METHANOL REMOVAL FROM METHANOL-WATER MIXTURE USING MUNICIPAL ACTIVATED SLUDGE

Size: px
Start display at page:

Download "METHANOL REMOVAL FROM METHANOL-WATER MIXTURE USING MUNICIPAL ACTIVATED SLUDGE"

Transcription

1 Journal of Engineering Science and Technology Vol. 8, No. 5 (2013) School of Engineering, Taylor s University METHANOL REMOVAL FROM METHANOL-WATER MIXTURE USING MUNICIPAL ACTIVATED SLUDGE SALAM AL-DAWERY Department of Chemical Engineering, University of Nizwa, Birkat Al Mouz, Oman * salam@unizwa.edu.om Abstract Methanol plants produce large volume of wastewater containing less than 10% methanol during the startup and shut-down operations, such amount is considered as an industrial waste problem. An experimental work has been carried out in order to examine the removal of methanol from methanol-water mixture using activated sludge. The results showed that the methanol was totally consumed by the bacteria as quick as the feed enters the sludge vessel. The bacteria indicated adaption and growth during experiment with adaptation time of 1 hour. However, an inverse effect on bacterial growth has been observed, when the methanol concentration is higher than 5%. Keywords: Activated sludge, Methanol removal. 1. Introduction There are several processes related to the production and usage of methanol which are directly responsible for the release of methanol and act as source of pollutants for atmosphere, soil and groundwater. For example; discharge wastewater from methanol plants during startup and shutdown, chemical process converts wood chips to cellulose pulp and the released organic compounds to air and water, that are naturally present in wood or produced during pulping manufacturing [1]. In 1998, the US Environmental Protection Agency (US EPA) passed the Cluster Rule to regulate the release of these compounds, including hazardous air pollutants (HAP), chemicals that pose great risk to human or environmental health (US EPA, 1998). Methanol is the primary focus of these regulations, as it is released in quantities of over 44,000 tons per year and represents over 70% of the total HAPs emitted by this industry (US EPA, 2004), and can contribute to human health impacts such as cancer, respiratory irritation, and damage to the nervous system [2]. To prevent potential environmental and health impacts from methanol emissions, the Cluster Rule requires implementation of maximum available 578

2 Methanol Removal from Methanol-Water Mix. Using Municipal Activated Sludge 579 control technology to collect and treat high-volume, low-concentration (usually less than 20% of the lower explosion limit of the gas mixture, or less than 12,000 ppm methanol) emissions from pulp washing and screening, oxygen delignification, and weak black liquor storage tanks [3]. Methanol in drinking water supplies can be remedied effectively through biological treatment. The type of technology used depends on the anticipated influent concentrations. For influent methanol levels of 1 ppm, a slow sand filter provides the required microbial activity for successful treatment for drinking water. Higher influent levels (on the order of ppm) would require treatment in a biologically activated filter (BAF) with counter air flow. Design of a BAF for methanol treatment would require pilot studies to determine the optimum design capacity and appropriate operating conditions for the desired methanol removal efficiency. In 1997, the University of Colorado at Boulder completed a pilot project for removal of nitrate in a biological process that utilizes indigenous bacteria [4]. The pilot plant consists of towers containing layers of bacteria that reduce the nitrates to nitrogen. Real methanol released near drinking water supply would have an impact on the quality of the water. While it is unlikely that elevated levels of methanol will persist in groundwater due to the rapid rate of biodegradation, methanol releases near drinking water supply wells could impact negatively on the water supply source. Unlike certain gasoline additives, the taste and odor threshold concentration for methanol is high, ranging from 10 ppm to 20,000 ppm in air [5]. There are several treatments for the removal of methanol from water. These are; air stripping, adsorption process, advanced oxidation, membrane filtration, or biologically activated filters [6-8]. Many investigators consider methanol as an additional carbon source for denitrification in wastewater treatment and studied the carbon degradation activity in activated sludge [2, 9, 10]. However, activated sludge is used widely for the removal of many organic compounds [11], but little is known about removal of methanol using municipal activated sludge. Therefore, the goal of this work was to investigate the removal of methanol from wastewater that produced from methanol plants during the startup and shut-down operations. 2. Methodology 2.1. Activated sludge process design Sewage sludge is a solid, semisolid, or liquid muddy-like residue that results after plain old sewage (human and other waste from households and industries) is treated at a sewage plant. After being treated, the sewage sludge may be spread on non-organic agricultural land as a fertilizer or dust suppressant. The sewage sludge includes: scum or solids removed in primary, secondary, or advanced wastewater treatment processes; and a material derived from sewage sludge [12-15]. Primary sludge and material that settles out during primary treatment often have a strong odor which require treatment prior to disposal. Secondary sludge is the extra microorganisms from the biological treatment processes. The goals of sludge treatment are to stabilize the sludge and reduce odors, remove some of the water and reduce volume, decompose some of the organic matter and kill disease causing organisms and disinfect the sludge.

3 580 S. Al-Dawery The overall goal of the activated-sludge process is to remove substances that have a demand for oxygen from the system. This is accomplished by the metabolic reactions (synthesis-respiration and nitrification) of the microorganisms, the separation and settling of activated-sludge solids to create an acceptable quality of secondary wastewater effluent, and the collection and recycling of microorganisms back into the system or removal of excess microorganisms from the system. The species of microorganism that dominates a system depend on environmental conditions, process design, the mode of plant operation, and the characteristics of the secondary influent wastewater. The following schematic diagram represents the general process of the activated sludge. Most activated processes consist of aeration and settle tank as shown in Fig. 1. However, an alternative design has been considered and constructed. The new design consists of a porous pot in which the activated sludge can be held and only clean water leaks out, thus, no sludge circulation is required. This porous tank was considered as inner tank and placed in larger tank that holds and allowing only the leakage of clear water from the porous tank. A rigid support ring was placed between inner and outer vessels helps to leave space between them. Air distributor was used for mixing and oxygen supplying. Schematic diagram and experimental rig is shown in Fig. 2. Fig. 1. A Generalized Schematic Diagram of an Activated Sludge Process. Fig. 2. Schematic Sludge Process Diagram using Porous Tank Materials The samples of activated sludge and untreated wastewater were collected from wastewater treatment plant at Nizwa, Sultanate of Oman. The activated sludge was

4 Methanol Removal from Methanol-Water Mix. Using Municipal Activated Sludge 581 collected from the recycling sludge container, while untreated wastewater samples were collected from feed stream to wastewater plant. In order to determine the type of bacteria present in the activated sludge, samples were analysed for colony forming unit (CFU) in the microbiology lab at University of Nizwa. The analysed samples showed that the bacillus positive bacteria type is present Experiment Experiments have been performed in 6 L porous pottery vessel containing 280 g activated sludge. The porous pottery vessel is placed in 20 L plastic vessel for collecting the leakage liquid. Methanol solutions were prepared by adding the required amount of methanol to the untreated wastewater, two solutions were prepared; 5% v/v and 8% v/v. In order to have same flow rate in and out of the sludge vessel, 0.72 L/h methanol feed flow rate was chosen. Thus, the mean cell residence time maintained was 8.3 h. Air was purged at low flow rate through the sludge vessel. Samples were taken every one hour from sludge solution and effluents are analysed for both bacteria and methanol concentration Methanol estimation The methanol is analyzed via the oxidation of methanol to formaldehyde with potassium permanganate, followed by condensation with 2,4-pentanedione to yield the colored product 3,5-diacetyl-1,4-dihydro-2,6-dimethylpyridine, this method proposed by Wood & Siddiqui [16]. The optical density is then measured using UV spectrophotometer. 3. Results and Discussion 3.1. Test using feed of methanol During the experimental runs, two different feeds were used; one with 5% methanol and the second with 8% methanol. For each test, several samples were collected and analysed for methanol and bacteria contents and the results are shown in Fig. 3. This figure shows the remaining methanol concentration in effluent after its consumption by the bacteria during the experiment, it can be seen that the larger the amount of methanol the larger the amount is consumed. For purpose of comparison, the results are compared with methanol concentration in a mixing tank with model equation; C/C o =1- exp [- (V/F)t] where V is the tank volume, F is volumetric feed flow rate and t is time. Results from the model equation and that from biological reactor are plotted in Fig. 4. The large differences between these two results indicate that the methanol concentration dropped quickly due to the consumption by the bacteria. Bacterial growth was monitored during the experimental work within the biological reactor and the results are presented in Fig. 5. This figure shows that the bacteria are firstly adapt themselves to the new conditions within 1 hour and then start to grow up consuming more methanol. This period of adaption of the bacteria was almost the same in both experimental tests using feed solutions with 5% and 8% methanol.

5 582 S. Al-Dawery Fig. 3. Comparison between Methanol Removal in Sludge Vessel using 5% and 8% Methanol Feeds. Fig. 4. Comparison between Methanol Concentration Response in a Mixing Tank and its Removal in Sludge Vessel using 5% and 8% Methanol Feeds. Fig. 5. Bacterial Growths during Experiments with 5% and 8% Methanol Feeds.

6 Methanol Removal from Methanol-Water Mix. Using Municipal Activated Sludge Bacterial contents during experimental works The contents of bacteria that are living within the sludge and solution during the experiments have been analyzed and pictured as shown in Figs. 6 through 10. Figure 6 shows large bacterial contents within the freshly collected sludge material that was brought from conditioning tank at Nizwa wastewater plant. Figure 7 shows the bacterial growth in the diluted sludge solution which indicates bacteria are active at initial time before starting the experiment. Figs. 8, 9, and 10 show the bacterial growth in solution during experiment after 1, 2, and 3 hours. Fig. 6. Bacterial Contents in Fresh Sludge Material. Fig. 7. Bacterial Contents in the Prepared Sludge Solution before Experiment.

7 584 S. Al-Dawery Fig. 8. Bacterial Contents in Sludge Solution after 1 hr Experiment. Fig. 9. Bacterial Contents in Sludge Solution after 2 hrs Experiment. Fig. 10. Bacterial Contents in Sludge Solution after 3 hrs Experiment.

8 Methanol Removal from Methanol-Water Mix. Using Municipal Activated Sludge Effect of methanol concentration on bacterial growth To study and examine the effect of methanol on bacterial growth, many samples were prepared by mixing different methanol concentration 1%, 3%, and 5% v/v with sludge solution, these samples were prepared and left 48 hours before the analysis steps. Then, samples were analyzed in the biological laboratory at University of Nizwa, picture of bacterial growth are shown in Figs. 11, 12 and 13. It appears in these figures that the increase of methanol concentration has a negative effect on the bacterial growth, as the methanol concentration increases the number of bacteria is reduced. The significant reduction of bacteria growth can be considered when concentration of methanol is large than 5%. Batch experiments were also investigated using several samples of wastewater with different methanol contents; 1%, 3%, 5% and 8% v/v. samples were incubated at constant temperature for 24 hours before analysis for methanol. Results showed that the methanol content in these solutions has been consumed, as shown in Table 1. It can be seen that the consumption of methanol is reduced slightly in solution with a higher methanol concentration; this could be due to inhibition of bacterial growth under a higher methanol concentration. Fig. 11. Biological Growth in Sample with 1% Methanol after 48 hrs. Fig. 12. Biological Growth in Sample with 3% Methanol after 48 hrs.

9 586 S. Al-Dawery Fig. 13. Biological Growths in Sample with 5% Methanol after 48 hrs. Table 1. Methanol Concentration in Wastewater after 24 hrs Time. Sample % methanol in influent Temperature % methanol in wastewater Conclusions Following results of the experiments, it can be concluded that the methanol concentration dropped quickly as a result of its consumption by the bacteria immediately they enter into the sludge vessel. The bacteria within the sludge solution can be adapted wherever an organic methanol source. The bacterial adaptation can be true for methanol concentration up to 5% within the sludge solution. The reduction of bacterial growth can be considered due to the increase of methanol concentration especially of methanol greater than 5% within the sludge tank. This biological method proves its ability to remove methanol contaminant especially at low concentration. References 1. Someshwar, A.; and Pinkerton, J. (1992). Wood processing industry. In: Air pollution engineering manual: Air and waste management sssociation. New York, Chapter 3, Babbitt, C.W.; Pacheco, A.; and Linder, A.L. (2009). Methanol removal efficiency and bacterial diversity of an activated carbon bio-filter. Bioresource Technology, 100(24), Varma, V.K. (2003). Experience with the collection, transport, and burning of kraft mill high volume low concentration gases. Special Report No National Council for Air and Stream Improvement.

10 Methanol Removal from Methanol-Water Mix. Using Municipal Activated Sludge Scott, J. CU-Boulder, (1997). Colorado town wrapping up pilot drinking water treatment project US Environmental Protection Agency. Office of pollution prevention and toxics (USEPA OPPT). (1994). Chemical summary for methanol. Report No. EPA 749-F a. 6. Malcolm Pirnie, Inc. (1999). Evaluation of the fate and transport of methanol in the environment. Technical Memorandum. American Methanol Institute, 800 Connecticut Avenue, NW, Suite 620, Washington DC Report number Soltanali, S.; and Hagani, Z.S. (2008). Modeling of air stripping from volatile organic compounds in biological treatment process. International Journal of Environmental Science and Technology, 5(3), Mandal, S.; and Pangarkar V.G. (2003). Development of co-polymer membranes for pervaporative separation of methanol from methanol-benzene mixture- solubility parameter approach. Separation and Purification Technology, 30(2), Hagman, M.; Nielsen, J.L.; Nielsen, P.H.; and Jansena, J.C. (2008). Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies. Water Research, 42(6-7), Premkumar, R.; and krishnamohan, N. (2010). Removal of methanol from waste gas using biofilteration. Journal of Applied Science Research, 6(11), Falas, P.; Baillon-Dhumez, A.; Andersen, H.R.; Ledin, A.; and Jansen, J.C. (2012). Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals. Water Research 46(4), Junkins, R. (1983). Activated sludge process: Fundamentals of operation. Ann Arbor Science Publishers, Michigan. 13. Wanner, J. (1994). Activated sludge bulking and foaming control. 1 st Ed., CRC Press. 14. Sorour, M.T.; Abd EL Rassoul, F.A.; and Ibrahim, B.A. (2001). Final settler performance as a bio-reactor in activated sludge process. Proceedings of the Sixth International Water Technology Conference, IWTC 2001, Dominguez, M.V.L. (2007). Study of sludge conditioning processes. Ph.D. Thesis, School of Chemical Engineering & Analytical Science, University of Manchester. 16. Wood, P.J.; and Siddiqui, I.R. (1971). Determination of methanol and its application to measurement of pectin ester content and pectin methyl esterase activity. Analytical Biochemistry, 39(2),

WASTEWATER TREATMENT OBJECTIVES

WASTEWATER TREATMENT OBJECTIVES WASTEWATER TREATMENT OBJECTIVES The student will do the following: 1. Define wastewater and list components of wastewater. 2. Describe the function of a wastewater treatment plant. 3. Create a wastewater

More information

Bioremediation. Introduction

Bioremediation. Introduction Bioremediation Introduction In the twentieth century, the ever increase in the global human population and industrialization led to the exploitation of natural resources. The increased usage of heavy metals

More information

CHAPTER 8 UPGRADING EXISTING TREATMENT FACILITIES

CHAPTER 8 UPGRADING EXISTING TREATMENT FACILITIES CHAPTER 8 UPGRADING EXISTING TREATMENT FACILITIES 8-1. General. Upgrading of wastewater treatment plants may be required to handle increased hydraulic and organic loadings to meet existing effluent quality

More information

Wastewater Nutrient Removal

Wastewater Nutrient Removal Wastewater Nutrient Removal An overview of phosphorus and nitrogen removal strategies Presented by: William E. Brown, P.E. Peter C. Atherton, P.E. Why are nutrients an issue in the environment? Stimulates

More information

Department of Environmental Engineering

Department of Environmental Engineering Department of Environmental Engineering Master of Engineering Program in Environmental Engineering (International Program) M.Eng. (Environmental Engineering) Plan A Option 1: (1) Major courses: minimum

More information

1.85 WATER AND WASTEWATER TREATMENT ENGINEERING FINAL EXAM DECEMBER 20, 2005

1.85 WATER AND WASTEWATER TREATMENT ENGINEERING FINAL EXAM DECEMBER 20, 2005 1.85 WATER AND WASTEWATER TREATMENT ENGINEERING FINAL EXAM DECEMBER 20, 2005 This is an open-book exam. You are free to use your textbook, lecture notes, homework, and other sources other than the internet.

More information

AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES

AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES Question 1 Read the Fremont Examiner article below and answer the questions that follow. (a) Identify ONE component of the sewage that is targeted for removal

More information

Remediation of VOC Contaminated Groundwater

Remediation of VOC Contaminated Groundwater Remediation of VOC Contaminated Groundwater Background Contaminated groundwater has become an ever-increasing problem in the United States and around the world. Treatment and disposal of waste is a serious

More information

Bioremediation of Petroleum Contamination. Augustine Ifelebuegu GE413

Bioremediation of Petroleum Contamination. Augustine Ifelebuegu GE413 Bioremediation of Petroleum Contamination Augustine Ifelebuegu GE413 Bioremediation Bioremediation is the use of living microorganisms to degrade environmental contaminants in the soil and groundwater

More information

A NOVEL ION-EXCHANGE/ELECTROCHEMICAL TECHNOLOGY FOR THE TREATMENT OF AMMONIA IN WASTEWATER

A NOVEL ION-EXCHANGE/ELECTROCHEMICAL TECHNOLOGY FOR THE TREATMENT OF AMMONIA IN WASTEWATER A NOVEL ION-EXCHANGE/ELECTROCHEMICAL TECHNOLOGY FOR THE TREATMENT OF AMMONIA IN WASTEWATER ABSTRACT Leonard P. Seed, M.Sc., P.Eng., Enpar Technologies Inc. * Daren D. Yetman, A.Sc.T., Enpar Technologies

More information

Introduction to Waste Treatment Technologies. Contents. Household waste

Introduction to Waste Treatment Technologies. Contents. Household waste Contents Introduction to waste treatment technologies 3 Section 1: The treatment of recyclable waste 4 Bulking facilities 5 Materials Reclamation Facility (MRF) 6 Reuse and recycling centres 8 Composting

More information

The City of Boulder 75 th Street Wastewater Treatment Facility

The City of Boulder 75 th Street Wastewater Treatment Facility The City of Boulder 75 th Street Wastewater Treatment Facility Wastewater Collection and Treatment The Foundation of Public Health Wastewater Collection Boulder s wastewater collection system, also known

More information

Characterizing Beauty Salon Wastewater for the Purpose of Regulating Onsite Disposal Systems

Characterizing Beauty Salon Wastewater for the Purpose of Regulating Onsite Disposal Systems Characterizing Beauty Salon Wastewater for the Purpose of Regulating Onsite Disposal Systems Fred Bowers 1,2, Ph.D. New Jersey Department of Environmental Protection Division of Water Quality August 14,

More information

Orange County Sanitation District

Orange County Sanitation District Orange County Sanitation District The Orange County Sanitation District operates large wastewater treatment plants in Fountain Valley and Huntington Beach, CA. These plants treat about 230 million gallons

More information

HUBER Vacuum Rotation Membrane VRM Bioreactor

HUBER Vacuum Rotation Membrane VRM Bioreactor HUBER Vacuum Rotation Membrane VRM Bioreactor VRM The rotating plate membrane for clean water applications. The future-oriented solution designed for the ever increasing requirements in wastewater treatment

More information

MANY ASPECTS OF DEALING WITH HIGH NITRATE CONCENTRATION WATER By: Nahed Ghbn Ph.D. Environmental and Sanitary Engineering Palestinian Water Authority

MANY ASPECTS OF DEALING WITH HIGH NITRATE CONCENTRATION WATER By: Nahed Ghbn Ph.D. Environmental and Sanitary Engineering Palestinian Water Authority MANY ASPECTS OF DEALING WITH HIGH NITRATE CONCENTRATION WATER By: Rebhy El-Sheikh M.Sc. Mechanical Engineering Palestinian Water Authority Nahed Ghbn Ph.D. Environmental and Sanitary Engineering Palestinian

More information

Module 16: The Activated Sludge Process - Part II Instructor Guide Answer Key

Module 16: The Activated Sludge Process - Part II Instructor Guide Answer Key Unit 1 Process Control Strategies Exercise Module 16: The Activated Sludge Process - Part II Instructor Guide Answer Key 1. What are the six key monitoring points within the activated sludge process? Ans:

More information

Royal Caribbean International Advanced Wastewater Purification Systems

Royal Caribbean International Advanced Wastewater Purification Systems Royal Caribbean International Advanced Wastewater Purification Systems Royal Caribbean International is installing advanced wastewater purification (AWP) systems on all of its ships. These technologically

More information

Chapter 14 Quiz. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 14 Quiz. Multiple Choice Identify the choice that best completes the statement or answers the question. Chapter 14 Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is NOT true regarding the Chesapeake Bay? a. it is one of many small

More information

STOCKMEIER water chemicals Strong bonds for clear water

STOCKMEIER water chemicals Strong bonds for clear water STOCKMEIER water chemicals Strong bonds for clear water Water a strong compound for life Why H O is so unique Water, the source of all life. Without water, life would never have developed on our planet

More information

Iron and Manganese BACTERIA AND IRON AND MANGANESE

Iron and Manganese BACTERIA AND IRON AND MANGANESE Iron and Manganese Iron and manganese control is the most common type of municipal water treatment in Minnesota. Iron and manganese occur naturally in groundwater. Neither element causes adverse heath

More information

Phosphorus Removal. Wastewater Treatment

Phosphorus Removal. Wastewater Treatment Phosphorus Removal In Wastewater Treatment by Derek Shires (512) 940-2393 Derek.Shires@ett-inc.com Why do we care? Eutrophication of surface water - Especially reservoirs Maximum agronomic uptake - Limiting

More information

Bioremediation of contaminated soil. Dr. Piyapawn Somsamak Department of Environmental Science Kasetsart University

Bioremediation of contaminated soil. Dr. Piyapawn Somsamak Department of Environmental Science Kasetsart University Bioremediation of contaminated soil Dr. Piyapawn Somsamak Department of Environmental Science Kasetsart University Outline Process description In situ vs ex situ bioremediation Intrinsic biodegradation

More information

OPTIMIZING BIOLOGICAL PHOSPHORUS REMOVAL FROM AN SBR SYSTEM MIDDLEBURY, VT. Paul Klebs, Senior Applications Engineer Aqua-Aerobic Systems, Inc.

OPTIMIZING BIOLOGICAL PHOSPHORUS REMOVAL FROM AN SBR SYSTEM MIDDLEBURY, VT. Paul Klebs, Senior Applications Engineer Aqua-Aerobic Systems, Inc. OPTIMIZING BIOLOGICAL PHOSPHORUS REMOVAL FROM AN SBR SYSTEM ABSTRACT MIDDLEBURY, VT Paul Klebs, Senior Applications Engineer Aqua-Aerobic Systems, Inc. The Middlebury Wastwater Treatment Plant, located

More information

Table 1.1: Typical Characteristics of Anaerobically Digested Wastewater

Table 1.1: Typical Characteristics of Anaerobically Digested Wastewater Solar Detoxification of Distillery Waste Anil K. Rajvanshi and Nandini Nimbkar Nimbkar Agricultural Research Institute (NARI), P.O. Box 44, PHALTAN-415523, Maharashtra E-mail : nariphaltan@gmail.com Introduction

More information

GUIDELINES FOR LEACHATE CONTROL

GUIDELINES FOR LEACHATE CONTROL GUIDELINES FOR LEACHATE CONTROL The term leachate refers to liquids that migrate from the waste carrying dissolved or suspended contaminants. Leachate results from precipitation entering the landfill and

More information

Recycle treated effluent to meet looi of the facility's non-potable water needs. nutrient removal and activated carbon adsorption.

Recycle treated effluent to meet looi of the facility's non-potable water needs. nutrient removal and activated carbon adsorption. INNOVATIVE ADVANCED T R. U m SY- ACHIEVES "ZERO DISCBARGE" Dal6 E. Chaudhary, P.E., Vice President Robert E. Hagadorn, P.E., Senior Vice President Bazen and Savyer Environmental Engineers C Scientist,

More information

Advanced Treatment of Hazardous Wastes(1) Advanced Treatment of Hazardous Wastes(2) Advanced Environmental Chemistry. Design of Solid Waste Landfill

Advanced Treatment of Hazardous Wastes(1) Advanced Treatment of Hazardous Wastes(2) Advanced Environmental Chemistry. Design of Solid Waste Landfill Course Description (전체 개설 교과목 개요) Advanced Treatment of Hazardous Wastes(1) This course is concerned with the management of hazardous materials and wastes in depth. We will deal with the physico-chemical

More information

Biological Odour Control at Wastewater Treatment Facilities - the present and the future (let's forget the past) N.J.R.

Biological Odour Control at Wastewater Treatment Facilities - the present and the future (let's forget the past) N.J.R. Biological Odour Control at Wastewater Treatment Facilities - the present and the future (let's forget the past) N.J.R. (Bart) Kraakman 1 1 Technical University Delft, The Netherlands 1 Bioway Technologies

More information

Sewage Discharge in Estuaries: The case for Trapping.

Sewage Discharge in Estuaries: The case for Trapping. Sewage Discharge in Estuaries: The case for Trapping. Group N- Sarah Wrigley, Bryony Wood, Laura Wicks, Helen Whiting, Daniel Wood, David Willock, Nicholas Wilson, Joanna Williams, Luke Warwick and Alex

More information

ANAEROBIC/ANOXIC TANKS

ANAEROBIC/ANOXIC TANKS PROCESS DESCRIPTION In the anaerobic/anoxic tanks, wastewater is prepared for further treatment in the biological reactors. Denitrification and luxury uptake of phosphorus take place by mixing a food source

More information

PROPAK AquaBio Complete Water Restoration Systems

PROPAK AquaBio Complete Water Restoration Systems PROPAK AquaBio Complete Water Restoration Systems Conserving natural resources and lowering operating expenses is no longer an option, it is a necessity. Water, sewer and discharge fees are continuing

More information

Nutrient Removal at Wastewater Treatment Facilities. Nitrogen and Phosphorus. Gary M. Grey HydroQual, Inc. ggrey@hydroqual.com 201 529 5151 X 7167

Nutrient Removal at Wastewater Treatment Facilities. Nitrogen and Phosphorus. Gary M. Grey HydroQual, Inc. ggrey@hydroqual.com 201 529 5151 X 7167 Nutrient Removal at Wastewater Treatment Facilities Nitrogen and Phosphorus Gary M. Grey HydroQual, Inc. ggrey@hydroqual.com 201 529 5151 X 7167 1 Agenda Nitrification and Denitrification Fundamentals

More information

ULUDAĞ UNIVERSITY INSTITUTE OF SCIENCE ENVIRONMENTAL ENGINEERING 2013-2014 ACADEMIC YEAR INSTITUTE REQUIRED COURSES

ULUDAĞ UNIVERSITY INSTITUTE OF SCIENCE ENVIRONMENTAL ENGINEERING 2013-2014 ACADEMIC YEAR INSTITUTE REQUIRED COURSES GRADUATE PROGRAM ULUDAĞ UNIVERSITY ENVIRONMENTAL ENGINEERING 2013-2014 ACADEMIC YEAR INSTITUTE REQUIRED COURSES DOCTORAL PROGRAM OF Code Course Title T U L Credit ECTS Prerequisite Code Course Title T

More information

SYNERGISTIC APPLICATION OF ADVANCED PRIMARY AND SECONDARY WASTEWATER TREATMENT SYSTEMS

SYNERGISTIC APPLICATION OF ADVANCED PRIMARY AND SECONDARY WASTEWATER TREATMENT SYSTEMS SYNERGISTIC APPLICATION OF ADVANCED PRIMARY AND SECONDARY WASTEWATER TREATMENT SYSTEMS Published in Water and Waste Digest membrane issue, November 2008 Miroslav Colic; Chief Scientist, Clean Water Technology

More information

How To Clean Polluted Environment

How To Clean Polluted Environment Sasikumar, C.Sheela and Taniya Papinazath Environmental Management:- Bioremediation Of Polluted Environment in Martin J. Bunch, V. Madha Suresh and T. Vasantha Kumaran, eds., Proceedings of the Third International

More information

BIOREMEDIATION: A General Outline www.idem.in.gov Mitchell E. Daniels, Jr.

BIOREMEDIATION: A General Outline www.idem.in.gov Mitchell E. Daniels, Jr. TECHNICAL GUIDANCE DOCUMENT INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT BIOREMEDIATION: A General Outline www.idem.in.gov Mitchell E. Daniels, Jr. Thomas W. Easterly Governor Commissioner 100 N. Senate

More information

Experts Review of Aerobic Treatment Unit Operation and Maintenance. Bruce Lesikar Texas AgriLife Extension Service

Experts Review of Aerobic Treatment Unit Operation and Maintenance. Bruce Lesikar Texas AgriLife Extension Service Experts Review of Aerobic Treatment Unit Operation and Maintenance Bruce Lesikar Texas AgriLife Extension Service Overview Overview of Aerobic Treatment Units Installing for accessibility to system components

More information

Treatment options for hydrogen sulfide. Testing for hydrogen sulfide

Treatment options for hydrogen sulfide. Testing for hydrogen sulfide Sometimes hot water will have a sour smell, similar to that of an old damp rag. This smell often develops when the thermostat has been lowered to save energy or reduce the potential for scalding. Odor-causing

More information

AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE. Wrocław, POLAND, 02-2015.

AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE. Wrocław, POLAND, 02-2015. AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE Wrocław, POLAND, 02-2015. 002664 AN OFFER The ATON-HT SA co has developed technology to neutralize, and utilize hazardous wastes. This also includes

More information

Birmingham City University / Students Union Aspects and Impacts Register. Waste. Impacts description

Birmingham City University / Students Union Aspects and Impacts Register. Waste. Impacts description Birmingham City University / Students Union and Impacts Register Waste Production of non - hazardous waste Production of hazardous waste Storage of non - hazardous waste Potential for waste to be disposed

More information

Brewery Wastewater: 2010 Water and Wastewater Conference. 11.02.2011 Page 1

Brewery Wastewater: 2010 Water and Wastewater Conference. 11.02.2011 Page 1 Brewery Wastewater: Solutions for the Problem By Fred M. Scheer 2010 Water and Wastewater Conference Madison, WI 11.02.2011 Page 1 vr74 What We Will Discuss: Biochemical i Oxygen Demand (BOD): Where does

More information

CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER

CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER There are a number of technologies that are being use to remediate contaminated groundwater. The choice of a certain remediation technology

More information

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS )

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS ) Page 1 of 76 1.0 PURPOSE The purpose of the Wastewater Treatment System is to remove contaminates from plant wastewater so that it may be sent to the Final Plant Effluent Tank and eventually discharged

More information

Rehabilitation of Wastewater Treatment Plant of Sakhnin City in Israel by Using Advanced Technologies

Rehabilitation of Wastewater Treatment Plant of Sakhnin City in Israel by Using Advanced Technologies Rehabilitation of Wastewater Treatment Plant of Sakhnin City in Israel by Using Advanced Technologies Yasar Avsar 1, Hussein Tarabeah 2, Shlomo Kimchie 3, Izzet Ozturk 4, Hadi Naamneh 2 1 Yildiz Technical

More information

Septic Tank Maintenance Information

Septic Tank Maintenance Information Septic Tank Maintenance Information This section has been adapted from materials developed by the Rouge RAP Advisory Council On-site Septic Subcommittee, which included representatives from Oakland, Wayne

More information

Iron and manganese are two similar elements

Iron and manganese are two similar elements L-5451 2-04 Drinking Water Problems: Iron and Manganese Mark L. McFarland, Associate Professor and Extension Soil Fertility Specialist Monty C. Dozier, Assistant Professor and Extension Water Resources

More information

Partnering with Nature for a Cleaner Tomorrow

Partnering with Nature for a Cleaner Tomorrow VERDE ENVIRONMENTAL, INC. HOME OF Emergency Liquid Spill Control Verde Environmental, Inc. 9223 Eastex Freeway Houston, TX 77093 Office: 713.691.6468 Toll Free: 800.626.6598 Fax: 713.691.2331 www.micro-blaze.com

More information

Current version : 2.0.1, issued: 29.08.2012 Replaced version: 2.0.0, issued: 07.03.2012 Region: GB

Current version : 2.0.1, issued: 29.08.2012 Replaced version: 2.0.0, issued: 07.03.2012 Region: GB SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifier Trade name Easy Glide Gleitmittel 1.2 Relevant identified uses of the substance or mixture and uses

More information

Removing Heavy Metals from Wastewater

Removing Heavy Metals from Wastewater Removing Heavy Metals from Wastewater Engineering Research Center Report David M. Ayres Allen P. Davis Paul M. Gietka August 1994 1 2 Removing Heavy Metals From Wastewater Introduction This manual provides

More information

CERTIFICATION TO OPERATE WATER AND WASTEWATER TREATMENT SYSTEMS APPLICATION INSTRUCTIONS

CERTIFICATION TO OPERATE WATER AND WASTEWATER TREATMENT SYSTEMS APPLICATION INSTRUCTIONS COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION STATE BOARD FOR CERTIFICATION OF WATER AND WASTEWATER SYSTEMS OPERATORS CERTIFICATION TO OPERATE WATER AND WASTEWATER TREATMENT SYSTEMS

More information

Environmental Engineering Professors Cal (Chair of Department), Richardson Associate Professor Huang Adjunct Faculty Brady, Hendrickx

Environmental Engineering Professors Cal (Chair of Department), Richardson Associate Professor Huang Adjunct Faculty Brady, Hendrickx Environmental Engineering Professors Cal (Chair of Department), Richardson Associate Professor Huang Adjunct Faculty Brady, Hendrickx Degrees Offered: B.S. in Environmental Engineering; M.S. in Environmental

More information

REVISION NO : 3 August 2010

REVISION NO : 3 August 2010 1. PRODUCT AND COMPANY IDENTIFICATION Product Name Magnesium Powder Chemical Symbol Mg CAS No 7439-95-4 EINECS No 231-104-6 Supplier Name & Address THE METAL POWDER COMPANY LTD Thirumangalam - 625706 Tamil

More information

How to measure Ammonia and Organic Nitrogen: Kjeldahl Method

How to measure Ammonia and Organic Nitrogen: Kjeldahl Method World Bank & Government of The Netherlands funded Training module # WQ - 38 How to measure Ammonia and Organic Nitrogen: Kjeldahl Method New Delhi, March 2000 CSMRS Building, 4th Floor, Olof Palme Marg,

More information

Nature's Cleaning Process

Nature's Cleaning Process Nature's Cleaning Process Students learn how a septic system cleans wastewater by performing an experiment. Level(s): 6-8 Subject(s): Physical Science, Chemistry, Life Science Virginia SOLs: 6.5 f, g;

More information

TREATMENT OF SANITARY SEWER OVERFLOW

TREATMENT OF SANITARY SEWER OVERFLOW TREATMENT OF SANITARY SEWER OVERFLOW WITH FIXED MEDIA BIOREACTORS J. Tao, K. M. Mancl, O. H. Tuovinen ABSTRACT. Fixed media bioreactors (biofilters) are a promising and proven technology used for wastewater

More information

Natural Resources. Air and Water Resources

Natural Resources. Air and Water Resources Natural Resources Key Concepts Why is it important to manage air and water resources wisely? How can individuals help manage air and water resources wisely? Air and Water Resources What do you think? Read

More information

A HOMEOWNERS GUIDE ON-SITE SEWAGE MANAGEMENT SYSTEMS

A HOMEOWNERS GUIDE ON-SITE SEWAGE MANAGEMENT SYSTEMS GEORGIA DEPARTMENT OF HUMAN RESOURCES ENVIRONMENTAL HEALTH SECTION A HOMEOWNERS GUIDE TO ON-SITE SEWAGE MANAGEMENT SYSTEMS March 12, 2002 WHAT IS AN ON-SITE SEWAGE MANAGEMENT SYSTEM An on-site sewage management

More information

THE NWF WATER PURIFICATION PROCESS FRESH WATER IN A NATURAL WAY. Esko Meloni Ferroplan Oy

THE NWF WATER PURIFICATION PROCESS FRESH WATER IN A NATURAL WAY. Esko Meloni Ferroplan Oy THE NWF WATER PURIFICATION PROCESS FRESH WATER IN A NATURAL WAY Esko Meloni Ferroplan Oy 1 The NWF Water Purification Process: list of contents 1. NWF biological purification of groundwater Iron and manganese

More information

1. Product and Company Identification

1. Product and Company Identification Material Safety Data Sheet Oligonucleotide (unmodified and modified) English 1 / 7 1. Product and Company Identification 1.1 Product identifier Chemical Name / Trade Name: Synthetic Nucleic Acid (Oligonucleotide)

More information

This fact sheet provides an overview of options for managing solid

This fact sheet provides an overview of options for managing solid What Is Integrated Solid Waste Management? This fact sheet provides an overview of options for managing solid waste, identifies the important issues you should consider when planning for solid waste management,

More information

Water Purification Treatment. General Information. Water Purification Treatment Business of the Teijin Group. Water. Purification Treatment

Water Purification Treatment. General Information. Water Purification Treatment Business of the Teijin Group. Water. Purification Treatment Business of the Teijin Group General Information Teijin's Technologies and Their Features Core Technologies Environmentally Friendly Biological Technologies Greater Potential for Reuse Advanced Technologies

More information

Cambridge Wastewater Treatment Facility

Cambridge Wastewater Treatment Facility Cambridge Wastewater Treatment Facility Emergency Situations If you have a water or sewer emergency that relates to the City s utility system call the Public Works office at 763-689-1800 on normal working

More information

Solid waste management

Solid waste management Solid waste management Introduction to solid waste management Solid waste is the unwanted or useless solid materials generated from combined residential, industrial and commercial activities in a given

More information

Facility Classification Standards

Facility Classification Standards Facility Classification Standards Approval Date: April 3, 2009 Effective Date: April 3, 2009 Approved By: Nancy Vanstone, Deputy Minister Version Control: Replaces Facility Classification Standards dated

More information

Drain to Drinking Water

Drain to Drinking Water Drain to Drinking Water Adapted from Project WET Curriculum and Activity Guide Subject: Science, Social Studies Target Grades: 6-8 Duration: one class period Materials Per group (2-3 students) 1 set of

More information

This Questionnaire is divided into 8 sections referring to different capacity areas on the safe use of wastewater in agriculture:

This Questionnaire is divided into 8 sections referring to different capacity areas on the safe use of wastewater in agriculture: Annex - II Questionnaire to support the Capacity Development Needs Assessment In the framework of the Capacity Development Project on Safe Use of Wastewater 1 in Agriculture Phase I The Food and Agriculture

More information

IDENTIFYING YOUR WASTE

IDENTIFYING YOUR WASTE United States Environmental Protection Agency EPA530-F-97-029 September 1997 http://www.epa.gov Solid Waste and Emergency Response IDENTIFYING YOUR WASTE THE STARTING POINT This brochure explains the methodology

More information

The First Step in Effluent Treatment

The First Step in Effluent Treatment ADVANCED OXIDATION PILOT PLANTS FOR WASTEWATER & GAS TREATMENT The First Step in Effluent Treatment OZONO ELETTRONICA INTERNAZIONALE S.R.L. has developed and tested a new advanced oxidation pilot plant,

More information

ENVIRONMENTAL ISSUES IN THE RENDERING INDUSTRY. Gregory L. Sindt, P.E. Environmental Engineer Bolton and Menk, Inc.

ENVIRONMENTAL ISSUES IN THE RENDERING INDUSTRY. Gregory L. Sindt, P.E. Environmental Engineer Bolton and Menk, Inc. Summary ENVIRONMENTAL ISSUES IN THE RENDERING INDUSTRY Gregory L. Sindt, P.E. Environmental Engineer Bolton and Menk, Inc. The rendering industry has a significant positive impact on environmental quality.

More information

Appendix D lists the Field Services Standard Operating Procedures. Appendix E lists the Biological Monitoring Standard Operating Procedures.

Appendix D lists the Field Services Standard Operating Procedures. Appendix E lists the Biological Monitoring Standard Operating Procedures. Page 16 of 87 3.3 Sample Collection, Storage and Preservation Figure 3 details required containers, sample volumes, preservation techniques, and holding times for proper sample collection. A discussion

More information

Saudi Aramco Project Development

Saudi Aramco Project Development Saudi Aramco Project Development Wastewater Treatment Facilities Jeddah Refinery And Marine Area December 2007 Facilities Planning Dept. OBJECTIVE: Provide an overview of the complexities of developing

More information

Aerobic Treatment Systems Guidance Document

Aerobic Treatment Systems Guidance Document Guidance Document NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER QUALITY BUREAU OF NONPOINT POLLUTION CONTROL JANUARY 2008 Page 2 of 14 TABLE OF CONTENTS A. PURPOSE 3 B. GENERAL CONDITIONS

More information

Collection and disposal of wastewater

Collection and disposal of wastewater 10 Collection and disposal of wastewater 10.1 Characteristics and hazards of wastewater from health-care establishments Wastewater from health-care establishments is of a similar quality to urban wastewater,

More information

CERTIFIED SEPTIC EVALUATION PREPARED FOR MATT HASHEM 1673 MT. MAJOR HWY, ALTON, NH 03810

CERTIFIED SEPTIC EVALUATION PREPARED FOR MATT HASHEM 1673 MT. MAJOR HWY, ALTON, NH 03810 DATE: May 31, 2013 N.H. LICENSED DESIGNER OF SUBSURFACE DISPOSAL SYSTEMS 216 Hill Road Phone & Fax: 934-6206 Franklin, NH 03235 Cell: 393-3085 CERTIFIED SEPTIC EVALUATION PREPARED FOR MATT HASHEM 1673

More information

MEMBRANE TECHNOLOGY TREATING OILY WASTEWATER FOR REUSE

MEMBRANE TECHNOLOGY TREATING OILY WASTEWATER FOR REUSE MEMBRANE TECHNOLOGY TREATING OILY WASTEWATER FOR REUSE Jeff Peeters, P.Eng. ZENON Environmental Inc. SAWEA 2005 Workshop Al-Khobar Holiday Inn Hotel, Saudi Arabia November 29, 2005 Presentation outline

More information

Who is responsible for making sure that wastewater is treated properly?

Who is responsible for making sure that wastewater is treated properly? WASTEWATER TREATMENT What is wastewater? Wastewater is water that has been used and must be treated before it is released into another body of water, so that it does not cause further pollution of water

More information

Safety Data Sheet. SECTION 1: Identification. SECTION 2: Hazard identification

Safety Data Sheet. SECTION 1: Identification. SECTION 2: Hazard identification Safety Data Sheet Copyright,2014,3M Company. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information

More information

Introduction. Creating Water Quality Confidence. Sample Communication and Guidance - Natural Treatment. Terminology Guidelines

Introduction. Creating Water Quality Confidence. Sample Communication and Guidance - Natural Treatment. Terminology Guidelines Introduction This document is intended to provide guidance for water utility managers related to creating water quality confidence, specifically related to implementing Supply Replenishment projects. The

More information

Sewerage Management System for Reduction of River Pollution

Sewerage Management System for Reduction of River Pollution Sewerage Management System for Reduction of River Pollution Peter Hartwig Germany Content page: 1 Introduction 1 2 Total emissions 3 3 Discharge from the wastewater treatment plants 4 4 Discharge from

More information

DOW CORNING CORPORATION Material Safety Data Sheet

DOW CORNING CORPORATION Material Safety Data Sheet Page: 1 of 7 1. IDENTIFICATION OF THE SUBSTANCE AND OF THE COMPANY Dow Corning Corporation South Saginaw Road Midland, Michigan 48686 24 Hour Emergency Telephone: Customer Service: Product Disposal Information:

More information

CHAPTER V: DISPOSAL OF WASTES CONTAMINATED WITH INFECTIOUS AGENTS

CHAPTER V: DISPOSAL OF WASTES CONTAMINATED WITH INFECTIOUS AGENTS CHAPTER V: DISPOSAL OF WASTES CONTAMINATED WITH INFECTIOUS AGENTS These biohazard waste disposal guidelines are designed to not only protect the public and the environment, but also laboratory and custodial

More information

Wastewater Reuse. Typical treated wastewater is:

Wastewater Reuse. Typical treated wastewater is: Wastewater Reuse Most metal finishing industries have in-house wastewater treatment to economically dispose of the acids, alkali, oils, and dissolved metals in the rinse water and occasional tank solution

More information

Town of New Castle Utility Department Introduction

Town of New Castle Utility Department Introduction Town of New Castle Utility Department Introduction Town of New Castle Utility Department Mission Statement Our commitment is to ensure that our customers receive high quality water and wastewater treatment

More information

Safety Data Sheet SOMAmer Reagent

Safety Data Sheet SOMAmer Reagent SECTION 1: Identification Safety Data Sheet SOMAmer Reagent 1.1 Product identifier Product name SOMAmer Reagent (aptamer) 1.2 Supplier s details Name Address Email SomaLogic, Inc. 2945 Wilderness Place

More information

Sewage and Wastewater Odor Control Dr. Giancarlo Riva, Ozono Elettronica Internazionale, Muggio, Italy

Sewage and Wastewater Odor Control Dr. Giancarlo Riva, Ozono Elettronica Internazionale, Muggio, Italy Introduction Sewage and Wastewater Odor Control Dr. Giancarlo Riva, Ozono Elettronica Internazionale, Muggio, Italy Sewage and industrial plants located near residential areas can be subject to political

More information

Understanding Septic Tank Systems

Understanding Septic Tank Systems Understanding Septic Tank Systems Sewage and effluent can contain a variety of human disease-causing microorganisms and parasites. Disease can be spread to humans from this material by direct contact or

More information

Material Safety Data Sheet Ampicillin, sodium salt MSDS

Material Safety Data Sheet Ampicillin, sodium salt MSDS Material Safety Data Sheet Ampicillin, sodium salt MSDS Section 1: Chemical Product and Company Identification Product Name: Ampicillin, sodium salt Catalog Codes: SLA1666 CAS#: 69-52-3 RTECS: XH8400000

More information

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. II - Technologies for Water Pollution Control - Wang Jianlong

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. II - Technologies for Water Pollution Control - Wang Jianlong TECHNOLOGIES FOR WATER POLLUTION CONTROL Wang Jianlong Tsinghua University, Beijing, 100084, Poeples Republic of China. Keywords: Activated sludge, Aerobic treatment, Anaerobic treatment, Biological treatment,

More information

In-situ Bioremediation of oily sediments and soil

In-situ Bioremediation of oily sediments and soil 1 Peter Werner, Jens Fahl, Catalin Stefan DRESDEN UNIVERSITY OF TECHNOLOGY In-situ Bioremediation of oily sediments and soil 2 WHAT IS OIL? MIXTURE of aliphatic and aromatic hydrocarbons Different composition

More information

TABLE OF CONTENTS 2. PHOSPHORUS AND NITROGEN IN WASTEWATER 3. PHOSPHORUS AND NITROGEN REMOVAL MECHANISM 4. PROCESS REQUIREMENT AND CONTROL FACTOR

TABLE OF CONTENTS 2. PHOSPHORUS AND NITROGEN IN WASTEWATER 3. PHOSPHORUS AND NITROGEN REMOVAL MECHANISM 4. PROCESS REQUIREMENT AND CONTROL FACTOR TABLE OF CONTENTS Submittal 1. INTRODUCTION 2. PHOSPHORUS AND NITROGEN IN WASTEWATER 3. PHOSPHORUS AND NITROGEN REMOVAL MECHANISM 3.1 Chemical Phosphorus Removal 3.2 Biological Phosphorus Removal 3.2.1

More information

RULE 8-8 - ORGANIC COMPOUNDS - WASTEWATER COLLECTION AND SEPARATION SYSTEMS

RULE 8-8 - ORGANIC COMPOUNDS - WASTEWATER COLLECTION AND SEPARATION SYSTEMS BAY AREA AIR QUALITY MANAGEMENT DISTRICT RULE 8-8 - ORGANIC COMPOUNDS - WASTEWATER COLLECTION AND SEPARATION SYSTEMS (ADOPTED: January 17, 1979) (AMENDED: November 1, 1989; October 6, 1993; June 15, 1994;

More information

Glossary of Wastewater Terms

Glossary of Wastewater Terms Glossary of Wastewater Terms Activated Sludge Sludge that has undergone flocculation forming a bacterial culture typically carried out in tanks. Can be extended with aeration. Advanced Primary Treatment

More information

SEPTIC SYSTEMS. 1. Building sewer connects the building plumbing to the septic tank.

SEPTIC SYSTEMS. 1. Building sewer connects the building plumbing to the septic tank. SEPTIC SYSTEMS Who Has A Septic System? Approximately 30 percent of Connecticut s population is served by on-site subsurface sewage disposal systems (a.k.a. septic systems). This means a large percentage

More information

Georgia Department of Public Health. Georgia Onsite Sewage Management Systems. Background and Use of Onsite Wastewater Treatment Systems in Georgia

Georgia Department of Public Health. Georgia Onsite Sewage Management Systems. Background and Use of Onsite Wastewater Treatment Systems in Georgia Georgia Department of Public Health Georgia Onsite Sewage Management Systems Background and Use of Onsite Wastewater Treatment Systems in Georgia Background On-site sewage management systems are designed

More information

Chemistry at Work. How Chemistry is used in the Water Service

Chemistry at Work. How Chemistry is used in the Water Service Chemistry at Work How Chemistry is used in the Water Service WATER TREATMENT Everyday, more than 100 water treatment works in Northern Ireland put approximately 680 million litres of water into the supply

More information

Laboratory Hazardous Waste Disposal Guidelines

Laboratory Hazardous Waste Disposal Guidelines Satellite Accumulation Area (SAA) For safety and environmental reasons, hazardous waste must be stored in a designated "Satellite Accumulation Area." These areas must be inspected weekly for container

More information

Inventory of Performance Monitoring Tools for Subsurface Monitoring of Radionuclide Contamination

Inventory of Performance Monitoring Tools for Subsurface Monitoring of Radionuclide Contamination Inventory of Performance Monitoring Tools for Subsurface Monitoring of Radionuclide Contamination H. Keith Moo-Young, Professor, Villanova University Ronald Wilhelm, Senior Scientist, U.S. EPA, Office

More information

New York State Department of Environmental Conservation 625 Broadway, Albany, NY 12233 www.dec.ny.gov. Environmental Self Audit For Small Businesses

New York State Department of Environmental Conservation 625 Broadway, Albany, NY 12233 www.dec.ny.gov. Environmental Self Audit For Small Businesses New York State Department of Environmental Conservation 625 Broadway, Albany, NY 12233 www.dec.ny.gov Environmental Self Audit For Small Businesses Disclaimer The materials in this document are intended

More information

6 Chemicals from human settlements

6 Chemicals from human settlements 6 Chemicals from human settlements 6.1 Introduction The world is becoming increasingly urban, particularly in developing countries. The transition of people from rural areas to cities represents a major,

More information