Titan: The Solar System s Abiotic Petroleum Factory

Size: px
Start display at page:

Download "Titan: The Solar System s Abiotic Petroleum Factory"

Transcription

1 Titan: The Solar System s Abiotic Petroleum Factory J. Hunter Waite, Ph.D. Institute Scientist Space Science & Engineering Division Southwest Research Institute

2 Titan: The Solar System s Abiotic Petroleum Factory Motivation for Titan Studies: Titan s atmosphere is similar to Earth s early atmosphere Titan may help us understand the origin of life in the solar system Titan may help us unlock the mysteries to organic formation in other regions of our galaxy and universe

3 Cassini Huygens Measurements

4 Orbiter In Situ Measurements

5 Mass Spectrometry

6 Mass Spectrometry

7 Cassini Huygens Measurements

8 Orbiter Remote Sensing Measurements

9 Infrared Spectrometry

10 Cassini Huygens Measurements

11 Probe Measurements

12 Cassini Huygens Measurements

13 Orbiter Radar Measurements

14 Methane Cycle

15 Possibilities for Titan Geology: What s Cryo-Volcanism? Large rocky core; layers of liquid, water ice Abundant ammonia; melting point of water ice lowered by ±100ºC Tectonism could breach crust; fluid could reach surface Ammonia-water cryo-lava would erupt as gelatinous mass A Model of Titan s s Interior

16 Cryo Volcanism

17 High Latitude Lakes

18 Methane Cycle

19

20 Interstellar Clouds Organic Molecules in the Interstellar Medium, Comets and Meteorites: A Voyage from Dark Clouds to the Early Earth, Pascale Ehrenfreund & Steven B. Charnley, Annual Review of Astronomy & Astrophysics, 38:427-83, 2000

21 Stratospheric Composition

22 Titan Dunes Namid Desert Arabian Desert

23 Descent Sequence

24

25 Methane Cycle

26 Ion Neutral Mass Spectrometer About the mission and the instrument

27 Geometry of the T a, T b and T 5 trajectories: with respect to Titan

28 The Ion Neutral Mass Spectrometer The 2 INMS sources In this presentation: - Neutral densities from closed source - Ion densities from open source Note: A molecule of N 2 penetrating inside the closed source can be ionized and dissociated into N 2 and N and be observed in the detector on mass channels 28 and 14.

29 Atmospheric Structure Mass Spectrum recorded during T a N 2 CH 4 H 2

30 The Ion Neutral Mass Spectrometer produces ion and neutral mass spectra Ions Neutral Gases

31 Titan Neutral Species Density Profiles 1.E10 1.E09 density (cm^-3) 1.E08 1.E07 TA T5 T16 N 2 1.E06 CH 4 H 2 1.E altitude (km)

32 Titan Minor Neutral Species Density Profiles (All Flybys Co-added) 1.E07 density (cm^-3) 1.E06 1.E05 1.E04 C2H2 C2H4 C2H6 C3H4 C4H2 Ar C6H6 1.E altitude (km)

33 Relevance of INMS Observations Evolution of the atmosphere of Titan Outgassing of the interior Escape of gases from Titan Production of organic compounds Ion and neutral photochemsitry The role of the magnetospheric interacation

34 Evolution of the Atmosphere: Outgassing of the Interior The isotopes of Argon tell us about outgassing from the interior 40 Ar tells us how much of the volatile material has been outgassed from the interior 40 Ar = 0.8 ppm --> ~2% of interior volatiles are outgassed 40 Ar 36 Ar tells us how volatile materials like molecular nitrogen and methane were formed 36 Ar < 0.6 ppm --> most nitrogen is derived from ammonia 36 Ar

35 Evolution of the Atmosphere: Atmospheric Escape The isotopes of molecular nitrogen and methane tell us about escape of volatiles from the atmosphere The ratio of 14 N to 15 N in molecular 14 N 14 N nitrogen tells us how much of the atmosphere has escaped over 15 N 14 N geological time N The ratio of 12 C to 13 C in methane tells us about escape of methane and isotopic fractionation from photodissociation of methane 12 C H 4 13 C H 4

36 Evolution of the Atmosphere: Atmospheric Escape The isotopes of molecular nitrogen tell us about escape of nitrogen 14 N/ 15 N Isotopic Ratios by Flyby 300 The ratio of 14 N to 15 N in molecular nitrogen tells us how much of the atmosphere has escaped over geological time The change in the ratio as a function of altitude is due to diffusive separation in the presence of gravity isotopic ratio altitude (km) TA ingress TA egress T5 ingress T5 egress T16 ingress T16 egress

37 Evolution of the Atmosphere: Atmospheric Escape Methane isotopic ratios give us complimentary information 12 C/ 13 C Isotopic Ratios by Flyby isotopic ratio altitude (km) TA ingress TA egress T5 ingress T5 egress T16 ingress T16 egress

38 Evolution of the Atmosphere: Atmospheric Escape INMS also sees direct evidence of heating of the upper atmosphere of Titan by energetic particles from Saturn s magnetosphere Divergence between the thermal exospheric profiles and the INMS data (z>1600 km)

39 Evolution of the Atmosphere: Atmospheric Escape And these elevated coronal temperatures imply escape of nitrogen and methane

40 Evolution of the Atmosphere: Atmospheric Escape But not enough escape (10-4 ) to explain the implications of the measured isotopic ratio of molecular nitrogen Isotopic Ratio INMS value Terrestrial Reference 14 N/ 15 N C/ 13 C If we use the terrestrial 1 4 N/ 1 5 N as a reference this implies that over 70% of the Titan atmosphere has escaped over geological time, since the lighter isotope ( 1 4 N) escapes preferentially with regard to the heavier isotope, 1 5 N However, we note that in spite of the chemical loss of methane in the atmosphere and its escape from the atmosphere the value remains close to the terrestrial value implying resupply within the last 50 million years

41 Atmospheric Escape: Molecular Hydrogen from Methane Conversion Escapes H 2 ecapes three times faster than expected from Jean s escape Jean s escape Observed escape

42 Ion Neutral Mass Spectrometer Production of Complex Organics at High Altitude via Ion Neutral Chemistry

43

44 Complex Carbon Nitrile Chemistry Density (cm -3 ) CH CH 4 H 2 CH 5 C 6 H 6 C 3 H 4 C 4 H 2 HCNH N 2 Average Mass km C3s C4s Mass Number C6s C5s C7s The neutral composition at 1200 km in addition to the primary constituents N 2, CH 4, and H 2 includes a host of hydrocarbons: C 2 H 2, C 2 H 2, C 2 H 6,C 3 H 4, C 3 H 8, C 4 H 2, HCN, HC 3 N, C 2 N 2, and C 6 H 6. ==> TITAN S UPPER ATMOSPHERE IS A KEY SOURCE of CARBON NITRILE COMPOUNDS Correspondingly, the ionospheric composition has a complex hydrocarbon/nitrile chemistry that includes almost all possible hydrocarbon and nitrile species through C7.

45 IV.2 The Composition: photo- and electron impact ionization and dissociations Nitrogen Acetylene Ethylene Methane Ethane H, H 2, N, HCN, HC 3 N, C N 2 2

46 IV.3 The Composition: the main ion-neutral scheme The chemical scheme starts from the photo- and electron impact dissociation and ionization of Nitrogen and Methane Creation of the first key neutrals: C 2 H 4 and HCN Production of the major ions: H 2 CN, C 2 H 5, CH 3

47 IV.4 The Composition: the main ion-neutral scheme production rates Local time dependent production rates for C 2 H 4 Local time dependent production rates for H 2 CN

48 IV.5 The Composition: subsequent production of key hydrocarbons Production of hydrocarbons: C 2 H 2 CH 3 C 2 H 6 C 4 H 2 C 3 H 8, Local time dependent production rates for C 2 H 6

49 INMS: Neutrals (~ 1200 km) Species INMS (TA) CH x 10-2 C 2 H x 10-4 C 2 H x 10-4 C 3 H x 10-6 C 3 H x 10-6 Waite et al. 2005

50 IV.6 The Composition: production of heavy hydrocarbons and key ions Production of Hydro- Key carbons: ions: C3H 3 CH 5 C 3 H 4 C 2 H 3 C 6 H 6 C 3 H 5 C 6 H 7 Local time dependent production rates for c-c 6 H 6

51 IV.8 The Composition: neutral results local time dependent density profiles (1) N 2 CH 4 C 2 H 2 C 2 H 4

52 IV.10 The Composition: ion results local time dependent density profiles (1) Electron density Density of H 2 CN

53 IV.11 The Composition: ion results local time dependent density profiles (2) C 2 H 5 C 3 H 5

54 Ion Neutral Mass Spectrometer An Increased Role for the Magnetospheric Interaction and Nitrile Ion Chemistry

55 Solar Radiation

56 INMS: Ions ( km)

57 10000 IONOSPHERIC ALTITUDE PROFILES INMS T5 outbound 1000 HCNH C 2 H TOTAL 10 CH 5 NH 4? 1 C 4 H 3 C 5 H 5 N, C 6 H 7 C 3 H ALT (km) SZA (deg) Altitude 140 (km) TIME from CA (s) Density (cm -3 ) Electron Density TOT 18 Ne

58 Keller et al. model flowchart N 2 H hv, CH 4 CH CH e 4 5 H 2 hv, e H 2 C 5 H 5 N C 3 H 2 N N 2 hv, e N 2 hv, e N C x H y H odd mass C x H y NH even mass HCN CH 3 C 2 H 4 C 3 H 3 C 2 H 2 C 2 H 3 C 2 H 4 C 2 H 5 C 3 H 5 C 2 H 4 C 4 H 5 C 5 H 7 C 5 H 9 C 5 H 5 Black = CH 4 Red = C 2 H 2 Blue = C 2 H 4 Turquise = C 2 H 6 Orange = C 3 H 4 Plum = N Green = proton transfer HCNH C 6 H 5 C 4 H 3 C 4 H 2 C 7 H 7 C n H m C 6 H 7 C 3 H 4 C 11 H 9 C 2 H 2 C 2 H 3 C 9 H 9 C 4 H 2

59 INMS / Keller et al. model Missing masses: 18, 30, 42, 54, 56

60 INMS / new Vuitton and Yelle model

61 New model flowchart

62 Ion Neutral Mass Spectrometer Ultimate Fate of Complex Organics

63 Atmospheric Composition: Molar fractions estimated at 1174 km from the T a data (Closed source) Minor species determined from the mass spectral deconvolution with one sigma error. Species INMS-Derived Values Stratospheric Values (1) CH ±0.002 x x 10-2 H ±0.03 x x 10-3 C 2 H ±0.05 x x 10-6 C 2 H ±0.70 x ±0.08 x x 10-8 C 2 H ±0.06 x x 10-6 C 3 H ±0.22 x x 10-9 C 2 H 4 value depends on the value adopted for HCN.

64 Stratospheric Composition

65 Cat Scratches

66 Acknowledgements National Aeronautics and Space Administration European Space Agency Jet Propulsion Laboratory Cassini-Huygens Science Teams Visual Infrared Mapping Spectrometer Team Imaging Science Team Ion Neutral Mass Spectrometer Team Composite Infrared Spectrometer Team Gas Chromatograph Mass Spectrometer Team SwRI Communications Department Radar Team

67 Southwest Research Institute

Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology

Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology Saturn s Moon Titan: Cassini-Huygens Reveals a New World Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology The year 2005 will be remembered in the history of space exploration

More information

Isotopic Ratios In Titanʼs Atmosphere: Clues and Challenges

Isotopic Ratios In Titanʼs Atmosphere: Clues and Challenges Isotopic Ratios In Titanʼs Atmosphere: Clues and Challenges Titan Science Meeting# St Jacut de-la-mer, France, June 20 th 2011# Conor A. Nixon, # Department of Astronomy# University of Maryland College

More information

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets The Jovian Planets The Jovian planets are gas giants - much larger than Earth Sizes of Jovian Planets Planets get larger as they get more massive up to a point... Planets more massive than Jupiter are

More information

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets

More information

Galileo results: Io and Ganymede appear to have relatively large dipole magnetic fields Io s may be induced, but Ganymede s appears to be intrinsic

Galileo results: Io and Ganymede appear to have relatively large dipole magnetic fields Io s may be induced, but Ganymede s appears to be intrinsic Lecture 6 Galilean satellites of Jupiter-- miniature solar-system Io, Europa, Ganymede, Callisto Bulk density decreases with distance from Jupiter rock and metal, to densities appropriate for rock and

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Atmosphere. Overview of Earth s Atmosphere

Atmosphere. Overview of Earth s Atmosphere Atmosphere Overview of Earth s Atmosphere The atmosphere is comprised of of gases, consisting mostly of nitrogen and oxygen. It also contains lesser amounts of argon, carbon dioxide, and many other trace

More information

The Jovian Planets Pearson Education Inc., publishing as Pearson Addison-Wesley

The Jovian Planets Pearson Education Inc., publishing as Pearson Addison-Wesley The Jovian Planets 1 Great Exam Performance! Class average was 79.5% This is the highest average I ve ever had on any ASTR 100 exam Wonderful job! Exams will be handed back in your sections Don t let up;

More information

The atmospheres of different planets

The atmospheres of different planets The atmospheres of different planets Thomas Baron October 13, 2006 1 Contents 1 Introduction 3 2 The atmosphere of the Earth 3 2.1 Description and Composition.................... 3 2.2 Discussion...............................

More information

Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework

Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework Molecules of the Atmosphere The present atmosphere consists mainly of molecular nitrogen (N2) and molecular oxygen (O2) but it has dramatically changed in composition from the beginning of the solar system.

More information

Formation of the Solar System

Formation of the Solar System Formation of the Solar System Any theory of formation of the Solar System must explain all of the basic facts that we have learned so far. 1 The Solar System The Sun contains 99.9% of the mass. The Solar

More information

CHAPTER 6 THE TERRESTRIAL PLANETS

CHAPTER 6 THE TERRESTRIAL PLANETS CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.

More information

ASTR 380 Possibilities for Life on the Moons of Giant Planets

ASTR 380 Possibilities for Life on the Moons of Giant Planets Let s first consider the large gas planets: Jupiter, Saturn, Uranus and Neptune Planets to scale with Sun in background 67 62 14 The many moons of the outer planets.. Most of the moons are very small 1

More information

The Earth's Atmosphere. Layers of the Earth's Atmosphere

The Earth's Atmosphere. Layers of the Earth's Atmosphere The Earth's Atmosphere The atmosphere surrounds Earth and protects us by blocking out dangerous rays from the sun. The atmosphere is a mixture of gases that becomes thinner until it gradually reaches space.

More information

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question. Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy

More information

Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50)

Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50) mi (km) above sea level Atmospheric Layers Exosphere 250 (400) Thermosphere Ionosphere 50 (80) Mesosphere Ozone Layer 30 (50) 7 (12) Stratosphere Troposphere Atmospheric Layers Earth s atmosphere is held

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

More information

Using Spectral Data to Explore Saturn and Titan

Using Spectral Data to Explore Saturn and Titan Using Spectral Data to Explore Saturn and Titan Middle grades Lesson Summary Students compare known elemental spectra with spectra of Titan and Saturn s rings from a spectrometer aboard the NASA Cassini

More information

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Version B UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) Version B DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

Cassini-Huygens results on Titan s surface

Cassini-Huygens results on Titan s surface Research in Astron. Astrophys. 2009 Vol. 9 No. 3, 249 268 http://www.raa-journal.org http://www.iop.org/journals/raa INVITED REVIEWS Research in Astronomy and Astrophysics Cassini-Huygens results on Titan

More information

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented

More information

THE CASSINI ION AND NEUTRAL MASS SPECTROMETER (INMS) INVESTIGATION

THE CASSINI ION AND NEUTRAL MASS SPECTROMETER (INMS) INVESTIGATION THE CASSINI ION AND NEUTRAL MASS SPECTROMETER (INMS) INVESTIGATION J. H. WAITE 1,, JR., W. S. LEWIS 2,W.T. KASPRZAK 3,V.G. ANICICH 4, B. P. BLOCK 1,T.E. CRAVENS 5,G.G. FLETCHER 1,W.-H. IP 6,J.G. LUHMANN

More information

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7. Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

More information

Europa and Titan: Oceans in the Outer Solar System? Walter S. Kiefer, Lunar and Planetary Institute, Houston TX

Europa and Titan: Oceans in the Outer Solar System? Walter S. Kiefer, Lunar and Planetary Institute, Houston TX Europa and Titan: Oceans in the Outer Solar System? Walter S. Kiefer, Lunar and Planetary Institute, Houston TX Biologists believe that life requires the presence of some sort of liquid to serve as a medium

More information

Lesson 6: Earth and the Moon

Lesson 6: Earth and the Moon Lesson 6: Earth and the Moon Reading Assignment Chapter 7.1: Overall Structure of Planet Earth Chapter 7.3: Earth s Interior More Precisely 7-2: Radioactive Dating Chapter 7.5: Earth s Magnetosphere Chapter

More information

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Chapter 1: Moles and equations. Learning outcomes. you should be able to: Chapter 1: Moles and equations 1 Learning outcomes you should be able to: define and use the terms: relative atomic mass, isotopic mass and formula mass based on the 12 C scale perform calculations, including

More information

The Earth s magnetosphere

The Earth s magnetosphere The Earth s magnetosphere 1 Re-call: Earth s magnetosphere C. Russell, The solar wind interaction with the Earth s magnetosphere: Tutorial 2 Magnetospheres Term introduced by Thomas Gold in 1959 Not a

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1 Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

More information

TOURING THE SATURNIAN SYSTEM: THE ATMOSPHERES OF TITAN AND SATURN. 1. Introduction

TOURING THE SATURNIAN SYSTEM: THE ATMOSPHERES OF TITAN AND SATURN. 1. Introduction TOURING THE SATURNIAN SYSTEM: THE ATMOSPHERES OF TITAN AND SATURN TOBIAS OWEN 1 and DANIEL GAUTIER 2 1 Institute for Astronomy, University of Hawaii (E-mail: owen@ifa.hawaii.edu) 2 Observatoire de Meudon

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius Chapter 7 Our Planetary System 7.1 Studying the Solar System Our goals for learning:! What does the solar system look like?! What can we learn by comparing the planets to one another?! What are the major

More information

Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass

Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass Atomic Masses Chapter 3 Stoichiometry 1 atomic mass unit (amu) = 1/12 of the mass of a 12 C atom so one 12 C atom has a mass of 12 amu (exact number). From mass spectrometry: 13 C/ 12 C = 1.0836129 amu

More information

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

More information

Complex Organic Carbon on Abiotic Solar System Bodies: Titan as a model

Complex Organic Carbon on Abiotic Solar System Bodies: Titan as a model Complex Organic Carbon on Abiotic Solar System Bodies: Titan as a model The chemistry of the terrestrial environment is dominated by carbon. Carbon plays a critical role in the chemical balance of our

More information

Name: João Fernando Alves da Silva Class: 7-4 Number: 10

Name: João Fernando Alves da Silva Class: 7-4 Number: 10 Name: João Fernando Alves da Silva Class: 7-4 Number: 10 What is the constitution of the Solar System? The Solar System is constituted not only by planets, which have satellites, but also by thousands

More information

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8. Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:

More information

Lecture 10 Formation of the Solar System January 6c, 2014

Lecture 10 Formation of the Solar System January 6c, 2014 1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos Chapter 5 Light and Matter: Reading Messages from the Cosmos Messages Interactions of Light and Matter The interactions determine everything we see, including what we observe in the Universe. What is light?

More information

Titan Lake Probe. Traceability to Surveys and Reports

Titan Lake Probe. Traceability to Surveys and Reports Scien.fic Goals The primary scien.fic goals of the Titan Lake Probe are: SGa: To understand the formation and evolution of Titan and its atmosphere SGb: To study the lake-atmosphere interaction in order

More information

The Planets An HD Odyssey

The Planets An HD Odyssey Cassini Unlocking Saturn s Secrets The Cassini mission is an international cooperative effort involving NASA, the European Space Agency, and the Italian space agency Agenzia Spazia Italiano, as well as

More information

Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies.

Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies. Lecture 23: Terrestrial Worlds in Comparison Astronomy 141 Winter 2012 This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies. The small terrestrial planets have

More information

Getting the most from this book...4 About this book...5

Getting the most from this book...4 About this book...5 Contents Getting the most from this book...4 About this book....5 Content Guidance Topic 1 Atomic structure and the periodic table...8 Topic 2 Bonding and structure...14 Topic 2A Bonding....14 Topic 2B

More information

History of Mars Exploration. Telescopes Orbiters Landers Martian Meteorites

History of Mars Exploration. Telescopes Orbiters Landers Martian Meteorites Mars Remote Sensing Prepared for UTSA Remote Sensing by Danielle Wyrick Dept. of Earth, Material, and Planetary Sciences Southwest Research Institute October 24, 2005 History of Mars Exploration Telescopes

More information

IV. Molecular Clouds. 1. Molecular Cloud Spectra

IV. Molecular Clouds. 1. Molecular Cloud Spectra IV. Molecular Clouds Dark structures in the ISM emit molecular lines. Dense gas cools, Metals combine to form molecules, Molecular clouds form. 1. Molecular Cloud Spectra 1 Molecular Lines emerge in absorption:

More information

ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure,

ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure, ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure, density, and composition of the atmosphere constitutes atmospheric structure. These quantities also vary with season and location

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

CHE334 Identification of an Unknown Compound By NMR/IR/MS

CHE334 Identification of an Unknown Compound By NMR/IR/MS CHE334 Identification of an Unknown Compound By NMR/IR/MS Purpose The object of this experiment is to determine the structure of an unknown compound using IR, 1 H-NMR, 13 C-NMR and Mass spectroscopy. Infrared

More information

Absorption by atmospheric gases in the IR, visible and UV spectral regions.

Absorption by atmospheric gases in the IR, visible and UV spectral regions. Lecture 6. Absorption by atmospheric gases in the IR, visible and UV spectral regions. Objectives: 1. Gaseous absorption in thermal IR. 2. Gaseous absorption in the visible and near infrared. 3. Gaseous

More information

(3)

(3) 1. Organic compounds are often identified by using more than one analytical technique. Some of these techniques were used to identify the compounds in the following reactions. C 3 H 7 Br C 3 H 8 O C 3

More information

Radiometric Dating. This document last updated on 18-Apr-2012

Radiometric Dating. This document last updated on 18-Apr-2012 Page 1 of 14 EENS 2120 Tulane University Radiometric Dating This document last updated on 18-Apr-2012 Petrology Prof. Stephen A. Nelson Prior to 1905 the best and most accepted age of the Earth was that

More information

ATOMS. Multiple Choice Questions

ATOMS. Multiple Choice Questions Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)

More information

Chapter 6: Our Solar System and Its Origin

Chapter 6: Our Solar System and Its Origin Chapter 6: Our Solar System and Its Origin What does our solar system look like? The planets are tiny compared to the distances between them (a million times smaller than shown here), but they exhibit

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm Page 1 of 14 Amount of Substance Key terms in this chapter are: Element Compound Mixture Atom Molecule Ion Relative Atomic Mass Avogadro constant Mole Isotope Relative Isotopic Mass Relative Molecular

More information

The Second Planet in Our Solar System. Venus. By Dorothy.Yang Lucy.Xiao

The Second Planet in Our Solar System. Venus. By Dorothy.Yang Lucy.Xiao The Second Planet in Our Solar System Venus By Dorothy.Yang Lucy.Xiao venus Basic information about Venus.length of year.length of day.temperature.density.chemical composition of the atmosphere.chemical

More information

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc.

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc. Our Planetary System Earth, as viewed by the Voyager spacecraft 7.1 Studying the Solar System Our goals for learning: What does the solar system look like? What can we learn by comparing the planets to

More information

Chapter 7 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Planetary System Pearson Education, Inc.

Chapter 7 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Planetary System Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Planetary System 7.1 Studying the Solar System What does the solar system look like? What can we learn by comparing the planets to one another?

More information

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis Chapter 8 Formation of the Solar System What properties of our solar system must a formation theory explain? 1. Patterns of motion of the large bodies Orbit in same direction and plane 2. Existence of

More information

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

Planet Earth in Cross Section By Michael Osborn Fayetteville-Manlius HS

Planet Earth in Cross Section By Michael Osborn Fayetteville-Manlius HS Planet Earth in Cross Section By Michael Osborn Fayetteville-Manlius HS Objectives Devise a model of the layers of the Earth to scale. Background Planet Earth is organized into layers of varying thickness.

More information

The Solar System. The Outer Planets

The Solar System. The Outer Planets chapter 12 3 The Solar System section 3 The Outer Planets Before You Read What do you know about the outer planets Jupiter, Uranus, Saturn, Neptune, or Pluto? What would you like to learn? What You ll

More information

Corso di Fisica Te T cnica Ambientale Solar Radiation

Corso di Fisica Te T cnica Ambientale Solar Radiation Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He

More information

Chapter 13 Mass Spectrometry and Infrared Spectroscopy

Chapter 13 Mass Spectrometry and Infrared Spectroscopy Chapter 13 Mass Spectrometry and Infrared Spectroscopy Copyright 2011 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Overview of Mass Spectrometry Mass spectrometry

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood

More information

Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.

Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights. 1 Introduction to Chemistry Atomic Weights (Definitions) Chemical Calculations: The Mole Concept and Chemical Formulas AW Atomic weight (mass of the atom of an element) was determined by relative weights.

More information

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line Image taken by NASA Asteroids About 6,000 asteroids have been discovered; several hundred more are found each year. There are likely hundreds of thousands more that are too small to be seen from Earth.

More information

Lecture 1: A Brief Survey of the Atmosphere

Lecture 1: A Brief Survey of the Atmosphere Lecture 1: A Brief Survey of the Atmosphere Origins of the atmosphere Vertical structures of the atmosphere Weather maps Thickness of the Atmosphere (from Meteorology Today) 70% The thickness of the atmosphere

More information

Element of same atomic number, but different atomic mass o Example: Hydrogen

Element of same atomic number, but different atomic mass o Example: Hydrogen Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass

More information

Mass Spectrometry. Overview

Mass Spectrometry. Overview Mass Spectrometry Overview Mass Spectrometry is an analytic technique that utilizes the degree of deflection of charged particles by a magnetic field to find the relative masses of molecular ions and fragments.2

More information

Astronomy 100 Exam 2

Astronomy 100 Exam 2 1 Prof. Mo Exam Version A Astronomy 100 Exam 2 INSTRUCTIONS: Write your name and ID number on BOTH this sheet and the computer grading form. Use a #2 Pencil on the computer grading form. Be careful to

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

The Earth s Atmosphere

The Earth s Atmosphere THE SUN-EARTH SYSTEM III The Earth s Atmosphere Composition and Distribution of the Atmosphere The composition of the atmosphere and the way its gases interact with electromagnetic radiation determine

More information

Solar System Fact Sheet

Solar System Fact Sheet Solar System Fact Sheet (Source: http://solarsystem.nasa.gov; http://solarviews.com) The Solar System Categories Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Rocky or Gas Rocky Rocky Rocky Rocky

More information

NITROGEN OXIDES FORMATION in combustion processes COMBUSTION AND FUELS

NITROGEN OXIDES FORMATION in combustion processes COMBUSTION AND FUELS NITROGEN OXIDES FORMATION in combustion processes NITROGEN OXIDES FORMED DURING COMBUSTION N 2 O - nitrous oxide NO - nitric oxide NO 2 - nitrogen dioxide N = 14, O 2 =16, NO = 30, NO 2 = 46 CONTRIBUTION

More information

Q1. Hydrogen chloride (HCl) can be made by the reaction of hydrogen (H 2) with chlorine (Cl 2).

Q1. Hydrogen chloride (HCl) can be made by the reaction of hydrogen (H 2) with chlorine (Cl 2). Q. Hydrogen chloride (HCl) can be made by the reaction of hydrogen (H 2) with chlorine (Cl 2). (a) The diagrams represent molecules of hydrogen and chlorine. Draw a similar diagram to represent a molecule

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

THE SOLAR SYSTEM NAME. I. Physical characteristics of the solar system

THE SOLAR SYSTEM NAME. I. Physical characteristics of the solar system NAME I. Physical characteristics of the solar system THE SOLAR SYSTEM The solar system consists of the sun and 9 planets. Table 2 lists a number of the properties and characteristics of the sun and the

More information

The Earth System. The geosphere is the solid Earth that includes the continental and oceanic crust as well as the various layers of Earth s interior.

The Earth System. The geosphere is the solid Earth that includes the continental and oceanic crust as well as the various layers of Earth s interior. The Earth System The atmosphere is the gaseous envelope that surrounds Earth. It consists of a mixture of gases composed primarily of nitrogen, oxygen, carbon dioxide, and water vapor. The atmosphere and

More information

Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts

Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts Chapter 9 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts Asteroid Facts Asteroids are rocky leftovers of planet formation. The largest is Ceres, diameter ~1,000 km. There are 150,000

More information

The significance of trace constituents in the solar system

The significance of trace constituents in the solar system PAPER The significance of trace constituents in the solar system Sushil K. Atreya www.rsc.org/faraday_d Faraday Discussions Received 30th June 2010, Accepted 2nd July 2010 DOI: 10.1039/c005460g Trace or

More information

Test 2: Atomic Structure Review

Test 2: Atomic Structure Review Name: Monday, October 15, 2007 Test 2: Atomic Structure Review 1. Figure 1 The diagram shows the characteristic spectral line patterns of four elements. Also shown are spectral lines produced by an unknown

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Atmosphere SECTION 11.1 Atmospheric Basics In your textbook, read about the composition of the atmosphere. Circle the letter of the choice that best completes the statement. 1. Most of Earth s atmosphere

More information

Project SPECTRA! Spectroscopy, Astronomy, and Engineering. Erin Wood Alex Thom

Project SPECTRA! Spectroscopy, Astronomy, and Engineering. Erin Wood Alex Thom Project SPECTRA! Spectroscopy, Astronomy, and Engineering Erin Wood Alex Thom Light or the Electromagnetic spectrum www.nasa.gov Red: 620-750 nm Orange: 590-620 nm Yellow: 570-590 nm Green: 495-570 nm

More information

Advanced Subsidiary Unit 1: The Core Principles of Chemistry

Advanced Subsidiary Unit 1: The Core Principles of Chemistry Write your name here Surname Other names Edexcel GCE Centre Number Chemistry Advanced Subsidiary Unit 1: The Core Principles of Chemistry Candidate Number Thursday 13 January 2011 Morning Time: 1 hour

More information

Characteristics of the. thermosphere

Characteristics of the. thermosphere Characteristics of the Atmosphere. If you were lost in the desert, you could survive for a few days without food and water. But you wouldn't last more than five minutes without the ' Objectives Describe

More information

F321 THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom

F321 THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom Atomic Structure F32 TE STRUCTURE OF ATOMS ATOMS Atoms consist of a number of fundamental particles, the most important are... Mass / kg Charge / C Relative mass Relative Charge PROTON NEUTRON ELECTRON

More information

Chapter 14 Solutions

Chapter 14 Solutions Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute

More information

CHEMISTRY 113 EXAM 4(A)

CHEMISTRY 113 EXAM 4(A) Summer 2003 1. The molecular geometry of PF 4 + ion is: A. bent B. trigonal planar C. tetrahedral D. octahedral CHEMISTRY 113 EXAM 4(A) 2. The Cl-C-Cl bond angle in CCl 2 O molecule (C is the central atom)

More information

Calculation of Molar Masses. Molar Mass. Solutions. Solutions

Calculation of Molar Masses. Molar Mass. Solutions. Solutions Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements

More information

Chapter 2 The Periodic Table

Chapter 2 The Periodic Table Chapter 2 The Periodic Table Periodic Pattern Classification of the Elements A. Metals vs. Nonmetals (Before 1800) 1. Metals - Solids, Lustrous, Malleable, Ductile, Conductors 2. Nonmetals - Solids, Liquids,

More information

Solar System Overview

Solar System Overview Solar System Overview Planets: Four inner planets, Terrestrial planets Four outer planets, Jovian planets Asteroids: Minor planets (planetesimals) Meteroids: Chucks of rocks (smaller than asteroids) (Mercury,

More information

Composition of planets. Mercury

Composition of planets. Mercury The Solar System Solar System Nebular Hypothesis of Solar System Formation. Planets drawn to scale Distances not to scale Earth approximately 12,800 km diameter Earth is about 150,000,000 km from Sun Composition

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

THE ORGANIC AEROSOLS OF TITAN S ATMOSPHERE

THE ORGANIC AEROSOLS OF TITAN S ATMOSPHERE THE ORGANC AEROSOLS OF TTAN S ATMOSPHERE Christophe Sotin (1), Kenneth Lawrence (1), Patricia M. Beauchamp (1), Wayne Zimmerman (1) (1) Jet Propulsion Laboratory, California nstitute of Technology, 48

More information

Summary: Four Major Features of our Solar System

Summary: Four Major Features of our Solar System Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar

More information

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

More information