Supporting Information for

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Supporting Information for"

Transcription

1 Supporting Information for Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport and Photochemical Degradation/Production at Polar Sunrise Dharmendra Kumar Singh a, Kimitaka Kawamura *a, b,, Ayako Yanase b and Leonard Barrie c a Chubu Institute for Advanced Studies, Chubu University, Kasugai , Japan b Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo, Japan c Department of Atmospheric and Oceanic Sciences, McGill University, Quebec, Canada * Corresponding author: address: TEL: , FAX:

2 Table S1. Diagnostic ratios and possible sources of PAHs in the Canadian High Arctic aerosols. Present Diagnostic Ratio Possible Sources study # References of PAHs (value) *LMW/HMW 0.17 <1 (Pyrolytic ) >1 (Petrogenic) Wilcke (2007) 1 Singh and Gupta (2016a) 2 B[a]P/(B[a]P+CHR) 0.20 ~0.5 (Diesel engine) Singh et al. (2015) 3 INDP/(INDP+B[ghi]P) (Coal diesel) Singh and Gupta (2016a) 2 Ravindra et al. (2008) 4 INDP /B[ghi]P 1.1 ~1 (Diesel) Caricchia et al. (1999) 5 Singh and Gupta (2016a) 2 FLA/(FLA+PYR) 0.64 >0.5(Coal, grass and wood burning) Tobiszewski et al. (2012) 6 Singh and Gupta (2016a) 2 PYR/B[a]P 4.2 ~10 (Diesel engine) Ravindra et al. (2008) 4 ~1(Gasoline engine) FLUO/(FLUO+PYR) <0.5 (Gasoline) Ravindra et al. (2006) 7 B[a]P/B[ghi]P (Traffic emission) Park et al. (2002) 8 FLA/B[e]P (Automobile exhaust) Oda et al. (2001) 9 B[e]P/(B[e]P+B[a]P) (Aged combustion emissions) Lammel et al. (2015) 10 Tsapakis et al. (2002) 11 *LMW: Low molecular weight PAHs (3-ring); HMW=High molecular weight PAHs (4, 5, 6 and 7 rings) # References (1) Wilcke, W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil, Geoderma. 2007, 141, (2) Singh, D. K.; Gupta, T. Effect through inhalation on human health of PM 1 bound polycyclic aromatic hydrocarbons collected from foggy days in northern part of India. J. Hazard. Mater. 2016a, 306, (3) Singh, D. K.; Sharma, S.; Habib, G.; Gupta, T. Speciation of atmospheric polycyclic aromatic hydrocarbons (PAHs) present during fog time collected submicron particles. Environ Sci Pollut Res. 2015, 22, (4) Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42 (13), (5) Caricchia, M.; Chiavarini, S.; Pezza, M. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Environ.1999, 33, (6) Tobiszewski, M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, (7) Ravindra, K.; Wauters, E.; Taygi, S.K.; Mor, S.; Van Grieken, R. Assessment of air quality after the implementation of CNG as fuel in public transport in Delhi, India. Environ. Monit. Assess. 2006, 115, (9) Oda, J.; Nomura, S.; Yasuhara, A.; Shibamoto, T. Mobile sources of atmospheric polycyclic aromatic hydrocarbons in a roadway tunnel. Atmos Environ. 2001, 35, (10) Lammel, G.; Dvorská, A.; Klánová, J.; Kohoutek, J.; Kukučka, P.; Prokeš, R.; Sehili, A. M. Longrange atmospheric transport of polycyclic aromatic hydrocarbons is worldwide problem-results from measurements at remote sites and modelling. Acta Chim. Slov. 2015, 62 (3), (11) Tsapakis, M.; Stephanou, E.G. Collection of gas and particle semi-volatile organic compounds: use of an oxidant denuder to minimize polycyclic aromatic hydrocarbons degradation during high-volume air sampling. Atmos Environ. 2002, 337,

3 Table S2. Principal component analysis (varimax with Kaiser Normalization) for the dataset of PAHs in the aerosol samples from the Canadian High Arctic (Alert). Rotated Component Matrix Component PAH B[b]FLUO B[a]A B[ghi]P PYR CORO B[a]P IndP CHR B[k]F B[ghi]FLA B[e]P FLA D[a,h]A PHEN DBTH FLUO PERY ANTH BINAP Possible SourCoal and organic matter combustitraffic emission Long range transport Traffic emission, Coal grass and wolong range transport burning and Long range transport Coal and organic ma combustion Loadings >0.5 are considered and shown in bold. Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. (Rotation converged in 4 iterations). Total Variance Explained Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %

4 Table S3. Principal component analysis (varimax with Kaiser Normalization) for the dataset of aromatic acids in the aerosol samples from the Canadian High Arctic (Alert). Rotated Component Matrix Component 1 2 2,6-Naphalene dicarboxylic acid Carboxybenzaldehyde Salicylic acid Phthalic acid γ-(2,4-dimethylphenyl)butanoic acid Benzoic acid Possible Source Oxidation product Motor exhausts a Photochemical degradation Loadings >0.5 are considered and shown in bold. Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. (Rotation converged in 3 iterations). Total Variance Explained Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative % KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy..72 Bartlett's Test of Sphericity Approx. Chi-Square 76.4 df 15 Sig..000

5 Table S4 Correlations of trace metals with PAHs and aromatic acids detected before and after polar sunrise in the Alert aerosols. Correlation Before polar sunrise After polar sunrise Trace metal vs PAH Regression P Regression P equation value equation value Mg vs Fluoranthene y = x < 0.05 y = x Mg vs Pyrene y = x < 0.05 y = x Mg vs Chrysene y = x < 0.05 y = 14726x Mg vs Phenanthrene y = x < 0.01 y = x Pb vs Fluoranthene y = x y = x Pb vs Phenanthrene y = x < 0.05 y = x Carcinogenic metal (Ni) vs Carcinogenic PAH Ni vs Benzo(a)pyrene y = x y = x < 0.05 Ni vs Benzo(k)fluoranthene y = x y = x < 0.05 Ni vs Benzo(a)anthracene y = x y = x <0.01 Ni vs Indeno(1,2,3-cd)pyrene y = 4.164x y = x <0.01 Ni vs Chrysene y = x y = x <0.01 Ni vs Dibenz(a,h)anthracene y = x No correlation* Trace metal vs aromatic acid Mg vs Salicylic acid y = x < 0.01 y = x V vs γ-(2,4- Dimethylphenyl)butanoic acid y = -2.18x < 0.05 y = -0.19x Mn vs γ-(2,4- y = -3.40x < 0.01 y = -0.24x Dimethylphenyl)butanoic acid Mg vs 2-Carboxybenzaldehyde y = x < 0.01 y = x Al vs γ-(2,4- Dimethylphenyl)butanoic acid y = x y = Zn vs Phthalic acid y = x < 0.05 y = -5.66x Pb vs Phthalic acid y = 10.84x < 0.05 y = -1.96x Mg vs 2,6-Naphalene y = x < 0.01 y = x dicarboxylic acid Ca vs Phthalic acid y = x < 0.05 y = 38.09x Zn vs 2-Carboxybenzaldehyde y = 6.17x y = -5.53x Pb vs 2-Carboxybenzaldehyde y = x y = 9.83x Mg vs Phthalic acid y = 986.7x < 0.05 y = x *Concentrations of D[a,h]A were not detected after polar sunrise R 2 R 2

6 (a) PAHs (b) Aromatic acids Figure S1. Component plots in rotated space for (a) PAHs and (b) Aromatic acids.

7 Figure S2. Correlations of trace metals (pg m -3 ) with TC (pg m -3 ) and docosane-c 22 H 46 (pgm -3 ) detected in Arctic aerosols before polar sunrise. Unit: X-axis (pg m -3 ) and Y axis (pg m -3 ).

8 Figure S3. Correlations of trace metals (pg m -3 ) with PAHs (pg m -3 ) detected in Arctic aerosols before polar sunrise. X-axis: PAHs and Y axis: Trace metals.

9 Figure S4. Correlations of trace metals (pg m -3 ) with aromatic acids (pg m -3 ) detected in Arctic aerosols before polar sunrise. X-axis: Aromatic acids and Y axis: Trace metals.

10 Figure S5. Correlations of trace metals with aromatic ketones (pg m -3 ) detected in Arcitc aerosols before polar sunrise. X-axis: Aromatic ketones and Y axis: Trace metals.