Modeling and Simulation of Oil-Water Flows with Viscous Fingering in Heterogeneous Porous Media.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Modeling and Simulation of Oil-Water Flows with Viscous Fingering in Heterogeneous Porous Media."

Transcription

1 ACMA 2014 Modeling and Simulation of Oil-Water Flows with Viscous Fingering in Heterogeneous Porous Media. H. DJEBOURI 1, S. ZOUAOUI 1, K. MOHAMMEDI 2, and A. AIT AIDER 1 1 Laboratoire de Mécanique Structure et Energétique (LMSE), UMMTO, Tizi-Ouzou, Ageria 2 Laboratoire d'energétique Mécanique et Ingénierie (LEMI), MESOnexusteam, UMBB Boumerdès, Ageria Abstract Modeling and simulation of flows in porous media have practical applications in petroleum and chemical industries. Advances in modeling and simulation of porous media can help in the understanding of processes in petroleum rocks. The evolution of computing resources has enabled the simulation to take an important place in the representation of such flows. In this present study we are interested to the effect of viscosity on the oil-water interface and the appearance of preferential flow paths (fingers). The physical region is a square domain in the horizontal plane with high and low pressure points at the opposite corners along one of the diagonals. Water, the invading fluid, when introduced at high pressure displaces the oil present in the medium towards the low pressure production zone. The configuration adopted for analysis is motivated by its application to enhanced oil recovery (EOR) from natural reservoirs. A computational code based on the finite volume method was used to solve this problem. Keywords : Porous medium, fingering, multiphase flow, breakthrough. 1. Introduction : The enhanced oil recovery is obtained by increasing the reservoir pressure by injection fluids without altering the physico-chemical characteristics of the fluids present in the porous medium. So it is important to choose the injected phase and the configuration of injection wells to have a good sweep. Fingering phenomena in oil water flow have been studied by several authors. A single discontinuity separating two homogeneous rock layers of different, constant permeability has been studied by P. Daripa, J. Glimm, B. Lindquist, Maesumi, O. McBryan. This authors have reported that the regions of local maxima in the permeability field serve as nuclei for growth of fingers in porous media. C.T. Tan, G.M. Homsy considered the non linear mechanisms involved in viscous fingering, where the instability characteristics of the flow field was seen to depend on the mobility ratio of the two phases.

2 Fingering phenomenon refers to the bypassing of the resident fluid such as oil by an invading fluid, such as water. A pattern that is particularly disadvantageous is the appearance of single or multiple fingers in the physical domain. Many codes have been developed for the simulation of multiphase flow in porous media such as ECLIPSE, VIP, UTCHEM, etc.. In this work we are interested to simulate the fingering phenomena in oil water flow by using the finite volume method. 2. Physical model : In this study we consider an heterogeneous rigid and isotropic porous medium. The heterogeneity is represented by the fact that the medium is composed of two regions of the same porosity ( ϕ =30%) and equal thickness. The ratio of the permeabilities of the two zones is equal to 1/3. The geometry is horizontal with an injection well and a recovery well located at the ends of the diagonal. Its dimensions are x =10 m and y = 10 m, (figre1.a). A structured mesh is used with a level adjustment to marry well to the surface geometry. This mesh is a regular structured grid dimensions cells, either a total of cells (Figure1.b). The wells are modeled as holes with a radius of 0.25m. The pressures imposed at the injection and production wells are respectively 1.79Mpa and 1.31Mpa. Figure1 : Physical domain and its mesh 3. Mathematical Model : Oil-water flow is governed by the conservation equations which are summarized below : - Conservation of mass : (1) with i=1 or 2. (1:oil, 2: water) and : : porosity of the porous medium : saturation of the i th fluid in the porous medium

3 : density of i th fluid (kg/m 3 ) : Darcy velocity (m/s). - Generalized Darcy's law: (2) where : the absolute permeability of formation (m 2 ) : phase pressure of the i th phase : relative permeability of the i th fluid : dynamic viscosity of the i th phase (N.m/s) The combination of equations (1) and (2) gives pressure equation : (3) These equations are supplemented by constitutive relations. 4. Applications and Results : In this study, two applications are studied. Results have been presented in terms of oil and water saturations: 4.1 First application : The region near the injection well is more permeable. Parameters used in the first application are given in the following table: Table 1 : Properties of fluids and the porous medium (case 1) Fluids Viscosity (Kg/m.s) Density(kg/m 3 ) Water Oil Intefacial tension (N/m) 0.03 Porosity Permeability (m 2 ) Zone 1 Zone 2

4 Saturation profiles for oil-water flow are visualized as 2D images (figure2). Figure2 : Saturation profiles for different times (case1) 4.2 Second application : In this second application the zone near the injection well is less permeable. The properties of the two fluids and porous medium are given in the following table (Table 2)

5 Table 2 : Properties of fluids and the porous medium (case 2) Fluids Viscosity (Kg/m.s) Density(kg/m 3 ) Water Oil Intefacial tension (N/m) 0.03 Porosity Permeability (m 2 ) Zone 1 Zone 2 The results of this application are also visualized as 2D images (figure3).

6 Figure3 : Saturation profiles for different times (case2) The results of the first application (figure 2) show that the high saturation of water is firstly recorded near the injection point and then it spreads over time to neighboring areas. The instability of the interface is at the beginning of the injection and gives rise to the formation of fingers which extend in the first region (zone1).when the injected fluid reaches the second region (zone2) which is more permeable we notice that the front velocity increases and fingers are moving rapidly towards recovery wells. We also note that when the injected fluid comes abundantly at the producer wells, a significant amount of oil remains trapped in the porous medium, especially in the zone of low permeability. In the second application (figure 3), the opposite phenomenon is observed at the first application. The zone of low permeability, which is in the vicinity of the production well, tends to stabilize the oil-water interface. At t=01h 23min the first finger detaches of the front (isolated finger).the isolated finger continues its propagation to reach the production well and allows the process of enhanced oil recovery to continue. At t=2h06min, water comes abundantly to production wells and leaves in the middle a large quantity of oil. After the two applications, we can say: The low permeability near the production well tends to stabilize the oil-water interface of displacement at this area. The high permeability of the zone containing the producing well accelerates the injected phase and causes early breakthrough of water, therefore the amount of oil remaining in the medium is important. 5. Conclusion The implementation of a computer code to simulate a water/oil multiphase flow has enabled to visualize phenomena that are common in the field of flow in heterogeneous porous media. The distribution of fluid phases in the porous medium obtained by this approach can predict the behavior of wells for efficient oil recovery. Both applications show a number of phenomena, including: water breakthrough and viscous fingering. Low permeability in the vicinity of producer well tends to stabilize the oil-water interface of displacement at this region. The high permeability in the zone containing the producer well accelerates the movement of the

7 injected fluid and causes early water breakthrough. Consequently, the quantity of oil remaining in the medium is important. 5. References [1] René Cosse. "Le gisement", publication de l'institut francais du pétrole, Paris [2] C.Jaffrennoun-Larouche. "Déplacements triphasiques en milieu poreux de mouillabiltié hétérogène". Thèse de Doctorat. Paris VI, Novembre [3] Wiliam.C : "Standard handbook of petroleum and natural gas engineering", Lyons Editor, [4] Tanuja Sheorey et K. Muralidhar: "Isothermal and non-isothermal oil-water flow and viscous fringring in a porous medium", 2002, Muralidhar. [5] Taylor & Francis Group : "Handbook of porous media", second edition. Edited by Kambiz Vafai [6] Peter Bastian : "Numerical Computation of Muiphase flow in Porous Media", juin 1999, Heidelberg. [7] Johan Benard :" Ecoulements diphasiques en milieux poreux : modélisation et simulation de cas d'imbibition, de drainage et d'ébullition", Thèse de doctorat, 2004, Université de Marne-la-Vallée. [8] André Houpert : " les écoulements polyphasiques en milieu poreux", 1972, Paris. [9] R.E. Ewing, The Mathematics of Reservoir Simulation, SIAM, Philadelphia, PA, 1983 [10] P. Daripa, J. Glimm, B. Lindquist, Maesumi, O. Mc. Bryan, "On the simulation of heterogeneous petroleum reservoirs", in: M.F. Wheeler (Ed.), Numerical Simulation in Oil Recovery, in: IMA Vol. Math. Appl., Vol. 11, Springer, Berlin, 1986, pp [11] C.T. Tan, G.M. Homsy, "Simulation of nonlinear viscous fingering in miscible displacement", Phys. Fluids 31 (6) (1988)

Investigation of the Effect of Dynamic Capillary Pressure on Waterflooding in Extra Low Permeability Reservoirs

Investigation of the Effect of Dynamic Capillary Pressure on Waterflooding in Extra Low Permeability Reservoirs Copyright 013 Tech Science Press SL, vol.9, no., pp.105-117, 013 Investigation of the Effect of Dynamic Capillary Pressure on Waterflooding in Extra Low Permeability Reservoirs Tian Shubao 1, Lei Gang

More information

Development of Thermal Recovery Simulator for Hot Water Flooding

Development of Thermal Recovery Simulator for Hot Water Flooding Paper ID 119 ABSTRACT Development of Thermal Recovery Simulator for Hot Water Flooding Shotaro Nihei, Masanori Kurihara Department of Resources and Environmental Engneering, Waseda University, Japan Author

More information

Comparison Between Gas Injection and Water Flooding, in Aspect of Secondary Recovery in One of Iranian Oil Reservoirs

Comparison Between Gas Injection and Water Flooding, in Aspect of Secondary Recovery in One of Iranian Oil Reservoirs Comparison Between Gas Injection and Water Flooding, in Aspect of Secondary Recovery in One of Iranian Oil Reservoirs BABAK AMINSHAHIDY 1, MEHDI FOROOZANFAR 2 1 Department of Petroleum Engineering,University

More information

DEPARTMENT OF PETROLEUM ENGINEERING Graduate Program (Version 2002)

DEPARTMENT OF PETROLEUM ENGINEERING Graduate Program (Version 2002) DEPARTMENT OF PETROLEUM ENGINEERING Graduate Program (Version 2002) COURSE DESCRIPTION PETE 512 Advanced Drilling Engineering I (3-0-3) This course provides the student with a thorough understanding of

More information

Experimental investigation of dispersion phenomenon in a fractured porous medium

Experimental investigation of dispersion phenomenon in a fractured porous medium International Journal of Engineering & Technology, 4 (1) (2015) 209-213 www.sciencepubco.com/index.php/ijet Science Publishing Corporation doi: 10.14419/ijet.v4i1.4136 Research Paper Experimental investigation

More information

Periodical meeting CO2Monitor. Leakage characterization at the Sleipner injection site

Periodical meeting CO2Monitor. Leakage characterization at the Sleipner injection site Periodical meeting CO2Monitor Leakage characterization at the Sleipner injection site Stefano Picotti, Davide Gei, Jose Carcione Objective Modelling of the Sleipner overburden to study the sensitivity

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

4D reservoir simulation workflow for optimizing inflow control device design a case study from a carbonate reservoir in Saudi Arabia

4D reservoir simulation workflow for optimizing inflow control device design a case study from a carbonate reservoir in Saudi Arabia 4D reservoir simulation workflow for optimizing inflow control device design a case study from a carbonate reservoir in Saudi Arabia O. Ogunsanwo, 1* B. Lee, 2 H. Wahyu, 2 E. Leung, 1 V. Gottumukkala 1

More information

Integrated Reservoir Asset Management

Integrated Reservoir Asset Management Integrated Reservoir Asset Management Integrated Reservoir Asset Management Principles and Best Practices John R. Fanchi AMSTERDAM. BOSTON. HEIDELBERG. LONDON NEW YORK. OXFORD. PARIS. SAN DIEGO SAN FRANCISCO.

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

Numerical Analysis of the Resin Transfer Molding Process via PAM- RTM Software

Numerical Analysis of the Resin Transfer Molding Process via PAM- RTM Software Defect and Diffusion Forum Vol 365 (2015) pp 88-93 (2015) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ddf.365.88 Numerical Analysis of the Resin Transfer Molding Process via PAM-

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

RESERVOIR GEOSCIENCE AND ENGINEERING

RESERVOIR GEOSCIENCE AND ENGINEERING RESERVOIR GEOSCIENCE AND ENGINEERING APPLIED GRADUATE STUDIES at IFP School from September to December RGE01 Fundamentals of Geoscience I Introduction to Petroleum Geosciences, Sedimentology RGE02 Fundamentals

More information

Wettability Alteration and Its Effects on Production in Water Flooding

Wettability Alteration and Its Effects on Production in Water Flooding Petroleum Science and Technology, 30:1692 1703, 2012 Copyright Taylor & Francis Group, LLC ISSN: 1091-6466 print/1532-2459 online DOI: 10.1080/10916466.2011.639589 Wettability Alteration and Its Effects

More information

Graduate Courses in Petroleum Engineering

Graduate Courses in Petroleum Engineering Graduate Courses in Petroleum Engineering PEEG 510 ADVANCED WELL TEST ANALYSIS This course will review the fundamentals of fluid flow through porous media and then cover flow and build up test analysis

More information

I.K. Beisembetov*, B.K. Assilbekov**, U.K. Zhapbasbayev*, B.K. Kenzhaliev* MODELLING OF TWO PHASE FILTRATION IN FRACTURES OF HYDRAULIC FRACTURING

I.K. Beisembetov*, B.K. Assilbekov**, U.K. Zhapbasbayev*, B.K. Kenzhaliev* MODELLING OF TWO PHASE FILTRATION IN FRACTURES OF HYDRAULIC FRACTURING WIERTNICTWO NAFTA GAZ TOM 27 ZESZYT 1 2 2010 I.K. Beisembetov*, B.K. Assilbekov**, U.K. Zhapbasbayev*, B.K. Kenzhaliev* MODELLING OF TWO PHASE FILTRATION IN FRACTURES OF HYDRAULIC FRACTURING 1. INTRODUCTION

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

Basin simulation for complex geological settings

Basin simulation for complex geological settings Énergies renouvelables Production éco-responsable Transports innovants Procédés éco-efficients Ressources durables Basin simulation for complex geological settings Towards a realistic modeling P. Havé*,

More information

Objectives. Describing Waterflooding. Infill Drilling. Reservoir Life Cycle

Objectives. Describing Waterflooding. Infill Drilling. Reservoir Life Cycle Objectives Describing Waterflooding Definition Objectives Candidates Patterns Oil, water, and gas saturations Fractional flow Performance measures Practices and problems Reservoir monitoring 1 2 Reservoir

More information

Potential for Polymer Flooding Reservoirs with Viscous Oils. Randy Seright, New Mexico Tech

Potential for Polymer Flooding Reservoirs with Viscous Oils. Randy Seright, New Mexico Tech Potential for Polymer Flooding Reservoirs with Viscous Oils Randy Seright, New Mexico Tech Thermal methods can t be used for some viscous oils because of thin zones, ambient cold, environmental constraints,

More information

HWR 431 / 531 HYDROGEOLOGY LAB SECTION LABORATORY 2 DARCY S LAW

HWR 431 / 531 HYDROGEOLOGY LAB SECTION LABORATORY 2 DARCY S LAW HWR 431 / 531 HYDROGEOLOGY LAB SECTION LABORATORY 2 DARCY S LAW Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed

More information

E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering

E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering E 490 Fundamentals of Engineering Review Fluid Mechanics By M. A. Boles, PhD Department of Mechanical & Aerospace Engineering North Carolina State University Archimedes Principle and Buoyancy 1. A block

More information

Numerical Simulation of Oil Recovery Through Water Flooding in Petroleum Reservoir Using Boundary-Fitted Coordinates

Numerical Simulation of Oil Recovery Through Water Flooding in Petroleum Reservoir Using Boundary-Fitted Coordinates INTERNATIONAL JOURNAL OF MODELING AND SIMULATION FOR THE ETROLEUM INDUSTRY, VOL. 2, NO. 1, FEBRUARY 2008 17 Numerical Simulation of Oil Recovery Through Water Flooding in etroleum Reservoir Using Boundary-Fitted

More information

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS H. Mirzabozorg 1, M. R. Kianoush 2 and M. Varmazyari 3 1,3 Assistant Professor and Graduate Student respectively, Department

More information

Large-Scale Reservoir Simulation and Big Data Visualization

Large-Scale Reservoir Simulation and Big Data Visualization Large-Scale Reservoir Simulation and Big Data Visualization Dr. Zhangxing John Chen NSERC/Alberta Innovates Energy Environment Solutions/Foundation CMG Chair Alberta Innovates Technology Future (icore)

More information

The Use Of CFD To Simulate Capillary Rise And Comparison To Experimental Data

The Use Of CFD To Simulate Capillary Rise And Comparison To Experimental Data The Use Of CFD To Simulate Capillary Rise And Comparison To Experimental Data Hong Xu, Chokri Guetari ANSYS INC. Abstract In a micro-gravity environment liquid can be pumped and positioned by cohesion

More information

Analysis of Oil Production Behavior for the Fractured Basement Reservoir Using Hybrid Discrete Fractured Network Approach

Analysis of Oil Production Behavior for the Fractured Basement Reservoir Using Hybrid Discrete Fractured Network Approach Advances in Petroleum Exploration and Development Vol. 5, No. 1, 2013, pp. 63-70 DOI:10.3968/j.aped.1925543820130501.1068 ISSN 1925-542X [Print] ISSN 1925-5438 [Online] www.cscanada.net www.cscanada.org

More information

APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY CURVE ON HYPOTHETICAL WELL-X

APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY CURVE ON HYPOTHETICAL WELL-X PROCEEDINGS, Thirty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 8-30, 008 SGP-TR-185 APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY

More information

CALCULATION OF PERMEABILITY AND DISPERSION COEFFICIENTS IN UNSATURATED POROUS MEDIA WITH FRACTURES

CALCULATION OF PERMEABILITY AND DISPERSION COEFFICIENTS IN UNSATURATED POROUS MEDIA WITH FRACTURES CALCULATION OF PERMEABILITY AND DISPERSION COEFFICIENTS IN UNSATURATED POROUS MEDIA WITH FRACTURES - 10344 C.K. Lee, M.Z. Htway Handong Global University 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk,

More information

72-2 Sasamori, Ukai, Takizawa-mura, Iwate 020-01, JAPAN (original affiliation : Japan Metals and Chemicals Co., Ltd.)

72-2 Sasamori, Ukai, Takizawa-mura, Iwate 020-01, JAPAN (original affiliation : Japan Metals and Chemicals Co., Ltd.) PROCEEDINGS, Seventeenth Workshop on Geothennal Reservoir Engineering Stanford University, Stanford, California, January 2931, 1992 SGPm141 PREDICTION OF EFFECTS OF HYDRAULIC FRACTURING USING RESERVOIR

More information

Acoustics Analysis of Speaker

Acoustics Analysis of Speaker Acoustics Analysis of Speaker 1 Introduction ANSYS 14.0 offers many enhancements in the area of acoustics. In this presentation, an example speaker analysis will be shown to highlight some of the acoustics

More information

EVALUATION OF WELL TESTS USING RADIAL COMPOSITE MODEL AND DIETZ SHAPE FACTOR FOR IRREGULAR DRAINAGE AREA. Hana Baarová 1

EVALUATION OF WELL TESTS USING RADIAL COMPOSITE MODEL AND DIETZ SHAPE FACTOR FOR IRREGULAR DRAINAGE AREA. Hana Baarová 1 The International Journal of TRANSPORT & LOGISTICS Medzinárodný časopis DOPRAVA A LOGISTIKA Mimoriadne číslo 8/2010 ISSN 1451 107X EVALUATION OF WELL TESTS USING RADIAL COMPOSITE MODEL AND DIETZ SHAPE

More information

What we know: shale gas as a promising global energy resource for the future. What we need to know: the scientific challenges.

What we know: shale gas as a promising global energy resource for the future. What we need to know: the scientific challenges. Laboratory of Soil Mechanics,Chair Gaz Naturel - Petrosvibri LMS-EPFL Prof. L. Laloui Gas Opportunities, Challenges and Achievements - «EFFICIENCE 21», Automne 2013... Geomechanics: a one-way road toward

More information

A Laboratory Study of Hot Carbon Dioxide Injection into Fractured and Conventional Cores

A Laboratory Study of Hot Carbon Dioxide Injection into Fractured and Conventional Cores A Laboratory Study of Hot Carbon Dioxide Injection into Fractured and Conventional Cores Mohammad Javad Dorostkar M. Sc. Student, Chemical Engineering Department, Shahid Bahonar University of Kerman Ali

More information

Modeling and Simulations of Cavitating and Bubbly Flows

Modeling and Simulations of Cavitating and Bubbly Flows Muon Collider/Neutrino Factory Collaboration Meeting Riverside, California, January 27-31, 2004 Modeling and Simulations of Cavitating and Bubbly Flows Roman Samulyak Tianshi Lu, Yarema Prykarpatskyy Center

More information

Improving Oil Recovery by Cold CO 2 Injection: A Simulation Study

Improving Oil Recovery by Cold CO 2 Injection: A Simulation Study International Journal of Petroleum and Geoscience Engineering (IJPGE) 1 (3): ISSN 2289-4713 Academic Research Online Publisher Research Article Improving Oil Recovery by Cold CO 2 Injection: A Simulation

More information

Table 15 Well block properties at well locations

Table 15 Well block properties at well locations 3.2.2 Simulation of Carbon Dioxide Injection The objective of CO 2 injection simulation is to investigate the feasibility of using CO 2 to improve oil recovery at near miscible condition in Ogallah unit.

More information

For Water to Move a driving force is needed

For Water to Move a driving force is needed RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

More information

Using Computational Fluid Dynamics (CFD) Simulation to Model Fluid Motion in Process Vessels on Fixed and Floating Platforms

Using Computational Fluid Dynamics (CFD) Simulation to Model Fluid Motion in Process Vessels on Fixed and Floating Platforms Using Computational Fluid Dynamics (CFD) Simulation to Model Fluid Motion in Process Vessels on Fixed and Floating Platforms Dr. Ted Frankiewicz Dr. Chang-Ming Lee NATCO Group Houston, TX USA IBC 9 th

More information

Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006).

Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006). Introduction to Chemical Engineering Computing Copyright, Bruce A. Finlayson, 2004 1 Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering

More information

1 Continuum versus Discrete Models

1 Continuum versus Discrete Models 1 1 Continuum versus Discrete Models Introduction Flow and transport phenomena in porous media and fractured rock as well as industrial synthetic porous matrices arise in many diverse fields of science

More information

Hydrocarbon Migration An Old Friend or Foe?*

Hydrocarbon Migration An Old Friend or Foe?* Hydrocarbon Migration An Old Friend or Foe?* Robert G. Tscherny 1 and Marek Kacewicz 2 Search and Discovery Article #120131 (2013) Posted March 13, 2013 *Adapted from extended abstract prepared in conjunction

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

The Problem. Enhanced Oil Recovery Research. Research Details. www.equilibar.com. For immediate release: June, 2015

The Problem. Enhanced Oil Recovery Research. Research Details. www.equilibar.com. For immediate release: June, 2015 For immediate release: June, 2015 Equilibar Plays Key Role in Research of Enhanced Oil Recovery Using Carbonated Water Flooding Dome loaded regulator holds pressure under extreme testing conditions at

More information

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra*** Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of

More information

Least Squares Approach for Initial Data Recovery in Dynamic

Least Squares Approach for Initial Data Recovery in Dynamic Computing and Visualiation in Science manuscript No. (will be inserted by the editor) Least Squares Approach for Initial Data Recovery in Dynamic Data-Driven Applications Simulations C. Douglas,2, Y. Efendiev

More information

Analysis of Mash Tun Flow: Recommendations for Home Brewers

Analysis of Mash Tun Flow: Recommendations for Home Brewers Analysis of Mash Tun Flow: Recommendations for Home Brewers Conor J. Walsh 1 and Ernesto Gutierrez-Miravete* 2 1 General Dynamics-Electric Boat, Groton, CT 2 Rensselaer at Hartford, Hartford, CT *Corresponding

More information

Determination of Material Parameters of Gas Diffusion Layers by Combining Pore-Morphology Method and Single Phase Simulations

Determination of Material Parameters of Gas Diffusion Layers by Combining Pore-Morphology Method and Single Phase Simulations Determination of Material Parameters of Gas Diffusion Layers by Combining Pore-Morphology Method and Single Phase Simulations PEMSim Berlin, 18.-20.09.2006 Jürgen Becker, Oleg Iliev, Volker Schulz, Konrad

More information

A HELE-SHAW MODEL OF HEAT CONVECTION IN POROUS MEDIA UNDER GEOTHERMAL CONDITIONS

A HELE-SHAW MODEL OF HEAT CONVECTION IN POROUS MEDIA UNDER GEOTHERMAL CONDITIONS A HELE-SHAW MODEL OF HEAT CONVECTION IN POROUS MEDIA UNDER GEOTHERMAL CONDITIONS H. W. Shen Department of Civi 1 Engineering Colorado State University Fort Collins, Colorado Evidence from New Zealand indicates

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Geomechanical Effects of Waterflooding

Geomechanical Effects of Waterflooding Geomechanical Effects of Waterflooding II INTERNATIONAL SEMINAR ON OILFIELD WATER MANAGEMENT OCTOBER 16 19, 2007 Dale Walters A. (Tony) Settari Taurus Reservoir Solutions General Outline Characteristics

More information

Classic Waterflooding Predicitive Models

Classic Waterflooding Predicitive Models Classic aterflooding Predicitive Models Initial water injection to water breakthrough: Buckley-Leverett Buckley and Leverett (1942) developed a mathematical approach to describe two-phase, immiscible displacement

More information

Model of a flow in intersecting microchannels. Denis Semyonov

Model of a flow in intersecting microchannels. Denis Semyonov Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required

More information

LASER MELTED STEEL FREE SURFACE FORMATION

LASER MELTED STEEL FREE SURFACE FORMATION METALLURGY AND FOUNDRY ENGINEERING Vol. 33, 2007, No. 1 Aleksander Siwek * LASER MELTED STEEL FREE SURFACE FORMATION 1. INTRODUCTION Many phisical phenomena happen on the surface of worked object in the

More information

Fluid-Induced Material Transport: A Volume Averaged Approach to Modelling in SPH

Fluid-Induced Material Transport: A Volume Averaged Approach to Modelling in SPH Fluid-Induced Material Transport: A Volume Averaged Approach to Modelling in SPH Vinay Kumar SPH Workshop, 30.06. 01.07.2014, Karlsruhe www.baw.de Outline Motivation Model concept Groundwater model SPH

More information

AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same

AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall that

More information

FAULT SEAL ANALYSIS: Mapping & modelling. EARS5136 slide 1

FAULT SEAL ANALYSIS: Mapping & modelling. EARS5136 slide 1 FAULT SEAL ANALYSIS: Mapping & modelling EARS5136 slide 1 Hydrocarbon field structure Compartments 1 km Depth ~2.5km How to produce field? EARS5136 slide 2 Predict flow patterns and communication Fault

More information

Polymer Well Technology. Tailor-made solutions. EOR, WSO, Conformance, Sand Control POWELTEC. An Independent Service Company

Polymer Well Technology. Tailor-made solutions. EOR, WSO, Conformance, Sand Control POWELTEC. An Independent Service Company Polymer Well Technology Tailor-made solutions EOR, WSO, Conformance, Sand Control An Independent Service Company powelsand Sand Control by polymers Scope Principle of polymer Sand Control In sandstone

More information

The Design of Large Diameter Skim Tanks Using Computational Fluid Dynamics (CFD) For Maximum Oil Removal

The Design of Large Diameter Skim Tanks Using Computational Fluid Dynamics (CFD) For Maximum Oil Removal The Design of Large Diameter Skim Tanks Using Computational Fluid Dynamics (CFD) For Maximum Oil Removal 15 th Annual Produced Water Seminar, January 2005 Hilton NASA Clear Lake, Houston, Texas 77058 Chang-Ming

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Steady Flow: Laminar and Turbulent in an S-Bend

Steady Flow: Laminar and Turbulent in an S-Bend STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and

More information

Simple CFD Simulations and Visualisation using OpenFOAM and ParaView. Sachiko Arvelius, PhD

Simple CFD Simulations and Visualisation using OpenFOAM and ParaView. Sachiko Arvelius, PhD Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

Analysis and Calculation Method for Automatic Water Flooding Technology

Analysis and Calculation Method for Automatic Water Flooding Technology ISSN (Online): 2319-764 Impact Factor (212): 3.38 Analysis and Calculation Method for Automatic Water Flooding Technology Yangfan Li, Guohua Zhang CNOOC Ltd-Shanghai, 91 Room, Offshore Tower, NO. 83 Lingling

More information

ARPN Journal of Science and Technology 2011-2013. All rights reserved.

ARPN Journal of Science and Technology 2011-2013. All rights reserved. Successful Applied Reservoir Management Tool-Kits in Offshore Khafji Field for Water Conning Problems 1 1 Taha M. Moawad, 2 Abdullah M. Al-Dhafeeri, 3 Tawakol I. Mohamed Petroleum Engineering Department,

More information

The ever increasing importance of reservoir geomechanics

The ever increasing importance of reservoir geomechanics SPE special Interest Reservoir Group, Calgary March 26, 2014 The ever increasing importance of reservoir geomechanics Antonin (Tony) Settari TAURUS Reservoir Solutions Ltd., Calgary Professor Emeritus,

More information

Systems and Units. The three systems of units are:

Systems and Units. The three systems of units are: The three systems of units are: 1. The English or the ft-lb-s System 2. The International or the m-kg-s System 3. The Laboratory or the cm-gm-s System Quantities fall into two main categories: 1. Principal

More information

B.K. Assilbekov*, U.K. Zhapbasbayev*, A.B. Zolotukhin** MODELING OF TWO PHASE FLUID FILTRATION IN RESERVOIR WITH HIGH PERMEABILITY COLLECTOR

B.K. Assilbekov*, U.K. Zhapbasbayev*, A.B. Zolotukhin** MODELING OF TWO PHASE FLUID FILTRATION IN RESERVOIR WITH HIGH PERMEABILITY COLLECTOR WIERTNICTWO NAFTA GAZ TOM 26 ZESZYT 1 2 2009 B.K. Assilbekov*, U.K. Zhapbasbayev*, A.B. Zolotukhin** MODELING OF TWO PHASE FLUID FILTRATION IN RESERVOIR WITH HIGH PERMEABILITY COLLECTOR 1. INTRODUCTION

More information

C O M P L E T I O N S E R V I C E S

C O M P L E T I O N S E R V I C E S Well Screens Well Screens Contents ProWeld TM ProWeld TM TOP DynoFlo TM DB UniFlo HELICAL Inflow Control Screen UniFlo TM ROI Inflow Control Screen SlimFlo TM Pre-packed CoilFlo TM DB Screen Communication

More information

ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2

ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2 ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2 1 M. Tech Scholar, 2 Associate Professor Department of Mechanical Engineering, Bipin

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING

MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2011, 2 (2), P. 76 83 UDC 538.97 MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING I. S. Konovalenko

More information

Integration of reservoir simulation with time-lapse seismic modelling

Integration of reservoir simulation with time-lapse seismic modelling Integration of reservoir simulation with seismic modelling Integration of reservoir simulation with time-lapse seismic modelling Ying Zou, Laurence R. Bentley, and Laurence R. Lines ABSTRACT Time-lapse

More information

Mathematical Modeling and Engineering Problem Solving

Mathematical Modeling and Engineering Problem Solving Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with

More information

10.1 Powder mechanics

10.1 Powder mechanics Fluid and Particulate systems 424514 /2014 POWDER MECHANICS & POWDER FLOW TESTING 10 Ron Zevenhoven ÅA Thermal and Flow Engineering ron.zevenhoven@abo.fi 10.1 Powder mechanics RoNz 2/38 Types of flow of

More information

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

Test-case number 17: Dam-break flows on dry and wet surfaces (PN, PA, PE) 1 Practical significance and interest of the test-case

Test-case number 17: Dam-break flows on dry and wet surfaces (PN, PA, PE) 1 Practical significance and interest of the test-case Test-case number 17: Dam-break flows on dry and wet surfaces (PN, PA, PE) March 2003 téphane Vincent, TREFLE - UMR CNR 8508, ENCPB Université Bordeau 1, 33607 Pessac cede, France Phone: +33 (0)5 40 00

More information

Waterflooding. A Tried and True Technique for Secondary Oil Recovery. Houston Bar Association Oil, Gas and Mineral Law Section March 26, 2013

Waterflooding. A Tried and True Technique for Secondary Oil Recovery. Houston Bar Association Oil, Gas and Mineral Law Section March 26, 2013 Waterflooding A Tried and True Technique for Secondary Oil Recovery Houston Bar Association Oil, Gas and Mineral Law Section March 26, 2013 F. J. Deacon Marek, P.E President Dallas, Texas Brian R. Sullivan,

More information

Reservoir Fluids PETE 310

Reservoir Fluids PETE 310 Reservoir Fluids PETE 31 Lab 2: Determination of the Vapor Pressure of Propane Learning Objectives When you complete this laboratory, you should be able to: Use closed-cell and sight-glass methods for

More information

CHAPTER 7: CAPILLARY PRESSURE

CHAPTER 7: CAPILLARY PRESSURE CHAPTER 7: CAPILLARY PRESSURE Objective To measure capillary pressure of unconsolidated sand packs. Introduction Capillary pressure is important in reservoir engineering because it is a major factor controlling

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

The Effect of Different Carbon Dioxide Injection Modes on Oil Recovery

The Effect of Different Carbon Dioxide Injection Modes on Oil Recovery International Journal of Engineering & Technology IJET-IJENS Vol:09 No:10 54 The Effect of Different Carbon Dioxide Injection Modes on Oil Recovery Faiza M. Nasir and Yeap Y. Chong Abstract This paper

More information

Computational fluid dynamics modelling study of the NH3-SCR process in a catalyzed wall-flow filter for diesel vehicles

Computational fluid dynamics modelling study of the NH3-SCR process in a catalyzed wall-flow filter for diesel vehicles Computational fluid dynamics modelling study of the NH3-SCR process in a catalyzed wall-flow filter for diesel vehicles Master of Science Thesis [Innovative and sustainable chemical engineering] MIKAELA

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

TWO-PHASE FLOW IN A POROUS MEDIA TEST-CASES PERFORMED WITH TOUGH2

TWO-PHASE FLOW IN A POROUS MEDIA TEST-CASES PERFORMED WITH TOUGH2 TWO-PHASE FLOW IN A POROUS MEDIA TEST-CASES PERFORMED WITH TOUGH2 Paris 23 rd September 2010 E. Treille, J. Wendling Andra C.TR.AEAP.1000xx AGENCE NATIONALE POUR LA GESTION DES DÉCHETS RADIOACTIFS Tough2

More information

Feature Commercial codes In-house codes

Feature Commercial codes In-house codes A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a

More information

Norwegian Experience with Sandstone Augmented Water Flooding

Norwegian Experience with Sandstone Augmented Water Flooding www.senergyltd.com Norwegian Experience with Sandstone Augmented Water Flooding Susanne Larsen Norwegian Experience Polymer in Snorre and Gullfaks Lab experiments => low salinity flooding/ alkaline flooding

More information

Reservoir Simulation

Reservoir Simulation Reservoir Simulation Instructors: Duration: Level: Dr. Turgay Ertekin and Dr. Maghsood Abbaszadeh 5 days Basic - Intermediate Course Objectives and Description This five-day course is designed for participants

More information

Groundwater flow systems theory: an unexpected outcome of

Groundwater flow systems theory: an unexpected outcome of Groundwater flow systems theory: an unexpected outcome of early cable tool drilling in the Turner Valley oil field K. Udo Weyer WDA Consultants Inc. weyer@wda-consultants.com Introduction The Theory of

More information

CFD Application on Food Industry; Energy Saving on the Bread Oven

CFD Application on Food Industry; Energy Saving on the Bread Oven Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the

More information

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

More information

Physics 123 Fluid Mechanics Review

Physics 123 Fluid Mechanics Review Physics 123 Fluid Mechanics Review I. Definitions & Facts Density Specific gravity (= D material / D water ) Pressure Atmosphere, bar, Pascal Streamline, laminar flow Gauge pressure Turbulence Density

More information

SINTEF Applied Mathematics. SINTEF Electronics and Cybernetics. SINTEF Applied Chemistry. SINTEF Materials Technology. SINTEF Industrial Management

SINTEF Applied Mathematics. SINTEF Electronics and Cybernetics. SINTEF Applied Chemistry. SINTEF Materials Technology. SINTEF Industrial Management SINTEF Group MARINTEK SINTEF Energy Research SINTEF Fisheries and Aquaculture SINTEF Solutions SINVENT SINTEFs council SINTEFs board President/ Vice-president SINTEF Applied Mathematics SINTEF Civil and

More information

ENHANCED OIL RECOVERY PROCESSES

ENHANCED OIL RECOVERY PROCESSES ENHANCED OIL RECOVERY PROCESSES Miscible, Chemical, and Thermal Instructor Dr. Maria A. Barrufet Petroleum Engineering Department Texas A&M University e-mail: maria.barrufet@pe.tamu.edu Contact Information:

More information

HYBRIDO is the name for the new fluid technology delivered within the RealFlow version 5, it stands for HYBrid large dimension LiquiD solver.

HYBRIDO is the name for the new fluid technology delivered within the RealFlow version 5, it stands for HYBrid large dimension LiquiD solver. HYBRIDO WHITE PAPER Introduction 2 1 INTRODUCTION HYBRIDO is the name for the new fluid technology delivered within the RealFlow version 5, it stands for HYBrid large dimension LiquiD solver. Up to now

More information