Big Data 2012 Hadoop Tutorial

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Big Data 2012 Hadoop Tutorial"

Transcription

1 Big Data 2012 Hadoop Tutorial Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 1

2 Contact Exercise Session Friday to CHN D 46 Your Assistant Martin Kaufmann Office: CAB E Download of Exercises: /fall2012/bigdata Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 2

3 MapReduce Parallel problems distributed across huge data sets using a large number of nodes Two stages: Map step: master node takes input, divides into smaller sub-problems Reduce step: master node collects answer from all sub-problems and combindes them in some way Condition: reduction function is associative Remember: A x (B x C) = (A x B) x C Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 3

4 MapReduce MapReduce transforms (key, value) pairs into list of values: Map and Reduce functions defined with respect data stored in KV pairs: Map(k1, v2) list(k2,v2) MapReduce then groups all pairs with same key Reduce(k2, list(v2)) list(v3) All functions executed in parallel! Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 4

5 Dataflow of MapReduce Input reader: divides input into splits. One split is assigned to a map function. Map function: Takes (key, value) pairs and generates one or more output KV pairs Partition function: Asigning each map function to a reducer. Returns an index of reduce. Comparison function: The input for each reduce is sorted using a comparison function. Reduce function: The reduce function is called once for each unique key in the sorted order iterating through values and producing zero, one or more outputs Output writer: writes output of reduce to storage Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 5

6 Overview of Hadoop provides a programming model Efficient, automatic distribution of data & work across machines Open source implementation of Google s MapReduce FW on top of Hadoop Distributed File System (HDFS) Large-scale distributed batch processing for vasts amount of data (multi-terabytes) Runs on large clusters (1000s of nodes) of commodity hw with reliability & fault-tolerance Highly scalable filesystem, computing coupled to storage Provides a simplified programming model: map() & reduce() no schema or type support Slides adopted by Cagri Balkesen Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 6

7 Namenode: HDFS master server Manages the filesystem namespace (block mappings) Regulates access to files by clients (open, close, rename,...) Datanode: Manages data attached to each node Data is split into blocks & replicated (default is 64MB) Serves r/w requests of blocks Data locality, computing goes to data effective scheduling & parallel processing High aggregate bandwidth HDFS Architecture Image Sources: [1] [2] Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 7

8 The MapReduce Paradigm Mapping Lists MAP SHUFFLE SORT Reducing Lists REDUCE Maps execute in parallel over different local chunks Map outputs shuffled/copied to reduce nodes Reduce tasks begin after all local data is sorted Image Sources: [1] Mapper(filename,contents): for each word in contents emit(word, 1) Reducer(word, values): sum = 0 for each value in values: sum = sum + value emit(word, sum) WordCount Example Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 8

9 MapReduce Terminology Job: A «full program» an execution of a Mapper and Reducer across a data set Task: An execution of a Mapper or a Reducer on a slice of data. a.k.a Task-In-Progress (TIP) Master node runs JobTracker instance, which accepts Job requests from clients TaskTracker instances run on slave nodes, periodically query JobTracker for work TaskTracker forks separate Java process for task instances, failures isolated & restarts with same input All mappers are equivalent; so map whatever data is local to a particular node in HDFS TaskRunner launches Mapper/Reducer & knows which InputSplits should be processed; calls Mapper/Reducer for each record from the InputSplit Ex: InputSplit each 64MB file chunk; RecordReader each line in chunk, also InputFormat identifies the InputSplit(i.e. TextInputFormat) Partitioner: Used in shuffle & determines the partition number for a key Credits: [3] Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 9

10 The WordCount Example function map(string name, String document): // name: document name // document: document contents for each word w in document: emit (w, 1) function reduce(string word, Iterator partialcounts): // word: a word // partialcounts: a list of aggregated partial counts sum = 0 for each pc in partialcounts: sum += pc emit (word, sum) Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 10

11 The WordCount Example Dataset: Splits: We are not what we want to be, but at least we are not what we used to be. InputSplit-1 InputSplit-2 InputSplit-3 InputSplit-4 (k1,v1) (k2,v2) (k3,v3) (k4,v4) (k5,v5) We are not what we want to be, but at least we are not what we used to be. InputSplits are read and processed via TextInputFormat Parses input Generates key-value pairs: (key=offset, value=line-contents) InputSplit boundaries expanded to newline \n Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 11

12 The WordCount Example (k1,v1) (k2,v2) (k3,v3) (k4,v4) (k5,v5) We are not what we want to be, but at least we are not what we used to be. Map(k1,v1) Map(k2,v2) <we, 1> <are, 1> <not, 1> <what, 1> <we, 1> <want, 1> <to, 1> <be, 1> Map(k3,v3) <but, 1> <at, 1> <least, 1> Map(k4,v4) <we, 1> <are, 1> <not, 1> <what, 1> Map(k5,v5) <we, 1> <used, 1> <to, 1> <be, 1> <we, 4> Reduce(k,v[]) <we, 1> <we, 1> <we, 1> <we, 1> <are, 2> <not, 2> Reduce(k,v[]) Reduce(k,v[]) <are, 1> <are, 1> <not, 1> <not, 1> <what, 2> Reduce(k,v[]) <what, 1> <what, 1> Shuffle/Sort Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 12

13 Setting up Hadoop 3 modes of setup Standalone: Single Java process, for verification & debugging Pseudo-distributed: Single machine, but JobTracker & NameNode on different processes Fully-distributed: JobTracker & NameNode on different machines together with other slave machines Let s try standalone: Download the latest stable release: Extract files: tar xvz hadoop-1.0.4*.tar.gz Set the following in conf/hadoop-env.sh JAVA_HOME=/usr/java/default In Hadoop directory Create an input folder: $~/hadoop> mkdir input Download & extract the sample: $~/hadoop/input> wget 0.gz Run the word count example $~/hadoop> bin/hadoop jar hadoop-examples-*.jar wordcount input/ out/ See the results in out/ Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 13

14 Dissecting the Word Count code The source code of Word Count is src/examples/org/apache/hadoop/examples/wordcount.java Mapper class: public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasmoretokens()) { word.set(itr.nexttoken()); context.write(word, one); } } } Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 14

15 Reducer class: Dissecting the Word Count code public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 15

16 Job setup: Dissecting the Word Count code public static void main(string[] args) throws Exception { Configuration conf = new Configuration(); String[] otherargs = new GenericOptionsParser(conf, args).getremainingargs(); if (otherargs.length!= 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); } Job job = new Job(conf, "word count"); job.setjarbyclass(wordcount.class); job.setmapperclass(tokenizermapper.class); job.setcombinerclass(intsumreducer.class); job.setreducerclass(intsumreducer.class); job.setoutputkeyclass(text.class); job.setoutputvalueclass(intwritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true)? 0 : 1); } Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 16

17 Pseudo-distributed Setup Hadoop still runs in a single machine but simulates distributed setup by different processes for JobTracker & NameNode Change the configuration files as follows: conf/core-site.xml: <configuration> <property> <name> fs.default.name </name> <value> hdfs://localhost:9000 </value> </property> <configuration> conf/hdfs-site.xml: <configuration> <property> <name> dfs.replication </name> <value> 1 </value> </property> </configuration> conf/mapred-site.xml <configuration> <property> <name> mapred.job.tracker </name> <value> localhost:9001 </value> </property> <configuration> Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 17

18 Setup SSH, HDFS and start Hadoop Check whether you can connect without a passphrase: $> ssh localhost If not, setup by executing the following: $> ssh-keygen -t rsa -P '' $> cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys Format and make the HDFS ready: $> bin/hadoop namenode -format Start Hadoop daemons: $> bin/start-all.sh Browse the web-interface of NameNode & JobTracker NameNode - JobTracker - Copy input files to the HDFS $> bin/hadoop dfs put localinput dfsinput Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 18

19 Job Tracker Web-Interface Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 19

20 NameNode Web-Interface Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 20

21 HDFS Commands $> ~/hadoop> bin/hadoop dfs [-ls <path>] [-du <path>] [-cp <src> <dst>] [-rm <path>] [-put <localsrc> <dst>] [-copyfromlocal <localsrc> <dst>] [-movefromlocal <localsrc> <dst>] [-get [-crc] <src> <localdst>] [-cat <src>] [-copytolocal [-crc] <src> <locdst>] [-movetolocal [-crc] <src> <locdst>] [-mkdir <path>] [-touchz <path>] [-test -[ezd] <path>] [-stat [format] <path>] [-help [cmd]] Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 21

22 Example Input Data is a sample set of tweets from Twitter as follows (one tweet per line): {``text``:``tweet contents #TAG1 #TAG2``,..., ``hashtags``: [ {``text``:``tag1``,...},..., {``text``:``tag2``,...} ],... } \n Output the tags that occurs more than 10 times in the sample data set along with their occurrence counts. Sample output: TAG1 11 TAG2 50 TAG Implement by modifying from the WordCount.java Compile your source by: (you might need to download Apache Commons CLI first) > cd src/examples > javac -cp../../hadoop-core jar:../../../lib/commonscli-1.2.jar org/apache/hadoop/examples/hashtagfreq.java Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 22

23 Example Input Data is a sampled set of trades on stock market for a single day on 06/01/2006. The contents are as follows: DATE EX TIME PRICE SIZE IBM 06/01/2006 N \n IBM 06/01/2006 N \n SUN 06/01/2006 N \n SUN 06/01/2006 N \n Task: Compute the total volume of trades for each stock ticker and return all stocks having a volume higher than a given value from commandline. In SQL: SELECT symbol, SUM(price*size) AS volume FROM Ticks GROUP BY symbol HAVING volume > V Example total volume for IBM: 84.22* *100 = Sample output: IBM Let s assume filter = 20K IBM SUN Implement by modifying from the WordCount.java Create a directory in your $HADOOP_HOME, let s say stocks/ Copy src/org/apache/hadoop/examples/wordcount.java to stocks/ Modify the code & name accordingly Compile: javac -cp hadoop-core jar:lib/commons-cli-1.2.jar stocks/stockvolume.java Copy dataset to input/ : Run: > bin/hadoop stocks/stockvolume input/ output/ Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 23

24 Setting Job Specific Parameters Set in the main, before submitting the Job: job.getconfiguration().setint("filter", Integer.parseInt(otherArgs[2])); Use inside map() or reduce(): context.getconfiguration().getint("filter", -1); See Hadoop API for other details: Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 24

25 Solution: Mapper Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 25

26 Solution: Reducer Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 26

27 Solution: The Job Setup Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 27

28 References [1] [2] [3] ProgrammingWithHadoop.pdf [4] Happy Coding Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 28

Hadoop Lab Notes. Nicola Tonellotto November 15, 2010

Hadoop Lab Notes. Nicola Tonellotto November 15, 2010 Hadoop Lab Notes Nicola Tonellotto November 15, 2010 2 Contents 1 Hadoop Setup 4 1.1 Prerequisites........................................... 4 1.2 Installation............................................

More information

Tutorial- Counting Words in File(s) using MapReduce

Tutorial- Counting Words in File(s) using MapReduce Tutorial- Counting Words in File(s) using MapReduce 1 Overview This document serves as a tutorial to setup and run a simple application in Hadoop MapReduce framework. A job in Hadoop MapReduce usually

More information

MAPREDUCE - COMBINERS

MAPREDUCE - COMBINERS MAPREDUCE - COMBINERS http://www.tutorialspoint.com/map_reduce/map_reduce_combiners.htm Copyright tutorialspoint.com A Combiner, also known as a semi-reducer, is an optional class that operates by accepting

More information

Mrs: MapReduce for Scientific Computing in Python

Mrs: MapReduce for Scientific Computing in Python Mrs: for Scientific Computing in Python Andrew McNabb, Jeff Lund, and Kevin Seppi Brigham Young University November 16, 2012 Large scale problems require parallel processing Communication in parallel processing

More information

Extreme Computing. Hadoop MapReduce in more detail. www.inf.ed.ac.uk

Extreme Computing. Hadoop MapReduce in more detail. www.inf.ed.ac.uk Extreme Computing Hadoop MapReduce in more detail How will I actually learn Hadoop? This class session Hadoop: The Definitive Guide RTFM There is a lot of material out there There is also a lot of useless

More information

ETH Zurich Department of Computer Science Networked Information Systems - Spring Tutorial #1: Hadoop and MapReduce.

ETH Zurich Department of Computer Science Networked Information Systems - Spring Tutorial #1: Hadoop and MapReduce. ETH Zurich Department of Computer Science Networked Information Systems - Spring 2008 Tutorial #1: Hadoop and MapReduce March 17, 2008 1 Introduction Hadoop 1 is an open-source Java-based software platform

More information

BIG DATA APPLICATIONS

BIG DATA APPLICATIONS BIG DATA ANALYTICS USING HADOOP AND SPARK ON HATHI Boyu Zhang Research Computing ITaP BIG DATA APPLICATIONS Big data has become one of the most important aspects in scientific computing and business analytics

More information

Prepared By : Manoj Kumar Joshi & Vikas Sawhney

Prepared By : Manoj Kumar Joshi & Vikas Sawhney Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks

More information

Introduction to MapReduce and Hadoop

Introduction to MapReduce and Hadoop Introduction to MapReduce and Hadoop Jie Tao Karlsruhe Institute of Technology jie.tao@kit.edu Die Kooperation von Why Map/Reduce? Massive data Can not be stored on a single machine Takes too long to process

More information

hadoop Running hadoop on Grid'5000 Vinicius Cogo vielmo@lasige.di.fc.ul.pt Marcelo Pasin pasin@di.fc.ul.pt Andrea Charão andrea@inf.ufsm.

hadoop Running hadoop on Grid'5000 Vinicius Cogo vielmo@lasige.di.fc.ul.pt Marcelo Pasin pasin@di.fc.ul.pt Andrea Charão andrea@inf.ufsm. hadoop Running hadoop on Grid'5000 Vinicius Cogo vielmo@lasige.di.fc.ul.pt Marcelo Pasin pasin@di.fc.ul.pt Andrea Charão andrea@inf.ufsm.br Outline 1 Introduction 2 MapReduce 3 Hadoop 4 How to Install

More information

Getting to know Apache Hadoop

Getting to know Apache Hadoop Getting to know Apache Hadoop Oana Denisa Balalau Télécom ParisTech October 13, 2015 1 / 32 Table of Contents 1 Apache Hadoop 2 The Hadoop Distributed File System(HDFS) 3 Application management in the

More information

Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA

Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data

More information

Apache Hadoop new way for the company to store and analyze big data

Apache Hadoop new way for the company to store and analyze big data Apache Hadoop new way for the company to store and analyze big data Reyna Ulaque Software Engineer Agenda What is Big Data? What is Hadoop? Who uses Hadoop? Hadoop Architecture Hadoop Distributed File

More information

Setup Hadoop On Ubuntu Linux. ---Multi-Node Cluster

Setup Hadoop On Ubuntu Linux. ---Multi-Node Cluster Setup Hadoop On Ubuntu Linux ---Multi-Node Cluster We have installed the JDK and Hadoop for you. The JAVA_HOME is /usr/lib/jvm/java/jdk1.6.0_22 The Hadoop home is /home/user/hadoop-0.20.2 1. Network Edit

More information

Hadoop and ecosystem * 本 文 中 的 言 论 仅 代 表 作 者 个 人 观 点 * 本 文 中 的 一 些 图 例 来 自 于 互 联 网. Information Management. Information Management IBM CDL Lab

Hadoop and ecosystem * 本 文 中 的 言 论 仅 代 表 作 者 个 人 观 点 * 本 文 中 的 一 些 图 例 来 自 于 互 联 网. Information Management. Information Management IBM CDL Lab IBM CDL Lab Hadoop and ecosystem * 本 文 中 的 言 论 仅 代 表 作 者 个 人 观 点 * 本 文 中 的 一 些 图 例 来 自 于 互 联 网 Information Management 2012 IBM Corporation Agenda Hadoop 技 术 Hadoop 概 述 Hadoop 1.x Hadoop 2.x Hadoop 生 态

More information

Hadoop/MapReduce. Object-oriented framework presentation CSCI 5448 Casey McTaggart

Hadoop/MapReduce. Object-oriented framework presentation CSCI 5448 Casey McTaggart Hadoop/MapReduce Object-oriented framework presentation CSCI 5448 Casey McTaggart What is Apache Hadoop? Large scale, open source software framework Yahoo! has been the largest contributor to date Dedicated

More information

CSE-E5430 Scalable Cloud Computing Lecture 3

CSE-E5430 Scalable Cloud Computing Lecture 3 CSE-E5430 Scalable Cloud Computing Lecture 3 Keijo Heljanko Department of Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 21.9-2015 1/25 Writing Hadoop Jobs Example: Assume

More information

Single Node Setup. Table of contents

Single Node Setup. Table of contents Table of contents 1 Purpose... 2 2 Prerequisites...2 2.1 Supported Platforms...2 2.2 Required Software... 2 2.3 Installing Software...2 3 Download...2 4 Prepare to Start the Hadoop Cluster... 3 5 Standalone

More information

Distributed Recommenders. Fall 2010

Distributed Recommenders. Fall 2010 Distributed Recommenders Fall 2010 Distributed Recommenders Distributed Approaches are needed when: Dataset does not fit into memory Need for processing exceeds what can be provided with a sequential algorithm

More information

TP1: Getting Started with Hadoop

TP1: Getting Started with Hadoop TP1: Getting Started with Hadoop Alexandru Costan MapReduce has emerged as a leading programming model for data-intensive computing. It was originally proposed by Google to simplify development of web

More information

Introduc)on to Map- Reduce. Vincent Leroy

Introduc)on to Map- Reduce. Vincent Leroy Introduc)on to Map- Reduce Vincent Leroy Sources Apache Hadoop Yahoo! Developer Network Hortonworks Cloudera Prac)cal Problem Solving with Hadoop and Pig Slides will be available at hgp://lig- membres.imag.fr/leroyv/

More information

Research Laboratory. Java Web Crawler & Hadoop MapReduce Anri Morchiladze && Bachana Dolidze Supervisor Nodar Momtselidze

Research Laboratory. Java Web Crawler & Hadoop MapReduce Anri Morchiladze && Bachana Dolidze Supervisor Nodar Momtselidze Research Laboratory Java Web Crawler & Hadoop MapReduce Anri Morchiladze && Bachana Dolidze Supervisor Nodar Momtselidze 1. Java Web Crawler Description Java Code 2. MapReduce Overview Example of mapreduce

More information

Processing of massive data: MapReduce. 2. Hadoop. New Trends In Distributed Systems MSc Software and Systems

Processing of massive data: MapReduce. 2. Hadoop. New Trends In Distributed Systems MSc Software and Systems Processing of massive data: MapReduce 2. Hadoop 1 MapReduce Implementations Google were the first that applied MapReduce for big data analysis Their idea was introduced in their seminal paper MapReduce:

More information

Outline. What is Big Data? Hadoop HDFS MapReduce

Outline. What is Big Data? Hadoop HDFS MapReduce Intro To Hadoop Outline What is Big Data? Hadoop HDFS MapReduce 2 What is big data? A bunch of data? An industry? An expertise? A trend? A cliche? 3 Wikipedia big data In information technology, big data

More information

Big Data Management and NoSQL Databases

Big Data Management and NoSQL Databases NDBI040 Big Data Management and NoSQL Databases Lecture 3. Apache Hadoop Doc. RNDr. Irena Holubova, Ph.D. holubova@ksi.mff.cuni.cz http://www.ksi.mff.cuni.cz/~holubova/ndbi040/ Apache Hadoop Open-source

More information

Hadoop. Dawid Weiss. Institute of Computing Science Poznań University of Technology

Hadoop. Dawid Weiss. Institute of Computing Science Poznań University of Technology Hadoop Dawid Weiss Institute of Computing Science Poznań University of Technology 2008 Hadoop Programming Summary About Config 1 Open Source Map-Reduce: Hadoop About Cluster Configuration 2 Programming

More information

Introduc)on to the MapReduce Paradigm and Apache Hadoop. Sriram Krishnan sriram@sdsc.edu

Introduc)on to the MapReduce Paradigm and Apache Hadoop. Sriram Krishnan sriram@sdsc.edu Introduc)on to the MapReduce Paradigm and Apache Hadoop Sriram Krishnan sriram@sdsc.edu Programming Model The computa)on takes a set of input key/ value pairs, and Produces a set of output key/value pairs.

More information

Introduction to Hadoop. Owen O Malley Yahoo Inc!

Introduction to Hadoop. Owen O Malley Yahoo Inc! Introduction to Hadoop Owen O Malley Yahoo Inc! omalley@apache.org Hadoop: Why? Need to process 100TB datasets with multiday jobs On 1 node: scanning @ 50MB/s = 23 days MTBF = 3 years On 1000 node cluster:

More information

map/reduce connected components

map/reduce connected components 1, map/reduce connected components find connected components with analogous algorithm: map edges randomly to partitions (k subgraphs of n nodes) for each partition remove edges, so that only tree remains

More information

Hadoop in Action. Justin Quan March 15, 2011

Hadoop in Action. Justin Quan March 15, 2011 Hadoop in Action Justin Quan March 15, 2011 Poll What s to come Overview of Hadoop for the uninitiated How does Hadoop work? How do I use Hadoop? How do I get started? Final Thoughts Key Take Aways Hadoop

More information

Enterprise Data Storage and Analysis on Tim Barr

Enterprise Data Storage and Analysis on Tim Barr Enterprise Data Storage and Analysis on Tim Barr January 15, 2015 Agenda Challenges in Big Data Analytics Why many Hadoop deployments under deliver What is Apache Spark Spark Core, SQL, Streaming, MLlib,

More information

Hadoop Overview. July 2011. Lavanya Ramakrishnan Iwona Sakrejda Shane Canon. Lawrence Berkeley National Lab

Hadoop Overview. July 2011. Lavanya Ramakrishnan Iwona Sakrejda Shane Canon. Lawrence Berkeley National Lab Hadoop Overview Lavanya Ramakrishnan Iwona Sakrejda Shane Canon Lawrence Berkeley National Lab July 2011 Overview Concepts & Background MapReduce and Hadoop Hadoop Ecosystem Tools on top of Hadoop Hadoop

More information

Working With Hadoop. Important Terminology. Important Terminology. Anatomy of MapReduce Job Run. Important Terminology

Working With Hadoop. Important Terminology. Important Terminology. Anatomy of MapReduce Job Run. Important Terminology Working With Hadoop Now that we covered the basics of MapReduce, let s look at some Hadoop specifics. Mostly based on Tom White s book Hadoop: The Definitive Guide, 3 rd edition Note: We will use the new

More information

and HDFS for Big Data Applications Serge Blazhievsky Nice Systems

and HDFS for Big Data Applications Serge Blazhievsky Nice Systems Introduction PRESENTATION to Hadoop, TITLE GOES MapReduce HERE and HDFS for Big Data Applications Serge Blazhievsky Nice Systems SNIA Legal Notice The material contained in this tutorial is copyrighted

More information

MapReduce Job Processing

MapReduce Job Processing April 17, 2012 Background: Hadoop Distributed File System (HDFS) Hadoop requires a Distributed File System (DFS), we utilize the Hadoop Distributed File System (HDFS). Background: Hadoop Distributed File

More information

Xiaoming Gao Hui Li Thilina Gunarathne

Xiaoming Gao Hui Li Thilina Gunarathne Xiaoming Gao Hui Li Thilina Gunarathne Outline HBase and Bigtable Storage HBase Use Cases HBase vs RDBMS Hands-on: Load CSV file to Hbase table with MapReduce Motivation Lots of Semi structured data Horizontal

More information

Hadoop Configuration and First Examples

Hadoop Configuration and First Examples Hadoop Configuration and First Examples Big Data 2015 Hadoop Configuration In the bash_profile export all needed environment variables Hadoop Configuration Allow remote login Hadoop Configuration Download

More information

Introduction to Hadoop. Owen O Malley Yahoo Inc!

Introduction to Hadoop. Owen O Malley Yahoo Inc! Introduction to Hadoop Owen O Malley Yahoo Inc! omalley@apache.org Hadoop: Why? Need to process 100TB datasets with multiday jobs On 1 node: scanning @ 50MB/s = 23 days MTBF = 3 years On 1000 node cluster:

More information

CS380 Final Project Evaluating the Scalability of Hadoop in a Real and Virtual Environment

CS380 Final Project Evaluating the Scalability of Hadoop in a Real and Virtual Environment CS380 Final Project Evaluating the Scalability of Hadoop in a Real and Virtual Environment James Devine December 15, 2008 Abstract Mapreduce has been a very successful computational technique that has

More information

Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu

Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu Lecture 5 Programming Hadoop I Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu Outline MapReduce basics A closer look at WordCount MR Anatomy of MapReduce

More information

Single Node Hadoop Cluster Setup

Single Node Hadoop Cluster Setup Single Node Hadoop Cluster Setup This document describes how to create Hadoop Single Node cluster in just 30 Minutes on Amazon EC2 cloud. You will learn following topics. Click Here to watch these steps

More information

Hadoop Framework. technology basics for data scientists. Spring - 2014. Jordi Torres, UPC - BSC www.jorditorres.eu @JordiTorresBCN

Hadoop Framework. technology basics for data scientists. Spring - 2014. Jordi Torres, UPC - BSC www.jorditorres.eu @JordiTorresBCN Hadoop Framework technology basics for data scientists Spring - 2014 Jordi Torres, UPC - BSC www.jorditorres.eu @JordiTorresBCN Warning! Slides are only for presenta8on guide We will discuss+debate addi8onal

More information

The Hadoop Eco System Shanghai Data Science Meetup

The Hadoop Eco System Shanghai Data Science Meetup The Hadoop Eco System Shanghai Data Science Meetup Karthik Rajasethupathy, Christian Kuka 03.11.2015 @Agora Space Overview What is this talk about? Giving an overview of the Hadoop Ecosystem and related

More information

Running Hadoop at Stirling

Running Hadoop at Stirling Running Hadoop at Stirling Kevin Swingler Summary The Hadoopserver in CS @ Stirling A quick intoduction to Unix commands Getting files in and out Compliing your Java Submit a HadoopJob Monitor your jobs

More information

University of Maryland. Tuesday, February 2, 2010

University of Maryland. Tuesday, February 2, 2010 Data-Intensive Information Processing Applications Session #2 Hadoop: Nuts and Bolts Jimmy Lin University of Maryland Tuesday, February 2, 2010 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

Hadoop WordCount Explained! IT332 Distributed Systems

Hadoop WordCount Explained! IT332 Distributed Systems Hadoop WordCount Explained! IT332 Distributed Systems Typical problem solved by MapReduce Read a lot of data Map: extract something you care about from each record Shuffle and Sort Reduce: aggregate, summarize,

More information

Programming with Hadoop. 2009 Cloudera, Inc.

Programming with Hadoop. 2009 Cloudera, Inc. Programming with Hadoop Overview How to use Hadoop Hadoop MapReduce Hadoop Streaming Some MapReduce Terminology Job A full program - an execution of a Mapper and Reducer across a data set Task An execution

More information

INTRODUCTION TO HADOOP

INTRODUCTION TO HADOOP Hadoop INTRODUCTION TO HADOOP Distributed Systems + Middleware: Hadoop 2 Data We live in a digital world that produces data at an impressive speed As of 2012, 2.7 ZB of data exist (1 ZB = 10 21 Bytes)

More information

CS242 PROJECT. Presented by Moloud Shahbazi Spring 2015

CS242 PROJECT. Presented by Moloud Shahbazi Spring 2015 CS242 PROJECT Presented by Moloud Shahbazi Spring 2015 AGENDA Project Overview Data Collection Indexing Big Data Processing PROJECT- PART1 1.1 Data Collection: 5G < data size < 10G Deliverables: Document

More information

2.1 Hadoop a. Hadoop Installation & Configuration

2.1 Hadoop a. Hadoop Installation & Configuration 2. Implementation 2.1 Hadoop a. Hadoop Installation & Configuration First of all, we need to install Java Sun 6, and it is preferred to be version 6 not 7 for running Hadoop. Type the following commands

More information

Hadoop and Big Data. Keijo Heljanko. Department of Information and Computer Science School of Science Aalto University keijo.heljanko@aalto.

Hadoop and Big Data. Keijo Heljanko. Department of Information and Computer Science School of Science Aalto University keijo.heljanko@aalto. Keijo Heljanko Department of Information and Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 1/77 Business Drivers of Cloud Computing Large data centers allow for economics

More information

Internals of Hadoop Application Framework and Distributed File System

Internals of Hadoop Application Framework and Distributed File System International Journal of Scientific and Research Publications, Volume 5, Issue 7, July 2015 1 Internals of Hadoop Application Framework and Distributed File System Saminath.V, Sangeetha.M.S Abstract- Hadoop

More information

Introduction to Cloud Computing

Introduction to Cloud Computing Introduction to Cloud Computing MapReduce and Hadoop 15 319, spring 2010 17 th Lecture, Mar 16 th Majd F. Sakr Lecture Goals Transition to MapReduce from Functional Programming Understand the origins of

More information

Hadoop Distributed Filesystem. Spring 2015, X. Zhang Fordham Univ.

Hadoop Distributed Filesystem. Spring 2015, X. Zhang Fordham Univ. Hadoop Distributed Filesystem Spring 2015, X. Zhang Fordham Univ. MapReduce Programming Model Split Shuffle Input: a set of [key,value] pairs intermediate [key,value] pairs [k1,v11,v12, ] [k2,v21,v22,

More information

MapReduce. Tushar B. Kute, http://tusharkute.com

MapReduce. Tushar B. Kute, http://tusharkute.com MapReduce Tushar B. Kute, http://tusharkute.com What is MapReduce? MapReduce is a framework using which we can write applications to process huge amounts of data, in parallel, on large clusters of commodity

More information

Lecture 3 Hadoop Technical Introduction CSE 490H

Lecture 3 Hadoop Technical Introduction CSE 490H Lecture 3 Hadoop Technical Introduction CSE 490H Announcements My office hours: M 2:30 3:30 in CSE 212 Cluster is operational; instructions in assignment 1 heavily rewritten Eclipse plugin is deprecated

More information

Tutorial for Assignment 2.0

Tutorial for Assignment 2.0 Tutorial for Assignment 2.0 Florian Klien & Christian Körner IMPORTANT The presented information has been tested on the following operating systems Mac OS X 10.6 Ubuntu Linux The installation on Windows

More information

Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay

Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay Weekly Report Hadoop Introduction submitted By Anurag Sharma Department of Computer Science and Engineering Indian Institute of Technology Bombay Chapter 1 What is Hadoop? Apache Hadoop (High-availability

More information

研 發 專 案 原 始 程 式 碼 安 裝 及 操 作 手 冊. Version 0.1

研 發 專 案 原 始 程 式 碼 安 裝 及 操 作 手 冊. Version 0.1 102 年 度 國 科 會 雲 端 計 算 與 資 訊 安 全 技 術 研 發 專 案 原 始 程 式 碼 安 裝 及 操 作 手 冊 Version 0.1 總 計 畫 名 稱 : 行 動 雲 端 環 境 動 態 群 組 服 務 研 究 與 創 新 應 用 子 計 畫 一 : 行 動 雲 端 群 組 服 務 架 構 與 動 態 群 組 管 理 (NSC 102-2218-E-259-003) 計

More information

Outline of Tutorial. Hadoop and Pig Overview Hands-on

Outline of Tutorial. Hadoop and Pig Overview Hands-on Outline of Tutorial Hadoop and Pig Overview Hands-on 1 Hadoop and Pig Overview Lavanya Ramakrishnan Shane Canon Lawrence Berkeley National Lab October 2011 Overview Concepts & Background MapReduce and

More information

HADOOP SDJ INFOSOFT PVT LTD

HADOOP SDJ INFOSOFT PVT LTD HADOOP SDJ INFOSOFT PVT LTD DATA FACT 6/17/2016 SDJ INFOSOFT PVT. LTD www.javapadho.com Big Data Definition Big data is high volume, high velocity and highvariety information assets that demand cost

More information

Hadoop. Scalable Distributed Computing. Claire Jaja, Julian Chan October 8, 2013

Hadoop. Scalable Distributed Computing. Claire Jaja, Julian Chan October 8, 2013 Hadoop Scalable Distributed Computing Claire Jaja, Julian Chan October 8, 2013 What is Hadoop? A general-purpose storage and data-analysis platform Open source Apache software, implemented in Java Enables

More information

Lambda Architecture. CSCI 5828: Foundations of Software Engineering Lecture 29 12/09/2014

Lambda Architecture. CSCI 5828: Foundations of Software Engineering Lecture 29 12/09/2014 Lambda Architecture CSCI 5828: Foundations of Software Engineering Lecture 29 12/09/2014 1 Goals Cover the material in Chapter 8 of the Concurrency Textbook The Lambda Architecture Batch Layer MapReduce

More information

Chapter 7. Using Hadoop Cluster and MapReduce

Chapter 7. Using Hadoop Cluster and MapReduce Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in

More information

Data Science Analytics & Research Centre

Data Science Analytics & Research Centre Data Science Analytics & Research Centre Data Science Analytics & Research Centre 1 Big Data Big Data Overview Characteristics Applications & Use Case HDFS Hadoop Distributed File System (HDFS) Overview

More information

Hadoop (pseudo-distributed) installation and configuration

Hadoop (pseudo-distributed) installation and configuration Hadoop (pseudo-distributed) installation and configuration 1. Operating systems. Linux-based systems are preferred, e.g., Ubuntu or Mac OS X. 2. Install Java. For Linux, you should download JDK 8 under

More information

MapReduce. Course NDBI040: Big Data Management and NoSQL Databases. Practice 01: Martin Svoboda

MapReduce. Course NDBI040: Big Data Management and NoSQL Databases. Practice 01: Martin Svoboda Course NDBI040: Big Data Management and NoSQL Databases Practice 01: MapReduce Martin Svoboda Faculty of Mathematics and Physics, Charles University in Prague MapReduce: Overview MapReduce Programming

More information

Installation and Configuration Documentation

Installation and Configuration Documentation Installation and Configuration Documentation Release 1.0.1 Oshin Prem October 08, 2015 Contents 1 HADOOP INSTALLATION 3 1.1 SINGLE-NODE INSTALLATION................................... 3 1.2 MULTI-NODE

More information

Lecture 2 (08/31, 09/02, 09/09): Hadoop. Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015

Lecture 2 (08/31, 09/02, 09/09): Hadoop. Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015 Lecture 2 (08/31, 09/02, 09/09): Hadoop Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015 K. Zhang BUDT 758 What we ll cover Overview Architecture o Hadoop

More information

19 Putting into Practice: Large-Scale Data Management with HADOOP

19 Putting into Practice: Large-Scale Data Management with HADOOP 19 Putting into Practice: Large-Scale Data Management with HADOOP The chapter proposes an introduction to HADOOP and suggests some exercises to initiate a practical experience of the system. The following

More information

Distributed Filesystems

Distributed Filesystems Distributed Filesystems Amir H. Payberah Swedish Institute of Computer Science amir@sics.se April 8, 2014 Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 1 / 32 What is Filesystem? Controls

More information

MapReduce, Hadoop and Amazon AWS

MapReduce, Hadoop and Amazon AWS MapReduce, Hadoop and Amazon AWS Yasser Ganjisaffar http://www.ics.uci.edu/~yganjisa February 2011 What is Hadoop? A software framework that supports data-intensive distributed applications. It enables

More information

Case-Based Reasoning Implementation on Hadoop and MapReduce Frameworks Done By: Soufiane Berouel Supervised By: Dr Lily Liang

Case-Based Reasoning Implementation on Hadoop and MapReduce Frameworks Done By: Soufiane Berouel Supervised By: Dr Lily Liang Case-Based Reasoning Implementation on Hadoop and MapReduce Frameworks Done By: Soufiane Berouel Supervised By: Dr Lily Liang Independent Study Advanced Case-Based Reasoning Department of Computer Science

More information

Hadoop for HPCers: A Hands-On Introduction

Hadoop for HPCers: A Hands-On Introduction Hadoop for HPCers: A Hands-On Introduction Jonathan Dursi, SciNet Michael Nolta, CITA Agenda VM Test High Level Overview Hadoop FS Map Reduce Break Hands On with Examples Let s Get Started! Fire up your

More information

Processing Data with Map Reduce

Processing Data with Map Reduce Processing Data with Map Reduce Allahbaksh Mohammedali Asadullah Infosys Labs, Infosys Technologies 1 Content Map Function Reduce Function Why Hadoop HDFS Map Reduce Hadoop Some Questions 2 What is Map

More information

HDInsight Essentials. Rajesh Nadipalli. Chapter No. 1 "Hadoop and HDInsight in a Heartbeat"

HDInsight Essentials. Rajesh Nadipalli. Chapter No. 1 Hadoop and HDInsight in a Heartbeat HDInsight Essentials Rajesh Nadipalli Chapter No. 1 "Hadoop and HDInsight in a Heartbeat" In this package, you will find: A Biography of the author of the book A preview chapter from the book, Chapter

More information

Big Data and Apache Hadoop s MapReduce

Big Data and Apache Hadoop s MapReduce Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23

More information

Hadoop. History and Introduction. Explained By Vaibhav Agarwal

Hadoop. History and Introduction. Explained By Vaibhav Agarwal Hadoop History and Introduction Explained By Vaibhav Agarwal Agenda Architecture HDFS Data Flow Map Reduce Data Flow Hadoop Versions History Hadoop version 2 Hadoop Architecture HADOOP (HDFS) Data Flow

More information

Word Count Code using MR2 Classes and API

Word Count Code using MR2 Classes and API EDUREKA Word Count Code using MR2 Classes and API A Guide to Understand the Execution of Word Count edureka! A guide to understand the execution and flow of word count WRITE YOU FIRST MRV2 PROGRAM AND

More information

A very short Intro to Hadoop

A very short Intro to Hadoop 4 Overview A very short Intro to Hadoop photo by: exfordy, flickr 5 How to Crunch a Petabyte? Lots of disks, spinning all the time Redundancy, since disks die Lots of CPU cores, working all the time Retry,

More information

!"#$%&' ( )%#*'+,'-#.//"0( !"#$"%&'()*$+()',!-+.'/', 4(5,67,!-+!"89,:*$;'0+$.<.,&0$'09,&)"/=+,!()<>'0, 3, Processing LARGE data sets

!#$%&' ( )%#*'+,'-#.//0( !#$%&'()*$+()',!-+.'/', 4(5,67,!-+!89,:*$;'0+$.<.,&0$'09,&)/=+,!()<>'0, 3, Processing LARGE data sets !"#$%&' ( Processing LARGE data sets )%#*'+,'-#.//"0( Framework for o! reliable o! scalable o! distributed computation of large data sets 4(5,67,!-+!"89,:*$;'0+$.

More information

Hadoop Installation Tutorial (Hadoop 1.x)

Hadoop Installation Tutorial (Hadoop 1.x) Contents Download and install Java JDK... 1 Download the Hadoop tar ball... 1 Update $HOME/.bashrc... 3 Configuration of Hadoop in Pseudo Distributed Mode... 4 Format the newly created cluster to create

More information

Sriram Krishnan, Ph.D. sriram@sdsc.edu

Sriram Krishnan, Ph.D. sriram@sdsc.edu Sriram Krishnan, Ph.D. sriram@sdsc.edu (Re-)Introduction to cloud computing Introduction to the MapReduce and Hadoop Distributed File System Programming model Examples of MapReduce Where/how to run MapReduce

More information

Data Analytics. CloudSuite1.0 Benchmark Suite Copyright (c) 2011, Parallel Systems Architecture Lab, EPFL. All rights reserved.

Data Analytics. CloudSuite1.0 Benchmark Suite Copyright (c) 2011, Parallel Systems Architecture Lab, EPFL. All rights reserved. Data Analytics CloudSuite1.0 Benchmark Suite Copyright (c) 2011, Parallel Systems Architecture Lab, EPFL All rights reserved. The data analytics benchmark relies on using the Hadoop MapReduce framework

More information

Lab 0 - Introduction to Hadoop/Eclipse/Map/Reduce CSE 490h - Winter 2007

Lab 0 - Introduction to Hadoop/Eclipse/Map/Reduce CSE 490h - Winter 2007 Lab 0 - Introduction to Hadoop/Eclipse/Map/Reduce CSE 490h - Winter 2007 To Do 1. Eclipse plug in introduction Dennis Quan, IBM 2. Read this hand out. 3. Get Eclipse set up on your machine. 4. Load the

More information

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets

More information

USING HDFS ON DISCOVERY CLUSTER TWO EXAMPLES - test1 and test2

USING HDFS ON DISCOVERY CLUSTER TWO EXAMPLES - test1 and test2 USING HDFS ON DISCOVERY CLUSTER TWO EXAMPLES - test1 and test2 (Using HDFS on Discovery Cluster for Discovery Cluster Users email n.roy@neu.edu if you have questions or need more clarifications. Nilay

More information

Tutorial for Assignment 2.0

Tutorial for Assignment 2.0 Tutorial for Assignment 2.0 Web Science and Web Technology Summer 2012 Slides based on last years tutorials by Chris Körner, Philipp Singer 1 Review and Motivation Agenda Assignment Information Introduction

More information

Lecture 22 Hadoop. CMSC 433 Fall 2014 Sec/on 0101 Mike Hicks With slides due to Rance Cleaveland and Shivnath Babu

Lecture 22 Hadoop. CMSC 433 Fall 2014 Sec/on 0101 Mike Hicks With slides due to Rance Cleaveland and Shivnath Babu CMSC 433 Fall 2014 Sec/on 0101 Mike Hicks With slides due to Rance Cleaveland and Shivnath Babu Lecture 22 Hadoop Hadoop An open- source implementa/on of MapReduce Design desiderata Performance: support

More information

Hadoop (Hands On) Irene Finocchi and Emanuele Fusco

Hadoop (Hands On) Irene Finocchi and Emanuele Fusco Hadoop (Hands On) Irene Finocchi and Emanuele Fusco Big Data Computing March 23, 2015. Master s Degree in Computer Science Academic Year 2014-2015, spring semester I.Finocchi and E.Fusco Hadoop (Hands

More information

Programming in Hadoop Programming, Tuning & Debugging

Programming in Hadoop Programming, Tuning & Debugging Programming in Hadoop Programming, Tuning & Debugging Venkatesh. S. Cloud Computing and Data Infrastructure Yahoo! Bangalore (India) Agenda Hadoop MapReduce Programming Distributed File System HoD Provisioning

More information

HADOOP. Installation and Deployment of a Single Node on a Linux System. Presented by: Liv Nguekap And Garrett Poppe

HADOOP. Installation and Deployment of a Single Node on a Linux System. Presented by: Liv Nguekap And Garrett Poppe HADOOP Installation and Deployment of a Single Node on a Linux System Presented by: Liv Nguekap And Garrett Poppe Topics Create hadoopuser and group Edit sudoers Set up SSH Install JDK Install Hadoop Editting

More information

Big Data Analytics* Outline. Issues. Big Data

Big Data Analytics* Outline. Issues. Big Data Outline Big Data Analytics* Big Data Data Analytics: Challenges and Issues Misconceptions Big Data Infrastructure Scalable Distributed Computing: Hadoop Programming in Hadoop: MapReduce Paradigm Example

More information

Introduction to Cloud Computing

Introduction to Cloud Computing Introduction to Cloud Computing Qloud Demonstration 15 319, spring 2010 3 rd Lecture, Jan 19 th Suhail Rehman Time to check out the Qloud! Enough Talk! Time for some Action! Finally you can have your own

More information

INFO5011. Cloud Computing Semester 2, 2011 Lecture 6, MapReduce

INFO5011. Cloud Computing Semester 2, 2011 Lecture 6, MapReduce INFO5011 Cloud Computing Semester 2, 2011 Lecture 6, MapReduce COMMONWEALTH OF Copyright Regulations 1969 WARNING This material has been reproduced and communicated to you by or on behalf of the university

More information

Data-intensive computing systems

Data-intensive computing systems Data-intensive computing systems Hadoop Universtity of Verona Computer Science Department Damiano Carra Acknowledgements! Credits Part of the course material is based on slides provided by the following

More information

Istanbul Şehir University Big Data Camp 14. Hadoop Map Reduce. Aslan Bakirov Kevser Nur Çoğalmış

Istanbul Şehir University Big Data Camp 14. Hadoop Map Reduce. Aslan Bakirov Kevser Nur Çoğalmış Istanbul Şehir University Big Data Camp 14 Hadoop Map Reduce Aslan Bakirov Kevser Nur Çoğalmış Agenda Map Reduce Concepts System Overview Hadoop MR Hadoop MR Internal Job Execution Workflow Map Side Details

More information