray diffraction techniques for investigating various types
More informationXray thinfilm measurement techniques
Technical articles Xray thinfilm measurement techniques II. Outofplane diffraction measurements Toru Mitsunaga* 1. Introduction A thinfilm sample is twodimensionally formed on the surface of a substrate,
More informationNear Field Imaging with Magnetic Wires
Near Field Imaging with Magnetic Wires M C K Wiltshire and J V Hajnal Imaging Sciences Department, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 HS, UK michael.wiltshire@imperial.ac.uk;
More informationA Guide to AcoustoOptic Modulators
A Guide to AcoustoOptic Modulators D. J. McCarron December 7, 2007 1 Introduction Acoustooptic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam
More informationUsing the Spectrophotometer
Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to
More informationThe waveguide adapter consists of a rectangular part smoothly transcending into an elliptical part as seen in Figure 1.
Waveguide Adapter Introduction This is a model of an adapter for microwave propagation in the transition between a rectangular and an elliptical waveguide. Such waveguide adapters are designed to keep
More informationApertureless NearField Optical Microscopy
VI Apertureless NearField Optical Microscopy In recent years, several types of apertureless nearfield optical microscopes have been developed 1,2,3,4,5,6,7. In such instruments, light scattered from
More informationIntroduction to Optics
Second Edition Introduction to Optics FRANK L. PEDROTTI, S.J. Marquette University Milwaukee, Wisconsin Vatican Radio, Rome LENO S. PEDROTTI Center for Occupational Research and Development Waco, Texas
More informationDoes Quantum Mechanics Make Sense? Size
Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why
More informationGRID AND PRISM SPECTROMETERS
FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing
More information5.3 Cell Phone Camera
164 Chapter 5 5.3 Cell Phone Camera The next design example we discuss is a cell phone camera. These systems have become quite popular, to the point that it is often more difficult to purchase a cell phone
More informationFluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
More informationDielectric Properties of EVA Rubber Composites at Microwave Frequencies Theory, Instrumentation and Measurements
Journal of Microwave Power and Electromagnetic Energy, 45 (1), 2011, pp. 2429 A Publication of the Dielectric Properties of EVA Rubber Composites at Microwave Frequencies Theory, Instrumentation and Measurements
More informationIonosphere Properties and Behaviors  Part 2 By Marcel H. De Canck, ON5AU
Ionosphere Properties and Behaviors  Part 2 By Marcel H. De Canck, ON5AU I n the previous issue I explained that gyrofrequency depends on the earth s magnetic field and mentioned that this magnetic field
More informationPolarization Dependence in Xray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK
Polarization Dependence in Xray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about xray polarization 2. How
More informationBiggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
More informationGeorgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
More informationOptical Coatings 5 美 国 莱 特 太 平 洋 公 司. Optical Coatings 5.2. The Reflection of Light 5.3. SingleLayer Antireflection Coatings 5.7
5 5. The Reflection of Light 5.3 SingleLayer Antireflection Coatings 5.7 Multilayer Antireflection Coatings 5. HighReflection Coatings 5.3 ThinFilm Production 5.7 Melles Griot Antireflection Coatings
More informationEQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
More informationGLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics
Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals
More informationFURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level  MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: 97 Mathematics
More informationLab 9: The AcoustoOptic Effect
Lab 9: The AcoustoOptic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix
More informationRFMicrowaves formulas  1port systems
RFMicrowaves formulas  port systems sparameters: Considering a voltage source feeding into the DUT with a source impedance of. E i E r DUT The voltage into the DUT is composed of 2 parts, an incident
More informationAntenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013
Antenna Properties and their impact on Wireless System Performance Dr. Steven R. Best Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Phone (603) 6277877 FAX: (603) 6271764 Email: sbest@cushcraft.com
More informationPHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines. Repeated n times I L
Transmission Lines Introduction A transmission line guides energy from one place to another. Optical fibres, waveguides, telephone lines and power cables are all electromagnetic transmission lines. are
More informationNEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES
Vol. 93 (1997) A CTA PHYSICA POLONICA A No. 2 Proceedings of the 1st International Symposium on Scanning Probe Spectroscopy and Related Methods, Poznań 1997 NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY
More informationPhysical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
More informationModern Classical Optics
Modern Classical Optics GEOFFREY BROOKER Department of Physics University of Oxford OXPORD UNIVERSITY PRESS Contents 1 Electromagnetism and basic optics 1 1.1 Introduction 1 1.2 The Maxwell equations 1
More informationRec. ITUR F.6995 1 RECOMMENDATION ITUR F.6995 *
Rec. ITUR F.6995 1 RECOMMENATION ITUR F.6995 * REFERENCE RAIATION PATTERNS FOR LINEOFSIGHT RAIORELAY SYSTEM ANTENNAS FOR USE IN COORINATION STUIES AN INTERFERENCE ASSESSMENT IN THE FREQUENCY RANGE
More informationConductive and Radiative Heat Transfer in Insulators
Conductive and Radiative Heat Transfer in Insulators Akhan Tleoubaev, Ph.D. LaserComp, Inc., December 1998 Heat transfer for most thermal insulation materials occurs via both conduction and radiation.
More informationLimiting factors in fiber optic transmissions
Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:0016:20, Fri. 9:2010:50 sergiusz.patela@pwr.wroc.pl eportal.pwr.wroc.pl Copying and processing permitted for noncommercial
More informationReflectance of a layered system with a gaussian distribution of the refractive index and inserted metamaterial
Reflectance of a layered system with a gaussian distribution of the refractive index and inserted metamaterial Xóchitl Saldaña Saldaña Instituto de Física de la Benemérita Universidad Autónoma de Puebla
More informationAssessment Anchors and Eligible Content
M07.AN The Number System M07.AN.1 M07.AN.1.1 DESCRIPTOR Assessment Anchors and Eligible Content Aligned to the Grade 7 Pennsylvania Core Standards Reporting Category Apply and extend previous understandings
More informationPhysics 111 Homework Solutions Week #9  Tuesday
Physics 111 Homework Solutions Week #9  Tuesday Friday, February 25, 2011 Chapter 22 Questions  None MultipleChoice 223 A 224 C 225 B 226 B 227 B 229 D Problems 227 In this double slit experiment we
More information1. Basics of LASER Physics
1. Basics of LASER Physics Dr. Sebastian Domsch (Dipl.Phys.) Computer Assisted Clinical Medicine Medical Faculty Mannheim Heidelberg University TheodorKutzerUfer 13 D68167 Mannheim, Germany sebastian.domsch@medma.uniheidelberg.de
More informationPRACTICE EXAM IV P202 SPRING 2004
PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a secondorder
More informationDESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.
DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,
More informationSEMIAUTOMATIC SURFACE REFLECTANCE MEASUREMENT FOR MONITORING OF MATERIAL WEATHERING
SEMIAUTOMATIC SURFACE REFLECTANCE MEASUREMENT FOR MONITORING OF MATERIAL WEATHERING V. Kocour 1, J. Valach 2 1 Motivation Summary: We present a device for measurement of surface reflectance in dependence
More informationProject 2B Building a Solar Cell (2): Solar Cell Performance
April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the IV characteristics, energy conversion
More informationAbout Coffee and Refractometers 20082010 Voice Systems Technology, Inc. (VST)
About Coffee and Refractometers 2008200 Voice Systems Technology, Inc. (VST) www.mojotogo.us.0 Coffee and Refractive Index Refractive Index measurements have been used for process control in the food
More informationThnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More informationCHAPTER TEN Shielding This chapter addresses the concept of shielding of electronic circuits. The term shield usually refers to a metallic enclosure that completely encloses an electronic product or a
More informationEnergy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)
Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact
More informationIntroduction to polarization of light
Chapter 2 Introduction to polarization of light This Chapter treats the polarization of electromagnetic waves. In Section 2.1 the concept of light polarization is discussed and its Jones formalism is presented.
More informationi( t) L i( t) 56mH 1.1A t = τ ln 1 = ln 1 ln 1 6.67ms
Exam III PHY 49 Summer C July 16, 8 1. In the circuit shown, L = 56 mh, R = 4.6 Ω an V = 1. V. The switch S has been open for a long time then is suenly close at t =. At what value of t (in msec) will
More informationOmni Antenna vs. Directional Antenna
Omni Antenna vs. Directional Antenna Document ID: 82068 Contents Introduction Prerequisites Requirements Components Used Conventions Basic Definitions and Antenna Concepts Indoor Effects Omni Antenna Pros
More informationPHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Setup to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.
More information4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet
4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115134 SL/HL Supplemental: Cutnell and Johnson, pp 473477, 507513 Tsokos, pp 216242 REMEMBER TO. Work through all
More informationFrequencydomain and stochastic model for an articulated wave power device
Frequencydomain stochastic model for an articulated wave power device J. Cândido P.A.P. Justino Department of Renewable Energies, Instituto Nacional de Engenharia, Tecnologia e Inovação Estrada do Paço
More informationAfter a wave passes through a medium, how does the position of that medium compare to its original position?
Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. Xrays. D. visible light.
More information