Hat Function. defined on a triangulation of the domain D basis B i, i I, for piecewise linear functions 1 at center p i, 0 at other vertices p j.

Size: px
Start display at page:

Download "Hat Function. defined on a triangulation of the domain D basis B i, i I, for piecewise linear functions 1 at center p i, 0 at other vertices p j."

Transcription

1 Hat Function defined on a triangulation of the domain D basis B i, i I, for piecewise linear functions 1 at center p i, 0 at other vertices p j B i Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

2 Hat Function approximation, determined by Lagrange data u h = i I u i B i, u i = u h (p i ) piecewise constant gradient, determined via directional derivatives grad B i (p i p j, p i p k,...) = (1, 1,...) Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

3 Assembly of a Ritz Galerkin System for Hat Functions sum contributions from each triangle T = [p i, p j, p k ] g i,k = grad B i grad B k, f i = T T T T f B i p i p j T p k Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

4 Assembly of a Ritz Galerkin System for Hat Functions compute gradients via directional derivatives grad B i grad B j ( ) p j p i p k p j = R, R = grad B k G: add submatrix, corresponding to inner vertices, det P 2 RP 1 (P t ) 1 R t F : add subvector, corresponding to inner vertices, det P 2 f (T ) } {{ } average Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

5 Hat Functions on a Regular Grid B i : piecewise linear, pyramid-like (0, 1) (1, 1) ( 1, 0) h 1 (1, 0) ( 1, 1) (0, 1) Ritz-Galerkin matrix D grad B i grad B k g i,i = 4, g (i1 ±1,i 2 ),i = g (i1,i 2 ±1),i = 1 generalized banded system 4u i u i (1,0) u i+(1,0) u i (0,1) u i+(0,1) = h 2 f i Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

6 Poisson Solver with Hat Functions intput p(k, :): vertices, first n inside t(k, 1 : 3): indices for triangles f : data at vertices output u(1 : n): solution at interior vertices Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

7 Poisson Solver with Hat Functions add contributions from triangles T = [p α, p β, p γ ] T fb κ = area(t ) f T /3 T grad B κ grad B κ = area(t ) (g κ g t κ ) area(t ) = det P /2, P = (p β p α, p γ p β ) computation of gradients g α g β g γ P = Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

8 h = 1/10; p = [0; 0]; for k=1:round(1/h); if k>1/h-1/2; n = size(p,2); end; nk = round(2*pi*k); tk = [1:nk]*2*pi/nk; p = [p (k*h)*[cos(tk); sin(tk)]]; end; Hölllig (IMNG) FEM with B-Splines 01. Januar / 10 Poisson Solver with Hat Functions % demo: poisson_hat % solution of -delta u = 1 on unit disc % with zero boundary values % Delaunay triagulation based on regularly % spaced points with approximate distance h

9 Poisson Solver with Hat Functions t = delaunay(p(1,:),p(2,:)); trimesh(t,p(1,:),p(2,:), color,[0,0,0]); axis equal;axis off;figure % fe-solution nt = size(t,1); u = poisson_hat(p,t,n,ones(nt,1)); [x,y] = meshgrid([-1:h:1]); z = griddata(p(1,1:n),p(2,1:n),u,x,y); mesh(x,y,z); Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

10 Poisson Solver with Hat Functions Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

11 Poisson Solver with Hat Functions function u = poisson_hat(p,t,n,f) % POISSON_HAT: Poisson-solver with hat-functions % p(:,k): vertices of triangulation % t(j,1:3): indices of triangles % n: number of interior vertices (first) % f(j): forces on triangles % u(1:n): solution at interior vertices % initialize Ritz-Galerkin system lp = size(p,2); G = zeros(lp,lp); F = zeros(lp,1); % hat-function gradients times triangle vectors R = [-1, 0; 1, -1; 0, 1]; Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

12 Poisson Solver with Hat Functions % loop over triangles for k = 1:size(t,1); % indices of vertices and triangle vectors indk = t(k,:); P = [p(:,indk(2))-p(:,indk(1)),... p(:,indk(3))-p(:,indk(2))]; % area of triangle dp = abs(det(p))/2; % add int_t f B_i for i in indk F(indk) = F(indk) + dp*f(k)/3; % add int_t g_i g_i for i,i in indk % compute g s from [g_a; g_b; g_c]*p = R G(indk,indk) = G(indk,indk) +... dp*r*inv(p)*inv(p )*R ; end; % solve Ritz-Galerkin sytem for relevant nodes u = G(1:n,1:n) \ F(1:n); Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

13 Solver comparision grid width unknowns iteration count: Jacobi: Gauß-Seidel (checkerboard): SOR, ω = 1.25 (checkerboard): SOR, ω = 1.5 (checkerboard): SOR, ω = 1.75 (checkerboard): SOR, ω = 1.9 (checkerboard): SOR, ω = 1.94 (checkerboard): cg: Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

14 Solving Poisson s equation with MATLAB function with boundary data no argument: number of boundary segments one argument (segment numbers): start, end, left, right values two arguments (segment and parameter): points on boundary create triangulation with initmesh function for boundary conditions solve with assempde refine with refinemesh Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

15 Solving Poisson s equation with MATLAB Step 1: function for boundary function [x,y]=circle_with_hole(bs,s) % no input: number of boundary-segments if nargin==0,x=4;return;end % boundary structure d=[ % start parameter value % end parameter value % left hand region % right hand region ]; % one input argument: structure of boundary if nargin==1,x=d(:,bs(:) );return;end Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

16 if ~isempty(s), k=find(bs==1);% boundary segment 1: circle x(k)=mcx+rc*cos((pi)*s(k));y(k)=mcy+rc*sin((pi)*s(k)); k=find(bs==2);% boundary segment 2: circle x(k)=mcx+rc*cos((pi)*s(k)+pi);y(k)=mcy+rc*sin((pi)*s(k)+pi); k=find(bs==3);% boundary segment 3: hole x(k)=mhx+rh*cos((pi)*s(k));y(k)=mhy+rh*sin((pi)*s(k)); k=find(bs==4);% boundary segment 4: hole x(k)=mhx+rh*cos((pi)*s(k)+pi);y(k)=mhy+rh*sin((pi)*s(k)+pi); end Hölllig (IMNG) FEM with B-Splines 01. Januar / 10 Solving Poisson s equation with MATLAB % two input arguments: points on boundary mcx=0;mcy=0;rc=4;% midpoint and radius of circle mhx=0;mhy=0;rh=1;% midpoint and radius of hole x=zeros(size(s));y=x; if numel(bs)==1,bs=bs*ones(size(s));end; % expand bs

17 Solving Poisson s equation with MATLAB Step 2: initial mesh [p,e,t]=initmesh( circle with hole, hmax,.5); pdemesh(p,e,t); Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

18 Solving Poisson s equation with MATLAB Step 3: boundary conditions function [q,g,h,r]=boundary(p,e,u,time) %Boundary condition data % Neumann-conditions, zero values for Dirichlet-Boundary q=zeros(1,length(e)); g=zeros(1,length(e)); % Dirichlet-Boundary: hu=r h=ones(1,2*length(e)); r=zeros(1,2*length(e)); Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

19 Solving Poisson s equation with MATLAB Step 4: solve and plot U=ASSEMPDE(B,P,E,T,C,A,F) solves div(c grad u) + au = f on triangulation with points p, edges e, and triangles t with boundary-conditionfunction b u=assempde( boundary,p,e,t,1,0,1); pdesurf(p,t,u); Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

20 Solving Poisson s equation with MATLAB Step 5: refine triangulation [p,e,t]=refinemesh( circle with hole,p,e,t); pdemesh(p,e,t); and solve again: u=assempde( boundary,p,e,t,1,0,1); Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

21 Voronoi Diagram defined for a set S of points p k R d Voronoi polygon V k : set of points which are closer to p k than to any of the other points p j S Voronoi diagram V (S): union of the subsets of hyperplanes bounding the Voronoi polygons p i Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

22 Voronoi Spheres Points p k R d with their closed Voronoi polygons V k intersecting in a single point v lie on a sphere with center v. In general, exactly d + 1 Voronoi polygons share a common point. Proof: V i and V j intersect in a a hyperplane containing v p i, p j have same distance to v, i.e., all points p k have the same distance to v Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

23 Delaunay Triangulation triangulation with vertices p k R d such that no vertex is contained in the circumscribed sphere of any simplex construction via Voronoi-diagram: in general, points p k with their closed Voronoi polygons V k intersecting in a single point v form a simplex (neighboring points define an edge) nonuniqueness, if more than d + 1 points lie on a sphere which does not contain any other points Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

24 Sphere Criterion For a Delaunay simplex with vertices p k, the circumscribed sphere does not enclose any other vertices of the triangulation. The criterion can be used to construct a Delaunay triangulation directly. Proof: none of the Voronoi polygons of the other vertices contains the center v of the circumscribed sphere Voronoi polygons of the vertices p k have the common intersection v p i in circumscribed sphere, closest to v v belongs to Voronoi polygon V i, i.e., is not the intersection of the V k s Hölllig (IMNG) FEM with B-Splines 01. Januar / 10

Introduction to Voronoi Diagrams

Introduction to Voronoi Diagrams C.S. 252 Prof. Roberto Tamassia Computational Geometry Sem. II, 1992 1993 Lecture 13 Date: March 22, 1993 Scribe: Scott S. Snibbe 1 Introduction Introduction to Voronoi Diagrams This lecture introduces

More information

LECTURE NOTES: FINITE ELEMENT METHOD

LECTURE NOTES: FINITE ELEMENT METHOD LECTURE NOTES: FINITE ELEMENT METHOD AXEL MÅLQVIST. Motivation The finite element method has two main strengths... Geometry. Very complex geometries can be used. This is probably the main reason why finite

More information

1 of 69 Boardworks Ltd 2004

1 of 69 Boardworks Ltd 2004 1 of 69 2 of 69 Intersecting lines 3 of 69 Vertically opposite angles When two lines intersect, two pairs of vertically opposite angles are formed. a d b c a = c and b = d Vertically opposite angles are

More information

Introduction to the Finite Element Method

Introduction to the Finite Element Method Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross

More information

Constrained Tetrahedral Mesh Generation of Human Organs on Segmented Volume *

Constrained Tetrahedral Mesh Generation of Human Organs on Segmented Volume * Constrained Tetrahedral Mesh Generation of Human Organs on Segmented Volume * Xiaosong Yang 1, Pheng Ann Heng 2, Zesheng Tang 3 1 Department of Computer Science and Technology, Tsinghua University, Beijing

More information

Circle Name: Radius: Diameter: Chord: Secant:

Circle Name: Radius: Diameter: Chord: Secant: 12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

More information

H.Calculating Normal Vectors

H.Calculating Normal Vectors Appendix H H.Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use the OpenGL lighting facility, which is described in Chapter

More information

Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines and flat surfaces Real world objects include

More information

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example. An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

More information

Week 2 Polygon Triangulation

Week 2 Polygon Triangulation Week 2 Polygon Triangulation What is a polygon? Last week A polygonal chain is a connected series of line segments A closed polygonal chain is a polygonal chain, such that there is also a line segment

More information

Level: High School: Geometry. Domain: Expressing Geometric Properties with Equations G-GPE

Level: High School: Geometry. Domain: Expressing Geometric Properties with Equations G-GPE 1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. Translate between the geometric

More information

G.H. Raisoni College of Engineering, Nagpur. Department of Information Technology

G.H. Raisoni College of Engineering, Nagpur. Department of Information Technology Practical List 1) WAP to implement line generation using DDA algorithm 2) WAP to implement line using Bresenham s line generation algorithm. 3) WAP to generate circle using circle generation algorithm

More information

Green s Theorem Calculus III (MATH 2203)

Green s Theorem Calculus III (MATH 2203) Green s Theorem Calculus III (MATH 223) S. F. Ellermeyer November 2, 213 Green s Theorem gives an equality between the line integral of a vector field (either a flow integral or a flux integral) around

More information

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above? 1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

More information

Investigating Area Under a Curve

Investigating Area Under a Curve Mathematics Investigating Area Under a Curve About this Lesson This lesson is an introduction to areas bounded by functions and the x-axis on a given interval. Since the functions in the beginning of the

More information

Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina stefano.martina@stud.unifi.it

Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina stefano.martina@stud.unifi.it Seminar Path planning using Voronoi diagrams and B-Splines Stefano Martina stefano.martina@stud.unifi.it 23 may 2016 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

More information

Interpolating and Approximating Implicit Surfaces from Polygon Soup

Interpolating and Approximating Implicit Surfaces from Polygon Soup Interpolating and Approximating Implicit Surfaces from Polygon Soup 1. Briefly summarize the paper s contributions. Does it address a new problem? Does it present a new approach? Does it show new types

More information

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

More information

14. Dirichlet polygons: the construction

14. Dirichlet polygons: the construction 14. Dirichlet polygons: the construction 14.1 Recap Let Γ be a Fuchsian group. Recall that a Fuchsian group is a discrete subgroup of the group Möb(H) of all Möbius transformations. In the last lecture,

More information

Solutions to Exercise 4: Atomistic/Smooth Molecular Models

Solutions to Exercise 4: Atomistic/Smooth Molecular Models Solutions to Exercise 4: Atomistic/Smooth Molecular Models CS384R, CAM 395T, BME 383J: Fall 2010 November 19, 2010 Question 1 Consider the atomic representations (as per lectures, and the molecular modeling

More information

Divide-and-Conquer. Three main steps : 1. divide; 2. conquer; 3. merge.

Divide-and-Conquer. Three main steps : 1. divide; 2. conquer; 3. merge. Divide-and-Conquer Three main steps : 1. divide; 2. conquer; 3. merge. 1 Let I denote the (sub)problem instance and S be its solution. The divide-and-conquer strategy can be described as follows. Procedure

More information

Tufts University, Spring 2005 Michael Horn, Julie Weber (2004) Voronoi Diagrams

Tufts University, Spring 2005 Michael Horn, Julie Weber (2004) Voronoi Diagrams Comp 163: Computational Geometry Professor Diane Souvaine Tufts University, Spring 2005 Michael Horn, Julie Weber (2004) Voronoi Diagrams 1 Voronoi Diagrams 1 Consider the following problem. To determine

More information

Tessellations. A tessellation is created when a shape is repeated over and over again to cover the plane without any overlaps or gaps.

Tessellations. A tessellation is created when a shape is repeated over and over again to cover the plane without any overlaps or gaps. Tessellations Katherine Sheu A tessellation is created when a shape is repeated over and over again to cover the plane without any overlaps or gaps. 1. The picture below can be extended to a tessellation

More information

Lattice Point Geometry: Pick s Theorem and Minkowski s Theorem. Senior Exercise in Mathematics. Jennifer Garbett Kenyon College

Lattice Point Geometry: Pick s Theorem and Minkowski s Theorem. Senior Exercise in Mathematics. Jennifer Garbett Kenyon College Lattice Point Geometry: Pick s Theorem and Minkowski s Theorem Senior Exercise in Mathematics Jennifer Garbett Kenyon College November 18, 010 Contents 1 Introduction 1 Primitive Lattice Triangles 5.1

More information

ORIENTATIONS. Contents

ORIENTATIONS. Contents ORIENTATIONS Contents 1. Generators for H n R n, R n p 1 1. Generators for H n R n, R n p We ended last time by constructing explicit generators for H n D n, S n 1 by using an explicit n-simplex which

More information

Medial Axis Construction and Applications in 3D Wireless Sensor Networks

Medial Axis Construction and Applications in 3D Wireless Sensor Networks Medial Axis Construction and Applications in 3D Wireless Sensor Networks Su Xia, Ning Ding, Miao Jin, Hongyi Wu, and Yang Yang Presenter: Hongyi Wu University of Louisiana at Lafayette Outline Introduction

More information

1 3 4 = 8i + 20j 13k. x + w. y + w

1 3 4 = 8i + 20j 13k. x + w. y + w ) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

More information

Practice Test - Chapter 1. Use the figure to name each of the following.

Practice Test - Chapter 1. Use the figure to name each of the following. Use the figure to name each of the following. 1. the line that contains points Q and Z The points Q and Z lie on the line b, line b 2. two points that are coplanar with points W, X, and Y Coplanar points

More information

c 2002 I.P. Ivrissimtzis, M.A. Sabin, N.A. Dodgson

c 2002 I.P. Ivrissimtzis, M.A. Sabin, N.A. Dodgson Technical Report UCAM-CL-TR-544 ISSN 476-2986 Number 544 Computer Laboratory On the support of recursive subdivision I.P. Ivrissimtzis, M.A. Sabin, N.A. Dodgson September 2002 An updated, improved version

More information

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles... Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

More information

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON John Burkardt Information Technology Department Virginia Tech http://people.sc.fsu.edu/ jburkardt/presentations/cg lab fem basis tetrahedron.pdf

More information

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm LECTURE 6: INTERIOR POINT METHOD 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm Motivation Simplex method works well in general, but suffers from exponential-time

More information

Spline Toolbox Release Notes

Spline Toolbox Release Notes Spline Toolbox Release Notes Note The Spline Toolbox 3.1 was released in Web-downloadable form after Release 12.1 was released, but before Release 13. The Spline Toolbox 3.1.1 that is part of Release 13

More information

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

More information

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1 Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the

More information

By W.E. Diewert. July, Linear programming problems are important for a number of reasons:

By W.E. Diewert. July, Linear programming problems are important for a number of reasons: APPLIED ECONOMICS By W.E. Diewert. July, 3. Chapter : Linear Programming. Introduction The theory of linear programming provides a good introduction to the study of constrained maximization (and minimization)

More information

Mean Value Coordinates

Mean Value Coordinates Mean Value Coordinates Michael S. Floater Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its

More information

Surface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry

Surface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry Surface Area of Rectangular & Right Prisms Surface Area of Pyramids Geometry Finding the surface area of a prism A prism is a rectangular solid with two congruent faces, called bases, that lie in parallel

More information

Practical Calculation of Polygonal Areas

Practical Calculation of Polygonal Areas Practical alculation of Polygonal reas Tom avis tomrdavis@earthlink.net http://www.geometer.org/mathcircles January 30, 006 bstract In this paper we will consider practical methods to find the area of

More information

Editing Tools For Use With MapInfo Professional s s GIS Software. By John Scott Salem State College

Editing Tools For Use With MapInfo Professional s s GIS Software. By John Scott Salem State College Editing Tools For Use With MapInfo Professional s s GIS Software By John Scott Salem State College CONVERT FROM POLYGON TO POLYLINE This tool enables the user to convert a polygon into a polyline. CONVERT

More information

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces.

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces. Voronoi Diagrams 4 A city builds a set of post offices, and now needs to determine which houses will be served by which office. It would be wasteful for a postman to go out of their way to make a delivery

More information

The Four Centers of a Triangle. Points of Concurrency. Concurrency of the Medians. Let's Take a Look at the Diagram... October 25, 2010.

The Four Centers of a Triangle. Points of Concurrency. Concurrency of the Medians. Let's Take a Look at the Diagram... October 25, 2010. Points of Concurrency Concurrent lines are three or more lines that intersect at the same point. The mutual point of intersection is called the point of concurrency. Example: x M w y M is the point of

More information

An inscribed polygon is a polygon whose vertices are points of a circle. in means in and scribed means written

An inscribed polygon is a polygon whose vertices are points of a circle. in means in and scribed means written Geometry Week 6 Sec 3.5 to 4.1 Definitions: section 3.5 A A B D B D C Connect the points in consecutive order with segments. C The square is inscribed in the circle. An inscribed polygon is a polygon whose

More information

Assignment 3. Solutions. Problems. February 22.

Assignment 3. Solutions. Problems. February 22. Assignment. Solutions. Problems. February.. Find a vector of magnitude in the direction opposite to the direction of v = i j k. The vector we are looking for is v v. We have Therefore, v = 4 + 4 + 4 =.

More information

Numerical Solutions to Differential Equations

Numerical Solutions to Differential Equations Numerical Solutions to Differential Equations Lecture Notes The Finite Element Method #2 Peter Blomgren, blomgren.peter@gmail.com Department of Mathematics and Statistics Dynamical Systems Group Computational

More information

Visualization of 2D Domains

Visualization of 2D Domains Visualization of 2D Domains This part of the visualization package is intended to supply a simple graphical interface for 2- dimensional finite element data structures. Furthermore, it is used as the low

More information

Engineering Geometry

Engineering Geometry Engineering Geometry Objectives Describe the importance of engineering geometry in design process. Describe coordinate geometry and coordinate systems and apply them to CAD. Review the right-hand rule.

More information

Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.

Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form. Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the

More information

Section 2.1 Rectangular Coordinate Systems

Section 2.1 Rectangular Coordinate Systems P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is

More information

LINE INTEGRALS OF VECTOR FUNCTIONS: GREEN S THEOREM. Contents. 2. Green s Theorem 3

LINE INTEGRALS OF VECTOR FUNCTIONS: GREEN S THEOREM. Contents. 2. Green s Theorem 3 LINE INTEGRALS OF VETOR FUNTIONS: GREEN S THEOREM ontents 1. A differential criterion for conservative vector fields 1 2. Green s Theorem 3 1. A differential criterion for conservative vector fields We

More information

The GeoMedia Fusion Validate Geometry command provides the GUI for detecting geometric anomalies on a single feature.

The GeoMedia Fusion Validate Geometry command provides the GUI for detecting geometric anomalies on a single feature. The GeoMedia Fusion Validate Geometry command provides the GUI for detecting geometric anomalies on a single feature. Below is a discussion of the Standard Advanced Validate Geometry types. Empty Geometry

More information

28 Closest-Point Problems -------------------------------------------------------------------

28 Closest-Point Problems ------------------------------------------------------------------- 28 Closest-Point Problems ------------------------------------------------------------------- Geometric problems involving points on the plane usually involve implicit or explicit treatment of distances

More information

Lines That Pass Through Regions

Lines That Pass Through Regions : Student Outcomes Given two points in the coordinate plane and a rectangular or triangular region, students determine whether the line through those points meets the region, and if it does, they describe

More information

Geometry and Topology from Point Cloud Data

Geometry and Topology from Point Cloud Data Geometry and Topology from Point Cloud Data Tamal K. Dey Department of Computer Science and Engineering The Ohio State University Dey (2011) Geometry and Topology from Point Cloud Data WALCOM 11 1 / 51

More information

GeoGebra. 10 lessons. Gerrit Stols

GeoGebra. 10 lessons. Gerrit Stols GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J Olver 14 Finite Elements In this part, we introduce the powerful finite element method for finding numerical approximations to the solutions to boundary value problems

More information

Natural Neighbour Interpolation

Natural Neighbour Interpolation Natural Neighbour Interpolation DThe Natural Neighbour method is a geometric estimation technique that uses natural neighbourhood regions generated around each point in the data set. The method is particularly

More information

The Essentials of CAGD

The Essentials of CAGD The Essentials of CAGD Chapter 2: Lines and Planes Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd c 2000 Farin & Hansford

More information

How High a Degree is High Enough for High Order Finite Elements?

How High a Degree is High Enough for High Order Finite Elements? This space is reserved for the Procedia header, do not use it How High a Degree is High Enough for High Order Finite Elements? William F. National Institute of Standards and Technology, Gaithersburg, Maryland,

More information

CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.

CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder. TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has

More information

Advanced Algebra 2. I. Equations and Inequalities

Advanced Algebra 2. I. Equations and Inequalities Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Gradient - Activity 1 Gradient from the origin.

Gradient - Activity 1 Gradient from the origin. Name: Class: p 31 Maths Helper Plus Resource Set 1. Copyright 2002 Bruce A. Vaughan, Teachers Choice Software Gradient - Activity 1 Gradient from the origin. 1) On the graph below, there is a line ruled

More information

A gentle introduction to the Finite Element Method. Francisco Javier Sayas

A gentle introduction to the Finite Element Method. Francisco Javier Sayas A gentle introduction to the Finite Element Method Francisco Javier Sayas 2008 An introduction If you haven t been hiding under a stone during your studies of engineering, mathematics or physics, it is

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

Finite Elements for 2 D Problems

Finite Elements for 2 D Problems Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,

More information

Topological Data Analysis Applications to Computer Vision

Topological Data Analysis Applications to Computer Vision Topological Data Analysis Applications to Computer Vision Vitaliy Kurlin, http://kurlin.org Microsoft Research Cambridge and Durham University, UK Topological Data Analysis quantifies topological structures

More information

Matrix Algebra LECTURE 1. Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 = a 11 x 1 + a 12 x 2 + +a 1n x n,

Matrix Algebra LECTURE 1. Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 = a 11 x 1 + a 12 x 2 + +a 1n x n, LECTURE 1 Matrix Algebra Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 a 11 x 1 + a 12 x 2 + +a 1n x n, (1) y 2 a 21 x 1 + a 22 x 2 + +a 2n x n, y m a m1 x 1 +a m2 x

More information

The Not-Formula Book for C1

The Not-Formula Book for C1 Not The Not-Formula Book for C1 Everything you need to know for Core 1 that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes

More information

Figure 2.1: Center of mass of four points.

Figure 2.1: Center of mass of four points. Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Monotone Partitioning. Polygon Partitioning. Monotone polygons. Monotone polygons. Monotone Partitioning. ! Define monotonicity

Monotone Partitioning. Polygon Partitioning. Monotone polygons. Monotone polygons. Monotone Partitioning. ! Define monotonicity Monotone Partitioning! Define monotonicity Polygon Partitioning Monotone Partitioning! Triangulate monotone polygons in linear time! Partition a polygon into monotone pieces Monotone polygons! Definition

More information

Unknown Angle Problems with Inscribed Angles in Circles

Unknown Angle Problems with Inscribed Angles in Circles : Unknown Angle Problems with Inscribed Angles in Circles Student Outcomes Use the inscribed angle theorem to find the measures of unknown angles. Prove relationships between inscribed angles and central

More information

McMurry University Pre-test Practice Exam. 1. Simplify each expression, and eliminate any negative exponent(s).

McMurry University Pre-test Practice Exam. 1. Simplify each expression, and eliminate any negative exponent(s). 1. Simplify each expression, and eliminate any negative exponent(s). a. b. c. 2. Simplify the expression. Assume that a and b denote any real numbers. (Assume that a denotes a positive number.) 3. Find

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

Arrangements And Duality

Arrangements And Duality Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

More information

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions.

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. B2.53-R3: COMPUTER GRAPHICS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF ANSWER

More information

GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points? GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

More information

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades. Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Finite Element Method 57 PART IV. Finite Element Method

Finite Element Method 57 PART IV. Finite Element Method Finite Element Method 57 PART IV Finite Element Method Finite Element Method 58 FINITE ELEMENT METHOD I Computational properties of the method are largely determined by the properties of the algebraic

More information

(Refer Slide Time 1.50)

(Refer Slide Time 1.50) Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Module -2 Lecture #11 Induction Today we shall consider proof

More information

Image Segmentation Preview Segmentation subdivides an image to regions or objects Two basic properties of intensity values Discontinuity Edge detection Similarity Thresholding Region growing/splitting/merging

More information

Clipping polygons the Sutherland-Hodgman algorithm

Clipping polygons the Sutherland-Hodgman algorithm Clipping polygons would seem to be quite complex. Clipping polygons would seem to be quite complex. single Clipping polygons would seem to be quite complex. single Clipping polygons would seem to be quite

More information

Lesson 5-3: Concurrent Lines, Medians and Altitudes

Lesson 5-3: Concurrent Lines, Medians and Altitudes Playing with bisectors Yesterday we learned some properties of perpendicular bisectors of the sides of triangles, and of triangle angle bisectors. Today we are going to use those skills to construct special

More information

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

Correlation of Common Core Content Standards to CMP3 Content. Number Standard for Mathematical Content CMP3 Unit: Investigation

Correlation of Common Core Content Standards to CMP3 Content. Number Standard for Mathematical Content CMP3 Unit: Investigation Correlation of Common Core Content Standards to CMP3 Content GRADE 8 8.NS.A Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1 8.NS.A.2 Understand informally

More information

Study Guide and Review

Study Guide and Review Fill in the blank in each sentence with the vocabulary term that best completes the sentence. 1. A is a flat surface made up of points that extends infinitely in all directions. A plane is a flat surface

More information

Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

More information

Computational Geometry

Computational Geometry Smallest enclosing circles and more 1 Facility location Introduction Facility location Properties of the smallest enclosing circle Given a set of houses and farms in an isolated area. Can we place a helicopter

More information

Coefficient of Potential and Capacitance

Coefficient of Potential and Capacitance Coefficient of Potential and Capacitance Lecture 12: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We know that inside a conductor there is no electric field and that

More information

Partial Differential Equation Toolbox

Partial Differential Equation Toolbox Partial Differential Equation Toolbox For Use with MATLAB Computer Solutions Europe AB Computation Visualization Programming User s Guide FAX How to Contact The MathWorks: 508-647-7000 Phone 508-647-7001

More information

Common Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS)

Common Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS) CCSS Key: The Number System (NS) Expressions & Equations (EE) Functions (F) Geometry (G) Statistics & Probability (SP) Common Core State Standard I Can Statements 8 th Grade Mathematics 8.NS.1. Understand

More information

The Protractor Postulate and the SAS Axiom. Chapter The Axioms of Plane Geometry

The Protractor Postulate and the SAS Axiom. Chapter The Axioms of Plane Geometry The Protractor Postulate and the SAS Axiom Chapter 3.4-3.7 The Axioms of Plane Geometry The Protractor Postulate and Angle Measure The Protractor Postulate (p51) defines the measure of an angle (denoted

More information

Chapter 4: Non-Parametric Classification

Chapter 4: Non-Parametric Classification Chapter 4: Non-Parametric Classification Introduction Density Estimation Parzen Windows Kn-Nearest Neighbor Density Estimation K-Nearest Neighbor (KNN) Decision Rule Gaussian Mixture Model A weighted combination

More information

CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992

CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992 CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992 Original Lecture #6: 28 January 1991 Topics: Triangulating Simple Polygons

More information

24: Polygon Partition - Faster Triangulations

24: Polygon Partition - Faster Triangulations 24: Polygon Partition - Faster Triangulations CS 473u - Algorithms - Spring 2005 April 15, 2005 1 Previous lecture We described triangulations of simple polygons. See Figure 1 for an example of a polygon

More information

Planar Tree Transformation: Results and Counterexample

Planar Tree Transformation: Results and Counterexample Planar Tree Transformation: Results and Counterexample Selim G Akl, Kamrul Islam, and Henk Meijer School of Computing, Queen s University Kingston, Ontario, Canada K7L 3N6 Abstract We consider the problem

More information