potential in the centre of the sphere with respect to infinity.


 Adela James
 2 years ago
 Views:
Transcription
1 Umeå Universitet, Fysik 1 Vitaly Bychkov Prov i fysik, Electricity and Waves, , kl Hjälpmedel: Students can use any book. Define the notations you are using properly. Present your arguments in details. Good luck! 1) Consider a sphere of radius R with charge distributed as 0 r / R. Find electric potential in the centre of the sphere with respect to infinity. 2) Consider a cylindrical conductor consisting of two coaxial metal cylinders of resistivities 1 (at a r d ) and 2 (at Find the resistance between the surfaces d r b) and length as shown in Fig. 1. r a and r b. b d a Fig. 1.
2 Umeå Universitet, Fysik 2 Vitaly Bychkov I z y x D Fig. 2 3) An infinitely long metal plate of width D (shown in Fig. 2) carries a current I. The current is distributed over the plate as K K x / D. Here K is the surface current 0 density, with di Kdx. Find magnetic field B at the point (; 0; 0). 4) Consider the circuit of alternating current shown in Fig. 3. Find impedance. C R Fig. 3. 5) A source of light of frequency f is placed at a distance behind an obstacle with two pointholes as shown in Fig. 4. The source is placed at the same height as the lower hole. The upper hole is at the height d. The resulting picture is observed on a screen at the same distance from the obstacle. Find position of the first interference maximum along the yaxis. Find the distance y to the second maximum. To simplify the calculations
3 Umeå Universitet, Fysik 3 Vitaly Bychkov you may use the condition with d and the relation / 2 for 1. y d x Fig. 4.
4 Umeå Universitet, Fysik 4 Vitaly Bychkov Prov i fysik, Electricity and Waves, , kl Hjälpmedel: Students can use any book. Define the notations you are using properly. Present your arguments in details. Good luck! 1) Consider a charged wire of the shape shown in Fig. 1 with uniform linear charge density. Find the electric field E in the coordinate origin. b R a y b a a b x Fig. 1. Fig. 2. 2) Consider a cylindrical capacitor consisting of two coaxial metal cylinders of radii a and b and length. In between them, at radii a r R, there is a layer of dielectric with the dielectric constant as shown in Fig. 2. Find the capacitance of the system. 3) Consider an infinitely long cylinder of radius R with current along the cylinder axis distributed as j j r / R. The distribution is rotationally symmetric. Find magnetic field 0 both inside and outside the cylinder. (4 p)
5 Umeå Universitet, Fysik 5 Vitaly Bychkov 4) Consider the circuit of alternating current shown in Fig. 3. Find impedance. C R Fig. 3. 5) A fisherman (of height h ) stands by a lake of depth d. At the bottom of the lake, the fisherman sees a fish at the distance the fish, f? The refraction coefficient of water is n. I, as shown in Fig. 4. What is the real distance to h d f I Fig. 4.
6 Umeå Universitet, Fysik 6 Vitaly Bychkov Prov i fysik, Elektricity and Waves, Alexandr Talyzin, Umeå University. Define your notations clearly and explicitly. Your problem solutions must include the detailed steps (not just the final result). Though you can use the textbook, you cannot refer to intermediate results of the book when presenting your solutions. Handbooks allowed but not lecture notes. Solution of any problem should start from basic equations. Good luck! 1. Figure 1 shows three infinitely long wires with currents I 1, I 2 and I 3. Distance AB=BC= 5 cm Currents I 1 =I 2 =I and direction is away from observer (as noted in figure), current I 3 =2I and direction is towards observer. Find a point on the line AC for which the magnetic field B is equal to zero. Figure 1.
7 Umeå Universitet, Fysik 7 Vitaly Bychkov 2. Uniformly charged line with charge density λ has configurations shown in Figure 2 R is radius of arc and R is considered much smaller compared to the length of the line. Find modulus of electric field vector E in the point O shown in Figure2. Figure 2 3. ong straight wire with current I is in the same plane with contour which consists of wire with rails and sliding bar (see figure 3). The length of sliding bar is and resistance is R. The bar moves away from wire with current with velocity υ. Find current induced in the contour as a function of distance r between wire and sliding bar. Selfinduction of contour and resistance of other wires in the contour can be neglected. Figure 3.
8 Umeå Universitet, Fysik 8 Vitaly Bychkov 4. Converging lens with f 1 = 15 cm is 40 cm in front of diverging lens with f 2 =8 cm Draw rays diagrams, locate final image and find transverse magnification for object placed in front of first lens on the distance p 1 =30 cm 5. Calculate total impedance and phase angle for alternating current contour shown in Figure 4. Parameters of contour elements are: C=0.5 µf, R=10 kω, =10H. Current parameters f=60 Hz and V=120 V. Figure 4.
Objectives for the standardized exam
III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction
More information104 Practice Exam 23/21/02
104 Practice Exam 23/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A nonzero
More informationProblem 4.48 Solution:
Problem 4.48 With reference to Fig. 419, find E 1 if E 2 = ˆx3 ŷ2+ẑ2 (V/m), ε 1 = 2ε 0, ε 2 = 18ε 0, and the boundary has a surface charge density ρ s = 3.54 10 11 (C/m 2 ). What angle does E 2 make with
More informationCoefficient of Potential and Capacitance
Coefficient of Potential and Capacitance Lecture 12: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We know that inside a conductor there is no electric field and that
More information) and mass of each particle is m. We make an extremely small
Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, 6, kl 9.5. Hjälpmedel: Students may use any book including the textbook Thermal physics. Present your solutions in details: it will
More informationElectromagnetic Induction
Electromagnetic Induction Lecture 29: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Mutual Inductance In the last lecture, we enunciated the Faraday s law according to
More informationDefine the notations you are using properly. Present your arguments in details. Good luck!
Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, 004, kl 9.005.00 jälpmedel: Students may use any book(s) including the textbook Thermal physics. Minor notes in the books are also
More informationNAME. and 2I o. (1) Two long wires carry magnetic fields I o. , where I o
(1) Two long wires carry magnetic fields I o and 2I o, where I o is a constant. The two wires cross at the origin (but without making any electrical connection), and lie in the xy plane. (a) Find the
More information6 J  vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J  vector electric current density (A/m2 ) M  vector magnetic current density (V/m 2 ) Some problems
More informationHW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely
More informationPhysics 1653 Exam 3  Review Questions
Physics 1653 Exam 3  Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but
More informationChapter 22: Electric Flux and Gauss s Law
22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we
More informationFall 12 PHY 122 Homework Solutions #10
Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the
More informationA Theoretical Model for Mutual Interaction between Coaxial Cylindrical Coils Lukas Heinzle
A Theoretical Model for Mutual Interaction between Coaxial Cylindrical Coils Lukas Heinzle Page 1 of 15 Abstract: The wireless power transfer link between two coils is determined by the properties of the
More informationPhysics 202 Spring 2010 Practice Questions for Chapters 2124
Note: Answer key is at end. Physics 202 Spring 2010 Practice Questions for Chapters 2124 1. A uniformly positively charged spherical conductor is placed midway between two identical uncharged conducting
More informationMASSACHUSETTS INSTINUTE OF TECHNOLOGY ESG Physics. Problem Set 9 Solution
MASSACHUSETTS INSTINUTE OF TECHNOLOGY ESG Physics 8. with Kai Spring 3 Problem 1: 37 and 8 Problem Set 9 Solution A conductor consists of a circular loop of radius R =.1 m and two straight, long sections,
More information1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole.
Exam Name 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. 2) Which of the following statements is correct? A) Earth's north pole is magnetic north. B) The north
More informationPhysics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings
1 of 11 9/7/2012 1:06 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library
More informationIMPEDANCE and NETWORKS. Kirchoff s laws. Charge inside metals. Skin effect. Impedance, Resistance, Capacitance, Inductance
IMPEDANCE and NETWORKS Kirchoff s laws Charge inside metals Skin effect Impedance, Resistance, Capacitance, Inductance Mutual Inductance, Transformers Stray impedance 1 ENGN4545/ENGN6545: Radiofrequency
More informationEinstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : ,
1 E L E C T R O S TAT I C S 1. Define lines of forces and write down its properties. Draw the lines of force to represent (i) uniform electric field (ii) positive charge (iii) negative charge (iv) two
More informationChapter 7: Polarization
Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces
More informationAn equivalent circuit of a loop antenna.
3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally
More information1 of 7 4/13/2010 8:05 PM
Chapter 33 Homework Due: 8:00am on Wednesday, April 7, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View] Canceling a Magnetic Field
More informationChapter 27 Magnetic Induction. Copyright 2008 Pearson Education Inc., publishing as Pearson AddisonWesley
Chapter 27 Magnetic Induction Motional EMF Consider a conductor in a Bfield moving to the right. In which direction will an electron in the bar experience a magnetic force? V e  V The electrons in the
More informationPHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
More informationChapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the
More informationPHY114 S11 Term Exam 3
PHY4 S Term Exam S. G. Rajeev Mar 2 20 2:0 pm to :45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.
More informationConsider a plate of finite width carrying an excess positive charge. In isolation, the charge will migrate to both surfaces.
3 Conductors 3.1 Electric field and electric potential in the cavity of a conductor Conductors (eg metals) are materials in which charges move freely, whereas insulators (eg glass, rubber, wood) are materials
More informationModule 3 : MAGNETIC FIELD Lecture 15 : Biot Savarts' Law
Module 3 : MAGNETIC FIELD Lecture 15 : Biot Savarts' Law Objectives In this lecture you will learn the following Study BiotSavart's law Calculate magnetic field of induction due to some simple current
More informationEdmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).
INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes
More informationExtra Questions  1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A
Extra Questions  1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated
More informationPhysics 122 (Sonnenfeld), Spring 2013 ( MPSONNENFELDS2013 ) My Courses Course Settings
Signed in as Richard Sonnenfeld, Instructor Help Sign Out Physics 122 (Sonnenfeld), Spring 2013 ( MPSONNENFELDS2013 ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library Essential
More information(b) Draw the direction of for the (b) Draw the the direction of for the
2. An electric dipole consists of 2A. A magnetic dipole consists of a positive charge +Q at one end of a bar magnet with a north pole at one an insulating rod of length d and a end and a south pole at
More informationElectrostatics. Ans.The particles 1 and 2 are negatively charged and particle 3 is positively charged.
Electrostatics [ Two marks each] Q1.An electric dipole with dipole moment 4 10 9 C m is aligned at 30 with the direction of a uniform electric field of magnitude 5 10 4 N C 1. Calculate the net force and
More informationModule 6 : Wave Guides. Lecture 41 : Transverse Electric and Magnetic Mode. Objectives. In this course you will learn the following
Objectives In this course you will learn the following Important features of Transverse Electric Waves. Fields for Transverse Magnetic (TM) Mode. Important features for Transverse Magnetic (TM) Mode. Important
More informationClicker Question. Two small objects each with a net charge of +Q exert a force of magnitude F on each other. F +Q
A hollow metal sphere is electrically neutral (no excess charge). A small amount of negative charge is suddenly placed at one point P on this metal sphere. If we check on this excess negative charge a
More informationCode number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.
Series ONS SET1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the
More informationChapter 24 Capacitance, Dielectrics, Electric Energy Storage. Copyright 2009 Pearson Education, Inc.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage Units of Chapter 24 Capacitors Determination of Capacitance Capacitors in Series and Parallel Electric Energy Storage Dielectrics Molecular
More informationChapter 13 Optics Light, Reflection, & Mirrors Facts about Light:
Name: Physics 11 Date: Chapter 13 Optics 13.1 Light, Reflection, & Mirrors Facts about Light: It is a form of Electromagnetic Energy It is a part of the Electromagnetic Spectrum and the only part we
More informationInduced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
More informationHome Work 9. i 2 a 2. a 2 4 a 2 2
Home Work 9 91 A square loop of wire of edge length a carries current i. Show that, at the center of the loop, the of the magnetic field produced by the current is 0i B a The center of a square is a distance
More informationA METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS
A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The
More informationA wave lab inside a coaxial cable
INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S01430807(04)76273X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera
More informationElectromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E and Dfields............................................. Electrostatic Force............................................2
More informationChapter 23. The Refraction of Light: Lenses and Optical Instruments
Chapter 23 The Refraction of Light: Lenses and Optical Instruments Lenses Converging and diverging lenses. Lenses refract light in such a way that an image of the light source is formed. With a converging
More informationExercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F
Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 802 Spring 2013 Conflict Exam Two Solutions Problem 1 (25 points): answers without work shown will not be given any credit A uniformly charged
More informationFall 12 PHY 122 Homework Solutions #8
Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i  6.0j)10 4 m/s in a magnetic field B= (0.80i + 0.60j)T. Determine the magnitude and direction of the
More informationElectromagnetic Waves
Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from timevarying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic
More informationACME STUDY POINT. is added in parallel. Are (a) the potential difference across C 1. and (b) the charge q 1. of C 1
QUESTION FOR SHORT ANSWER Q.1 The electric strength of air is about 30, 000 V/cm. By this we mean that when the electric field intensity exceeds this value, a spark will jump through the air. We say that
More informationEXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189196 Optics Bench a) For convenience of discussion we assume that the light
More informationChapter 25: Capacitance
Chapter 25: Capacitance Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone. Albert Einstein 25.1 Introduction Whenever
More informationPH 212 07312015 Physics 212 Exam3 Solution NAME: Write down your name also on the back of the package of sheets you turn in.
PH 1 73115 Physics 1 Exam3 Solution NAME: Write down your name also on the back of the package of sheets you turn in. SIGNATURE and ID: Return this hard copy exam together with your other answer sheets.
More informationProblem 6.11 The loop shown in P6.11 moves away from a wire carrying a current I 1 = 10 A at a constant velocity u = ŷ7.5 (m/s). If R = 10 Ω and the direction of I 2 is as defined in the figure, find I
More informationProfs. A. Petkova, A. Rinzler, S. Hershfield. Exam 2 Solution
PHY2049 Fall 2009 Profs. A. Petkova, A. Rinzler, S. Hershfield Exam 2 Solution 1. Three capacitor networks labeled A, B & C are shown in the figure with the individual capacitor values labeled (all units
More informationCONSTANT ELECTRIC CURRENT AND THE DISTRIBUTION OF SURFACE CHARGES 1
CONSTANT ELECTRIC CURRENT AND THE DISTRIBUTION OF SURFACE CHARGES 1 Hermann Härtel Guest scientist at Institute for Theoretical Physics and Astrophysics University Kiel ABSTRACT Surface charges are present,
More informationLab #1: Geometric Optics
Physics 123 Union College Lab #1: Geometric Optics I. Introduction In geometric optics, the ray approximation is combined with the laws of reflection and refraction and geometry to determine the location
More informationHandout 7: Magnetic force. Magnetic force on moving charge
1 Handout 7: Magnetic force Magnetic force on moving charge A particle of charge q moving at velocity v in magnetic field B experiences a magnetic force F = qv B. The direction of the magnetic force is
More informationPhysics 25 Exam 3 November 3, 2009
1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,
More informationPhys 102 Spg Exam No. 2 Solutions
Phys 102 Spg. 2008 Exam No. 2 Solutions I. (20 pts) A 10turn wire loop measuring 8.0 cm by 16.0 cm carrying a current of 2.0 A lies in the horizontal plane and is free to rotate about a horizontal axis
More information45. The peak value of an alternating current in a 1500W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8 hapter 8. 45. The peak value of an alternating current in a 5W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
More informationDEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING
SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2
More informationApril 29. Physics 272. Spring Prof. Philip von Doetinchem
Physics 272 April 29 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  411 Summary Object
More informationSample Question Paper. Class XII Physics. (Applicable for March 2015 Examination)
Sample Question Paper Class XII Physics (Applicable for March 2015 Examination) Time Allowed: 3 Hours Maximum Marks: 70 General Instructions 1. All questions are compulsory. There are 26 questions in all.
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the
More informationChapter 29 Electromagnetic Induction
Chapter 29 Electromagnetic Induction  Induction Experiments  Faraday s Law  Lenz s Law  Motional Electromotive Force  Induced Electric Fields  Eddy Currents  Displacement Current and Maxwell s Equations
More informationPHYSICS 102 EXAM #2  MULTIPLE CHOICE Name Choose the one alternative that best completes the statement or answers the question. March 31, 2005 1) The figure below shows 3 identical lightbulbs connected
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please
More informationInduction and Inductance
Induction and Inductance How we generate E by B, and the passive component inductor in a circuit. 1. A review of emf and the magnetic flux. 2. Faraday s Law of Induction 3. Lentz Law 4. Inductance and
More informationProblem 1 (25 points)
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2012 Exam Three Solutions Problem 1 (25 points) Question 1 (5 points) Consider two circular rings of radius R, each perpendicular
More informationAP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations
AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction  induced current a metal wire moved in a uniform magnetic field  the charges (electrons)
More informationUtilize the scientific method to solve physics related problems. Use mathematical reasoning to correctly interpret physics related problems.
AP Physics Course Syllabus: Advanced Placement Physics is a year long course that prepares students to take the AP Physics B exam in May of the school year. Students are expected to be excellent math students
More informationMultiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields
Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields 63 When a positive charge q is placed in the field created by two other charges Q 1 and Q 2, each a distance r away from q, the
More informationLast Name: First Name: Physics 102 Spring 2006: Exam #2 MultipleChoice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged
More informationPhysics 126 Practice Exam #3 Professor Siegel
Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force
More informationGauss's Law. Gauss's Law in 3, 2, and 1 Dimension
[ Assignment View ] [ Eðlisfræði 2, vor 2007 22. Gauss' Law Assignment is due at 2:00am on Wednesday, January 31, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.
More informationElectric Fields. Chapter 26 The Electric Field. Chapter 26 Goal: To learn how to calculate and use the electric field. Slide 262
Chapter 26 The Electric Field Electric Fields Chapter 26 Goal: To learn how to calculate and use the electric field. Slide 262 Electric Field Shows how the field acts on a POSTIVE test charge! E = Force/unit
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationHW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 24.P.021 (a) Find the energy stored in a 20.00 nf capacitor
More informationForce on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
More informationPhysics 2212 GH Quiz #4 Solutions Spring 2015
Physics 1 GH Quiz #4 Solutions Spring 15 Fundamental Charge e = 1.6 1 19 C Mass of an Electron m e = 9.19 1 31 kg Coulomb constant K = 8.988 1 9 N m /C Vacuum Permittivity ϵ = 8.854 1 1 C /N m Earth s
More informationElectric Fields and Gauss s Law law. January 21, 2014 Physics for Scientists & Engineers 2, Chapter 22 1
Electric Fields and Gauss s Law law January 21, 2014 Physics for Scientists & Engineers 2, Chapter 22 1 Announcements! First exam is next Tuesday, January 28 45 minute exam during lecture time You can
More informationFall 97 Test 1, P. 2
2102 Fall 97 Test 1 Fall 97 Test 1, P. 2 Fall 97 Test 1, P. 3 Fall 97 Test 1, P. 4 Fall 97 Test 1, P. 5 5. (10 points) A spherical rubber balloon has a charge uniformly distributed over is surface. The
More informationChapter 14 Magnets and Electromagnetism
Chapter 14 Magnets and Electromagnetism Magnets and Electromagnetism In the 19 th century experiments were done that showed that magnetic and electric effects were just different aspect of one fundamental
More informationPHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) 
More information2014/2 ENGINEERING DEPARTMENTS PHYSICS 2 RECITATION 4 (CAPACITANCE AND DIELECTRICS/ CURRENT&RESISTANCE and DIRECT CURRENT CIRCUITS)
2014/2 ENGINEERING DEPARTMENTS PHYSICS 2 RECITATION 4 (CAPACITANCE AND DIELECTRICS/ CURRENT&RESISTANCE and DIRECT CURRENT CIRCUITS) 1. An air filled capacitor consists of two parallel plates, each with
More informationExam 2 Practice Problems Part 1 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam Practice Problems Part 1 Solutions Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z
More informationEE 3324 Electromagnetics Laboratory
EE 3324 Electromagnetics Laboratory Experiment #2 Capacitors and Capacitance 1. Objective The objective of Experiment #2 is to investigate the concepts of capacitors and capacitance. The capacitance of
More informationPH2025D Final Comprehensive Exam (August 10, 2007)
NAME SCORE PH2025D Final Comprehensive Exam (August 0, 2007) You may not open the textbook nor notebook. A letter size information may be used. A calculator may be used. However, mathematics or physics
More informationphysics 112N electric charges, forces and fields
physics 112N electric charges, forces and fields static electricity like charges repel, unlike charges attract physics 112N 2 atomic origin of charge physics 112N 3 conductors and insulators materials
More informationElectromagnetism  Lecture 5. Capacitors & Electrostatic Energy
Electromagnetism  Lecture 5 Capacitors & Electrostatic Energy Examples of Capacitors Calculations of Capacitance Electrostatic Energy Introduction of Dielectrics General Result for Electrostatic Energy
More information2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions  2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 29a. Electromagnetic Induction Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the
More informationPHYSICAL QUANTITIES AND UNITS
1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them
More information! = "d# B. ! = "d. Chapter 31: Faraday s Law! One example of Faraday s Law of Induction. Faraday s Law of Induction. Example. ! " E da = q in.
Chapter 31: Faraday s Law So far, we e looked at: Electric Fields for stationary charges E = k dq " E da = q in r 2 Magnetic fields of moing charges d = µ o I # o One example of Faraday s Law of Induction
More informationModule 2 : Electrostatics Lecture 12 : Conductors and Dielectric
Module 2 : Electrostatics Lecture 12 : Conductors and Dielectric Objectives In this lecture you will learn the following Properties of capacitors fielled with dielectric Force on a dielectric Calculation
More informationLearning Objectives for AP Physics
Learning Objectives for AP Physics These course objectives are intended to elaborate on the content outline for Physics B and Physics C found in the AP Physics Course Description. In addition to the five
More informationAP R Physics C Electricity and Magnetism Syllabus
AP R Physics C Electricity and Magnetism Syllabus 1 Prerequisites and Purposes of AP R C E & M AP R Physics C Electricity and Magnetism is the second course in a twocourse sequence. It is offered in the
More informationHuman Exposure to Outdoor PLC System
1602 PIERS Proceedings, Marrakesh, MOROCCO, March 20 23, 2011 Human Exposure to Outdoor PLC System Vicko Doric 1, Dragan Poljak 1, and Khalil El Khamlichi Drissi 2 1 University of Split, Croatia 2 Blaise
More informationChapter 18 Electric Forces and Electric Fields. Key Concepts:
Chapter 18 Lectures Monday, January 25, 2010 7:33 AM Chapter 18 Electric Forces and Electric Fields Key Concepts: electric charge principle of conservation of charge charge polarization, both permanent
More information