Save this PDF as:
Size: px
Start display at page: ## Transcription

1 PAPA CAMBRIDGE CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education MARK SCHEME for the May/June 0 series 00 ADDITIONAL MATHEMATICS 00/ Paper, maximum raw mark 0 This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners meeting before marking began, which would have considered the acceptability of alternative answers. Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers. Cambridge will not enter into discussions about these mark schemes. Cambridge is publishing the mark schemes for the May/June 0 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

2 Page Mark Scheme Syllabus Paper cos cos A + ( + sin A) ( + sin A) A + + sin A + sin ( + sin A) ( + sin A) ( + sin A) A M M DM M for obtaining a single fraction, correctly M for expansion of ( ) + sin A and use of identity DM for factorisation and + sin A factor cancelling of ( ) sec A A A for use of final answer A sec and Alternative: ( sin A) + sin + ( + sin A)( sin A) ( sin A) + sin A sin A sin A ( ) sin A + sin A sin A + A M M M M for multiplying first term by sin A sin A M for expansion of ( sin A)( + sin A) and use of identity M for simplification of the terms sec A A A for use of final answer A sec and (a) (i) B (i) B (b) (i) (iii) 9 B B B Cambridge International Examinations 0

3 Page Mark Scheme Syllabus Paper (i) B B for shape B B for y (must have a graph) B B for x 0. and (must have a graph) Maximum point occurs when y M M for obtaining the value of y at the maximum point, by either completing the square, differentiation, use of discriminant or symmetry. so k > A Must have the correct sign for A Ignore any upper limits a sinx dx 0 cosx a 0 d x cos a cos a 0. a, a 9 B,B M A M A B for kcosx only, B for cosx only M for correct substitution of the correct limits into their result A for correct equation M for correct method of solution of equation of the form cos ma k A allow 0.9, must be a radian answer (i) x y leads to x + y B, B DB y B for, B for, B for dealing with indices correctly to obtain given answer x y 7 9 can be written as x + y 0 B B y B for either 7 or B for x + y seen Solving x + y and x + y 0 leads to x, y M A M for solution of their simultaneous equations, must both be linear A for both, allow equivalent fractions only Cambridge International Examinations 0

4 Page Mark Scheme Syllabus Paper (a) YX and ZY B,B B for each, must be in correct order, (b) 9 B A, M M for pre-multiplication by A - 9 B,B B for, B for 9 or 7 DM A DM for attempt at matrix multiplication A allow in either form Alternative method: a c b d 9 M M for a complete method to obtain equations Leads to a c, b d 9 a + c, b + d Solutions give matrix A,,0 M for each incorrect equation M for solution to find unknowns 9 or 7 A A for a correct, final matrix Cambridge International Examinations 0

5 Page Mark Scheme Syllabus Paper 7 (i) θ sin or θ, 0. or better + cosθ M M for a complete method to find either θ or θ θ.9 or better A Answer given. or using areas 7 sinθ oe sin θ 0.99, θ. or. 9 M A M for using the area of the triangle in different forms A for choosing the correct angle. Arc length (.9) (.97 or.7) M A M for correct attempt at a minor or major arc length A for correct major arc length, allow unsimplified Perimeter + (.9). 7 A A for.7 or better (iii) Area (.9) + sin. 9 M,M M for correct attempt to find area of major sector 7., 7., awrt 79 A M for correct attempt to find area of triangle, using any method Alternative:.9 sin. 9 Area ( ) M for attempt at area of circle area of minor sector M for area of triangle Cambridge International Examinations 0

6 Page Mark Scheme Syllabus Paper (a) (i) 70 B 0 B (iii) Starts with either a or a : ways B allow unevaluated Does not start with either a or a : 9 ways (i.e. starts with or ) B allow unevaluated Total B must be evaluated Alternative : Ends with a, starts with a, or : 7 ways Ends with a, starts with a, or : 7 ways Total B B B Alternative : ( ) or ( P ) ( P ) 0 P B B B for correct expression seen, allow P notation Alternative : P P P or B B Allow P notation here, for B (b) With twins : C ( 0) B Without twins: C ( 00) B Total: 9 B Alternative: C 9 ( C ) B,B B B for C...,, B for C Cambridge International Examinations 0

7 Page 7 Mark Scheme Syllabus Paper 9 (i) 000 h or r h 000 r A rh + r B 000 A r + r r M A M for substitution of h or rh into their equation for A A Answer given da r dr r d A When 0, r 000 dr B, B M B for each term correct M for equating to zero and attempt to find r leading to A 9, 90 d A 000 +, d r r which, is positive so a minimum. M A B M for substitution of their r to obtain A. A for 90 or awrt 9 B for a complete correct method and conclusion. Cambridge International Examinations 0

8 Page Mark Scheme Syllabus Paper 0 (i) 0 i + j Velocity ( i + j) M A M for ( i + j) Alternative : 0 i + j 0 + M M for working from given answer to obtain the given speed Showing that one vector is a multiple of the other, hence same direction A A for a completely correct method Alternative : +, k, so k i + j, Velocity ( ) Velocity 0 i + j M A M for attempt to obtain the multiple and apply to the direction vector A for a completely correct method Alternative : Use of trig: tan α, α 7. Velocity cos 7. i + sin 7. j M M for reaching this stage Velocity 0 i + j A A for a completely correct method Position vector ( 0i + j) or 0 i + 9j B Allow either form for B (iii) ( 0 i 9j) + ( 0i + j)t + oe M A M for their ( ii) ( 0 i + j)t ( 0 i + j) ( t + ) A correct answer only + or (iv) ( 0 i j) + ( i + 0j)t + oe B (v) 0 + 0t 0 t or 9 + t + 0t M M for equating like vectors t. or : 0 A A Allow for t. Position vector i + j DM DM for use of t to obtain position vector A A cao Cambridge International Examinations 0

9 Page 9 Mark Scheme Syllabus Paper (a) ( tan x + ) 0 tan x tan x 0, x 0, 0 tan x, x 0. B,B B B for each, must be from correct work (b) ( sin y) sin y 0 sin y + sin y 0 ( sin y ) (sin y + ) 0 sin y, y 0, 0 M A,A M for use of correct identity and attempt to solve resulting term quadratic equation. sin y, y 70 A (c) cos z M M for dealing with sec correctly and obtaining or.0 z z or 0.7 or better A z M M for obtaining a second equation z their oe z or. or better A Cambridge International Examinations 0

### MARK SCHEME for the October/November 2012 series 9709 MATHEMATICS. 9709/13 Paper 1, maximum raw mark 75 CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level MARK SCHEME for the October/November 2012 series 9709 MATHEMATICS 9709/13 Paper 1, maximum raw mark 75 This mark

### MARK SCHEME for the October/November 2012 series 9709 MATHEMATICS. 9709/11 Paper 1, maximum raw mark 75 CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level MARK SCHEME for the October/November 2012 series 9709 MATHEMATICS 9709/11 Paper 1, maximum raw mark 75 This mark

### Mark Scheme. Mathematics 6360. General Certificate of Education. 2006 examination June series. MPC1 Pure Core 1 Version 1.0: 0706 abc General Certificate of Education Mathematics 660 MPC1 Pure Core 1 Mark Scheme 006 examination June series Mark schemes are prepared by the Principal Examiner and considered, together

### Mark Scheme (Results) Summer 2013. GCE Core Mathematics 2 (6664/01R) Mark (Results) Summer 01 GCE Core Mathematics (6664/01R) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world s leading learning company. We provide a wide range

### Version 1.0. General Certificate of Education (A-level) January 2012. Mathematics MPC4. (Specification 6360) Pure Core 4. Final. Version.0 General Certificate of Education (A-level) January 0 Mathematics MPC (Specification 660) Pure Core Final Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together

### abc GCE 2005 Mark Scheme January Series Mathematics MPC1 GCE 005 January Series abc Mark Scheme Mathematics MPC1 Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark

### Version 1.0. klm. General Certificate of Education June 2010. Mathematics. Pure Core 3. Mark Scheme Version.0 klm General Certificate of Education June 00 Mathematics MPC Pure Core Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together with the relevant questions, by

### GCE Mathematics. Mark Scheme for June 2014. Unit 4722: Core Mathematics 2. Advanced Subsidiary GCE. Oxford Cambridge and RSA Examinations GCE Mathematics Unit 4722: Core Mathematics 2 Advanced Subsidiary GCE Mark Scheme for June 2014 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### Version. General Certificate of Education (A-level) January 2013. Mathematics MPC3. (Specification 6360) Pure Core 3. Final. Version General Certificate of Education (A-level) January Mathematics MPC (Specification 66) Pure Core Final Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together with

### National 5 Mathematics Course Assessment Specification (C747 75) National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for

### Mark Scheme (Results) Summer 2014. Pearson Edexcel GCSE In Mathematics A (1MA0) Higher (Calculator) Paper 2H Mark Scheme (Results) Summer 2014 Pearson Edexcel GCSE In Mathematics A (1MA0) Higher (Calculator) Paper 2H Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK

### GCSE Mathematics A. Mark Scheme for June 2014. Unit A501/02: Mathematics A (Higher Tier) General Certificate of Secondary Education GCSE Mathematics A Unit A50/0: Mathematics A (Higher Tier) General Certificate of Secondary Education Mark Scheme for June 04 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading

### GCE. Mathematics. Mark Scheme for June 2012. Advanced GCE Unit 4725: Further Pure Mathematics 1. Oxford Cambridge and RSA Examinations GCE Mathematics Advanced GCE Unit 4725: Further Pure Mathematics 1 Mark Scheme for June 2012 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing

### SOLVING TRIGONOMETRIC EQUATIONS Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC

### Version 1.0. General Certificate of Education (A-level) June 2013. Mathematics MPC3. (Specification 6360) Pure Core 3. Final. Version.0 General Certificate of Education (A-level) June 0 Mathematics MPC (Specification 660) Pure Core Final Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together with

### FOREWORD. Executive Secretary FOREWORD The Botswana Examinations Council is pleased to authorise the publication of the revised assessment procedures for the Junior Certificate Examination programme. According to the Revised National

### Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

### 9231 FURTHER MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level MARK SCHEME for the October/November 2012 series 9231 FURTHER MATHEMATICS 9231/21 Paper 2, maximum raw mark 100

### New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC New Higher-Proposed Order-Combined Approach Block 1 Lines 1.1 App Vectors 1.4 EF Quadratics 1.1 RC Polynomials 1.1 RC Differentiation-but not optimisation 1.3 RC Block 2 Functions and graphs 1.3 EF Logs

### GCE. Mathematics. Mark Scheme for June 2012. Advanced GCE Unit 4723: Core Mathematics 3. Oxford Cambridge and RSA Examinations GCE Mathematics Advanced GCE Unit 47: Core Mathematics Mark Scheme for June 0 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range

### Mark Scheme (Results) January 2014. Pearson Edexcel International GCSE Mathematics A (4MA0/3H) Paper 3H Mark Scheme (Results) January 014 Pearson Edexcel International GCSE Mathematics A (4MA0/3H) Paper 3H Pearson Edexcel Certificate Mathematics A (KMA0/3H) Edexcel and BTEC Qualifications Edexcel and BTEC

### STRAND: ALGEBRA Unit 3 Solving Equations CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

### Mark Scheme (Results) June 2011. GCSE Mathematics (1380) Paper 3H (Non-Calculator) Mark Scheme (Results) June 011 GCSE Mathematics (1380) Paper 3H (Non-Calculator) Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range

### Techniques of Integration CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration

### Paper 2 Revision. (compiled in light of the contents of paper1) Higher Tier Edexcel Paper 2 Revision (compiled in light of the contents of paper1) Higher Tier Edexcel 1 Topic Areas 1. Data Handling 2. Number 3. Shape, Space and Measure 4. Algebra 2 Data Handling Averages Two-way table

### Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

### Version 1.0 0110. hij. General Certificate of Education. Mathematics 6360. MPC1 Pure Core 1. Mark Scheme. 2010 examination - January series Version.0 00 hij General Certificate of Education Mathematics 660 MPC Pure Core Mark Scheme 00 examination - January series Mark schemes are prepared by the Principal Examiner and considered, together

### Find all of the real numbers x that satisfy the algebraic equation: Appendix C: Factoring Algebraic Expressions Factoring algebraic equations is the reverse of expanding algebraic expressions discussed in Appendix B. Factoring algebraic equations can be a great help when

### 1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of

### Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### GCE. Mathematics. Mark Scheme for June 2013. Advanced GCE Unit 4729: Mechanics 2. Oxford Cambridge and RSA Examinations GCE Mathematics Advanced GCE Unit 4729: Mechanics 2 Mark Scheme for June 2013 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range

### The Mathematics Diagnostic Test The Mathematics iagnostic Test Mock Test and Further Information 010 In welcome week, students will be asked to sit a short test in order to determine the appropriate lecture course, tutorial group, whether

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### Mark Scheme (Results) November 2013. Pearson Edexcel GCSE in Mathematics Linear (1MA0) Higher (Non-Calculator) Paper 1H Mark Scheme (Results) November 2013 Pearson Edexcel GCSE in Mathematics Linear (1MA0) Higher (Non-Calculator) Paper 1H Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson,

### Version 1.0 0110. hij. General Certificate of Education. Mathematics 6360. MPC3 Pure Core 3. Mark Scheme. 2010 examination - January series Version.0 00 hij General Certificate of Education Mathematics 6360 MPC3 Pure Ce 3 Mark Scheme 00 eamination - January series Mark schemes are prepared by the Principal Eaminer and considered, together

### Assessment Schedule 2013 NCEA Level Mathematics (9161) 013 page 1 of 5 Assessment Schedule 013 Mathematics with Statistics: Apply algebraic methods in solving problems (9161) Evidence Statement ONE Expected Coverage Merit Excellence

### 9706 ACCOUNTING. Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers. CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level MARK SCHEME for the May/June 2014 series 9706 ACCOUNTING 9706/42 Paper 4 (Problem Solving [Supplement]), maximum raw mark 120 This mark scheme is

### Mathematics B (Linear) J567/03: Mark Scheme for November 2013 GCSE Mathematics B (Linear) General Certificate of Secondary Education Component J567/03: Mathematics Paper 3 (Higher) Mark Scheme for November 2013 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge

### G.A. Pavliotis. Department of Mathematics. Imperial College London EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

### SPECIFICATION. Mathematics 6360 2014. General Certificate of Education Version 1.0: 0913 General Certificate of Education Mathematics 6360 014 Material accompanying this Specification Specimen and Past Papers and Mark Schemes Reports on the Examination Teachers Guide SPECIFICATION

### Section 1: How will you be tested? This section will give you information about the different types of examination papers that are available. REVISION CHECKLIST for IGCSE Mathematics 0580 A guide for students How to use this guide This guide describes what topics and skills you need to know for your IGCSE Mathematics examination. It will help

### Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places. SECTION.1 Simplify. 1. 7π π. 5π 6 + π Find the measure of the angle in degrees between the hour hand and the minute hand of a clock at the time shown. Measure the angle in the clockwise direction.. 1:0.

### Mathematics 2540 Paper 5540H/3H Edexcel GCSE Mathematics 540 Paper 5540H/3H November 008 Mark Scheme 1 (a) 3bc 1 B1 for 3bc (accept 3cb or bc3 or cb3 or 3 b c oe, but 7bc 4bc gets no marks) (b) x + 5y B for x+5y (accept x+y5 or x + 5

### Version : 1.0 0609. klm. General Certificate of Education. Mathematics 6360. MPC1 Pure Core 1. Mark Scheme. 2009 examination - June series Version :.0 0609 klm General Certificate of Education Mathematics 660 MPC Pure Core Mark Scheme 009 examination - June series Mark schemes are prepared by the Principal Examiner and considered, together

### QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write

### Inverse Trig Functions Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

### Key Topics What will ALL students learn? What will the most able students learn? 2013 2014 Scheme of Work Subject MATHS Year 9 Course/ Year Term 1 Key Topics What will ALL students learn? What will the most able students learn? Number Written methods of calculations Decimals Rounding

### A-LEVEL MATHEMATICS. Mechanics 2B MM2B Mark scheme. 6360 June 2014. Version/Stage: Final V1.0 A-LEVEL MATHEMATICS Mechanics B MMB Mark scheme 660 June 014 Version/Stage: Final V1.0 Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a

### Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

### Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

### Mark Scheme January 2009 Mark January 009 GCE GCE Mathematics (87/87,97/97) Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WCV 7BH Edexcel is one of the leading examining

### The Deadly Sins of Algebra The Deadly Sins of Algebra There are some algebraic misconceptions that are so damaging to your quantitative and formal reasoning ability, you might as well be said not to have any such reasoning ability.

### 0610 BIOLOGY. 0610/62 Paper 6 (Alternative to Practical), maximum raw mark 40 CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education MARK SCHEME for the May/June 2014 series 0610 BIOLOGY 0610/62 Paper 6 (Alternative to Practical), maximum raw

### Implicit Differentiation Implicit Differentiation Sometimes functions are given not in the form y = f(x) but in a more complicated form in which it is difficult or impossible to express y explicitly in terms of x. Such functions

### Oxford Cambridge and RSA Examinations Oxford Cambridge and RSA Examinations OCR FREE STANDING MATHEMATICS QUALIFICATION (ADVANCED): ADDITIONAL MATHEMATICS 6993 Key Features replaces and (MEI); developed jointly by OCR and MEI; designed for MTN Learn Mathematics Grade 10 radio support notes Contents INTRODUCTION... GETTING THE MOST FROM MINDSET LEARN XTRA RADIO REVISION... 3 BROADAST SCHEDULE... 4 ALGEBRAIC EXPRESSIONS... 5 EXPONENTS... 9

### 13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the

### TRIGONOMETRY Compound & Double angle formulae TRIGONOMETRY Compound & Double angle formulae In order to master this section you must first learn the formulae, even though they will be given to you on the matric formula sheet. We call these formulae

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### General Certificate of Secondary Education November 2012. Mathematics (Linear) B 4365 Paper 2 Higher Tier. Final. Mark Scheme General Certificate of Secondary Education November 2012 Mathematics (Linear) B 4365 Paper 2 Higher Tier Final Mark Scheme Mark schemes are prepared by the Principal Examiner and considered, together with

### Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices. Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that

### 2009 Chicago Area All-Star Math Team Tryouts Solutions 1. 2009 Chicago Area All-Star Math Team Tryouts Solutions If a car sells for q 1000 and the salesman earns q% = q/100, he earns 10q 2. He earns an additional 100 per car, and he sells p cars, so his total

### Cambridge International Examinations Cambridge International General Certifi cate of Secondary Education Cambridge International Examinations Cambridge International General Certifi cate of Secondary Education *3753884750* MATHEMATICS 0580/23 Paper 2 (Extended) May/June 2014 1 hour 30 minutes Candidates answer

### Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

### www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

### x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3 CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

### ALGEBRA 2/TRIGONOMETRY ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Tuesday, June 1, 011 1:15 to 4:15 p.m., only Student Name: School Name: Print your name

### National Quali cations SPECIMEN ONLY. Forename(s) Surname Number of seat. Date of birth Day Month Year Scottish candidate number N5 SQ9/N5/0 Date Not applicable Duration hour FOR OFFICIAL USE National Quali cations SPECIMEN ONLY Mark Mathematics Paper (Non-Calculator) *SQ9N50* Fill in these boxes and read what is printed below. Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

### You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Write your name here Surname Other names Edexcel IGCSE Centre Number Mathematics A Paper 3H Monday 6 June 2011 Afternoon Time: 2 hours Candidate Number Higher Tier Paper Reference 4MA0/3H You must have:

### Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

### 14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

### Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

### MARK SCHEME for the May/June 2010 question paper for the guidance of teachers 0452 ACCOUNTING. 0452/22 Paper 22, maximum raw mark 120 www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education MARK SCHEME for the May/June 2010 question paper for the guidance of teachers www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level MARK SCHEME for the May/June 2007 question paper 9707 BUSINESS STUDIES 9707/01 PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.

### Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Course outline, MA 113, Spring 2014 Part A, Functions and limits 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Functions, domain and range Domain and range of rational and algebraic

### GCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1. GCSE MATHEMATICS 43602H Unit 2: Number and Algebra (Higher) Report on the Examination Specification 4360 November 2014 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright

### Algebra 2: Themes for the Big Final Exam Algebra : Themes for the Big Final Exam Final will cover the whole year, focusing on the big main ideas. Graphing: Overall: x and y intercepts, fct vs relation, fct vs inverse, x, y and origin symmetries,

### In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

### Thursday 28 February 2013 Afternoon H Thursday 28 February 2013 Afternoon GCSE MATHEMATICS B J567/03 Paper 3 (Higher Tier) *J533610313* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Geometrical

### cos Newington College HSC Mathematics Ext 1 Trial Examination 2011 QUESTION ONE (12 Marks) (b) Find the exact value of if. 2 . 3 1 QUESTION ONE (12 Marks) Marks (a) Find tan x e 1 2 cos dx x (b) Find the exact value of if. 2 (c) Solve 5 3 2x 1. 3 (d) If are the roots of the equation 2 find the value of. (e) Use the substitution

### Mark Scheme (Results) January 2012. GCE Decision D1 (6689) Paper 1 Mark Scheme (Results) January 2012 GCE Decision D1 (6689) Paper 1 Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications

### 9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

### Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson

### Course Syllabus for Math 205 College Math I, Online Summer 2010 This is an online course accessible at: bb.wit.edu. Course Syllabus for Math 205 College Math I, Online Summer 2010 This is an online course accessible at: bb.wit.edu. Instructors names: Dr. Ophir Feldman Dr. Emma Smith Zbarsky Office locations: Ira Allen

### Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

### Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### Changes to GCSE assessment across subjects OCR GCSE Mathematics (J560) now accredited ocr.org.uk/gcsemaths Introducing the new Mathematics GCSE for first teaching from 2015 In February 2013, the Secretary of State for Education Michael Gove wrote

### Integrating algebraic fractions Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate Advanced Math Study Guide Topic Finding Triangle Area (Ls. 96) using A=½ bc sin A (uses Law of Sines, Law of Cosines) Law of Cosines, Law of Cosines (Ls. 81, Ls. 72) Finding Area & Perimeters of Regular

### * * MATHEMATICS (MEI) 4756 Further Methods for Advanced Mathematics (FP2) ADVANCED GCE. Monday 10 January 2011 Morning ADVANCED GCE MATHEMATICS (MEI) 4756 Further Methods for Advanced Mathematics (FP) Candidates answer on the answer booklet. OCR supplied materials: 8 page answer booklet (sent with general stationery) MEI

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication Content Skills Essential August/September Number Theory Identify factors List multiples of whole numbers Classify prime and composite numbers Analyze the rules of divisibility What is meant by a number