A Comparative Study of Medical Data Classification Methods Based on Decision Tree and System Reconstruction Analysis
|
|
|
- Anis White
- 10 years ago
- Views:
Transcription
1 IEMS Vol. 4, No., pp. 0-08, Jue 005. A Comparatve Study o Medcal Data Classcato Methods Based o Decso Tree ad System Recostructo Aalyss Tzug-I Tag Departmet o Iormato & Electroc Commerce Kaa Uversty, Tawa Tel: ext., E-mal: [email protected] Gag Zheg Departmet o Computer Scece Ta Uversty o Techology, Ta, Cha E-mal: [email protected] Yalou Huag Computer Scece Isttute Naka Uversty, Ta, Cha E-mal: [email protected] Guagu Shu Isttute o Systems Scece Chese Academy o Scece, Beg, Cha E-mal: [email protected] Pegtao Wag Departmet o Computer Scece Ta Uversty o Techology, Ta, Cha E-mal: [email protected] Abstract. Ths paper studes medcal data classcato methods, comparg decso tree ad system recostructo aalyss as appled to heart dsease medcal data mg. The data we study s collected rom patets wth coroary heart dsease. It has,73 records o 7 attrbutes each. We use the system-recostructo method to weght t. We use decso tree algorthms, such as ducto o decso trees (ID3), classcato ad regresso tree (C4.5), classcato ad regresso tree (CART), Ch-square automatc teracto detector (CHAID), ad exhausted CHAID. We use the results to compare the correcto rate, lea umber, ad tree depth o deret decso-tree algorthms. Accordg to the expermets, we kow that weghted data ca mprove the correcto rate o coroary heart dsease data but has lttle eect o the tree depth ad lea umber. Keywords: data mg, decso tree ad system aalyss, data classcato. INTRODUCTION Data mg techques have bee appled to medcal servces several areas, cludg predcto o eectveess o surgcal procedures, medcal tests, medcato, ad the dscovery o relatoshps amog clcal ad dagoss data (Prather et al., 997, Asladoga ad Mahaa, 988). Our study s cocered wth the aalyss o coroary heart dsease data. Coroary heart dsease has become more prevalet recet years, promptg : Correspodg Author
2 A Comparatve Study o Medcal Data Classcato Methods Based o Decso Tree ad System Recostructo Aalyss 03 scholars to devote more atteto to ts rsk actors. Early dagoss ad treatmet s oe o the best approaches to reducg the dsease s death rate. The paper uses data rom,73 coroary heart dsease patets cases. Each case cotas about 7 attrbutes. The data come rom a hosptal clc s observatos ad allow us to get a good classcato o patets status ad behavor, rom whch we ca determe the relatoshps amog the actors. We also wat to d a data mg method to aalyze the medcal data. We wll use a system-recostructo method to do data preprocessg ad use decso-tree algorthms to do the classcato. We wat to compare the classcato correcto rate o weghted ad ot weghted data, whch s preprocessed by the system-recostructo method. I ths paper, rst we troduce the system-recostructo method ad show how the coroary heart dsease data are to be processed, ad we dscuss the theory ad algorthms o decso trees, cludg, ID3, C4.5, CART, CHAID, ad Exhausted-CHAID. We also apply these methods to medcal data mg problems by desgg some expermets to compare the correcto rate, tree depth, ad lea umber o weghted ad ot weghted data gotte by decso tree.. Data-Preparato Methods Ths study uses the mxed varable system recostructo ad predcto method, whch s the most up-todate study harvest the eld o system theory to weght data o coroary heart dsease patets. We get the weght o every actor the data ad use the results the decso tree aalyss. The system recostructo aalyss used data mg s a kd o system aalyss method, based o the costrat aalyss theory o Ashby (965). Through the eort o may scetsts rom the Uted States, the Netherlads, Germay, ad Japa (Klr, 976), the leader, theory ad methodology archtecture (Cavallo ad Klr, 979) was prcpally establshed. At that tme, the ma cocers were how to better partto the whole system to sub-systems ad how to better esure the characterstcs o the whole system rom local characterstcs. Zwck (000) ad others have addressed the rst cocer. Approaches to the secod questo have bee developed by Joes (989), who desged a computato method that uses characters recostructo ad a codto ucto that relects system eatures to esure ma ad sub-system codtos (ma relects local). Accordg to the eed to study real-world problems, he developed a mxed-varable (cotuum varable, dscrete varable, ad classcato varable) actor-aalyss method through varable recostructo aalyss (Shu 997, 998). Ths method creases the precso o quattatve results ad makes the oudato o quattatve sythesze. At the same tme, he preseted recostructo-predcto, evaluato, optmzato, ad decso-support methods (Shu 997). These methods are applcable to may elds, cludg medce, evrometal studes, ecoomy ad ace, marketg strategy, dustral maagemet, ad talet predcto.. Theory Descrpto Our model to aalyze patets data ad get the weght o every actor s as ollows: () Compute the mportace degree o actor cogregate state quota level, maxmum ad mmum value. N * max Φ max (,,, ) kl, edc k l l k N * m Φ m (,,, ) k, l edc k l l k l Ω () l Ω () Where, edc s the ormato etropy dstace o property ucto betwee hypothess system ad orgal system, edc * /edc, Ω s all levels umber collecto o actor. () Compute the value geerated rom the mportace degree o actor cogregate state quota level or the sample T. N * ( T) edc [ k, l ( T),, l ( T)] k, l R Φ (3) (3) Compute the realzg degree o every quota level or sample T. Φ ( T ) mφ Φ ( T ) max Φ m Φ (4) We use Φ kl, ( T ), to orecast treds ad select the maxmum value o the orecastg level. k (5) Compute the orecastg value Whe tred orecastg at low levels Φ ( T) E + Φ ( T) E W ( T) Φ ( T) + Φ ( T), 0,,, W s the predcate value o sample T, E s low 0 level edge, E s mddle value. I case o tred orecastg at mddle levels, Φ ( T) E + Φ ( T) E + Φ ( T) E W ( T) Φ ( T) + Φ ( T) + Φ ( T), 0,,,,,3 E s hgh level edge, I case o tred orecastg at hgh levels, (4) (5) (6)
3 04 Tzug-I Tag Gag Zheg Yalou Huag Guagu Shu Pegtao Wag Φ ( T) E +Φ ( T) E W ( T) Φ ( T) + Φ ( T), 0,3,,3. Patet case dgtalzato Frst, we wll expla how we get the patet s data. The,73 patets data records clude the ollowg e groups: ache, allevato method, sg, persoal hstory, blood at, electrocardogram, ultrasoc cardogram (UCG), ad Holter. Parameters clude geder, temperamet, age, ache character, posto, tme, cause, pulse, blood pressure, amly hstory, smokg hstory, smokg amout, alcohol hstory, hgh blood pressure hstory, dabetes hstory, blood sugar, urc acd, ad arrhythma. Table shows our patet-case dgtalzato method. Table. Patet case dgtalzato Sg pulse Blood pressure Systole Blood pressure Dastole Speed (7) Rhythm V9 V0 V V V3 umber umber umber Tmes/s :yes -:o.3 Result o data recostructo aalyss Table. Patets actor weght sortg table Order Factor Factor weght (0-) Blood pressure systole hgh Cause o drkg Blood pressure dastole hgh Female Atral premature beats, Atral tachycarda Myocardal ezyme GOT serous Cause o sleepg Myocardal ezyme CKMB serous No takg glooe More locatos o ache : : : 7 Factors weght by recostructo aalyss s based o the real dagoss result. Because the pathogec o coroary heart dsease ad the pheomea dagosg are dversorm, some actors take a bg role the heart dsease o patets, whle others do ot. Thereore we get a weght table rom reco-structo aalyss that s based o the real dagoss result; t ca be used the ext phase o aalyss. Table s the weght lst or the actors o the sample problem..4 Data or ext aalyss Ater we use the system recostructo method to aalyze the patet s data, we get the actor weght, whch s mportat or the ext step our aalyss. Whe we dgtalze the data, we do ot cosder the relatoshp amog the actors. I act, they are related, ad ther degrees o mportace to coroary heart dsease are deret. Sce we have the weght o data, we ca process the orgal dgtalzed data wth the actor weght, ad the data wll be used the ext aalyss. The we get two data sets, weghted ad ot weghted, whch we use decso-tree aalyss ad our attempt to lear whch ca get better results. 3. Decso-tree method 3. Algorthm Descrpto The decso tree ducto algorthm has bee used broadly or several years. It s a approxmato dscrete ucto method ad ca yeld lots o useul expressos. It s oe o the most mportat methods or classcato. Ths algorthm s terms ollow the tree metaphor. It has a root, whch s the rst splt pot o the data attrbute or buldg a decso tree. It also has leaves, so that every path rom root to lea wll orm a rule that s easly uderstood. Sce the decso tree s bult by gve data, the data value ad character wll be more mportat. For example, the amout o data wll aect the result o the treebuldg procedure. The type o attrbute value wll also aect the tree model. Decso trees eed two kds o data: trag ad testg. Trag data, whch are usually the bgger part o data, are used or costructg trees. The more trag data collected, the hgher the accuracy o the results. The other group o data, testg, s used to get the accuracy rate ad msclasscato rate o the decso tree. May decso-tree algorthms have bee developed. Oe o the most amous s ID3 (Qula 986, 983), whose choce o splt attrbute s based o ormato etropy. C4.5 s a exteso o ID3 (Prather et al. 997). It mproves computg ececy, deals wth cotuous values, hadles attrbutes wth mssg values, avods over ttg, ad perorms other uctos. CART (classcato ad regresso tree) s a data-explorato ad predcto algorthm smlar to C4.5, whch s a treecostructo algorthm (Martíez ad Suárez, 004). Brema et al. (984) summarzed the classcato ad
4 A Comparatve Study o Medcal Data Classcato Methods Based o Decso Tree ad System Recostructo Aalyss 05 regresso tree. Istead o ormato etropy, t troduces measures o ode mpurty. It s used o a varety o deret problems, such as the detecto o chlore rom the data cotaed a mass spectrum (Berso ad Smth, 997). CHAID (Ch-square automatc teracto detector) s smlar to CART, but t ders choosg a splt ode. It depeds o a Ch-square test used cotgecy tables to determe whch categorcal predctor s arthest rom depedece wth the predcto values (Bttecourt ad Clarke, 003). It also has a exteded verso, Exhausted- CHAID. Although decso trees may ot be the best method or classcato accuracy, eve people who are ot amlar wth them d them easy to use ad uderstad. Fgure shows a bary decso tree. It gves us a mpresso o a decso. It uses a crcle as the decso ode ad a square as the termal ode. Each decso ode has a codto that s represeted by a ucto F, ad the parameter s the splt pot o the splt attrbute. Each termal ode has a class label C, the value o whch represets a class. It s apparet that t s easy to use decso trees to terpret the tree to rules, rom whch we ca do aalyss, ad easy to terpret the represetato o a olear put-output mappg (Jag 994). () Dee ucto ad expresso: Deto. D s deed as a trag data set whose attrbutes are dvded to two parts: o-target ad target. The o-target attrbute s amed as Q (Q,,Q m ), where each attrbute Q (<<m) takes k values { a,..., a }. The target attrbute (usually ust k oe attrbute) s amed as C. Suppose t has l values; thus we get l classes, C{C,,C l }. Let D be a subset D whose class s C ad D be the umber o elemets D. The ormato etropy o data set D s deed as: l ED ( ) ( Plog P) (8) Where P s the proporto o D belogg to class P (9) Deto. The measure o the mpurty a collecto o trag examples s deed as ormato ga, Ga (D, Q ), o attrbute Q : GaDQ (, ) ED ( ) EDQ (, ) m (0) k EDQ (, ) ( ( )) m P ED () Where, D s the obtaed th subset whch s dvded by attrbute Q o D, ad P K () Fgure. A typcal bary decso tree Lots o works address the splttg ode choosg method ad optmzato o tree sze, but less atteto has bee gve to the weght o the data attrbutes. I ths study, we use a system-recostructo aalyss method to get the weght o each attrbute, whch we use to reorm raw data. Ater that, we use the decso-tree algorthm metoed above to buld a decso tree, rom whch we ca d the decso-accuracy ad msclasscato rates. 3. Iducto o decso trees algorthm, ID3 ID3 s a typcal decso-tree algorthm. It troduces ormato etropy as the splttg attrbute s choosg measure. It tras a tree rom root to lea, a top-dow sequece. Each path rom that orm s a decso rule. We wll dscuss the theory o ID3 below. () Processg The target o the ID3 algorthm s to search the attrbute wth maxmum ormato ga, ad to use the attrbute as the splttg attrbute. Thus, the deto o ormato etropy becomes a mportat case to study, or perect etropy s more reasoable classcato. 3.3 Regresso tree algorthm, C4.5 C4.5 s a exteded verso o ID3. It mproves approprate attrbute selecto measure, avods data over ttg, reduces error prug, hadles attrbutes wth deret weght, mproves computg ececy, hadles mssg value data ad cotuous attrbutes, ad perorms other uctos. It s based o the dea o ID4, stead o ormato gaed ID3, ad t troduces a ormato ga rato.
5 06 Tzug-I Tag Gag Zheg Yalou Huag Guagu Shu Pegtao Wag We also use the data set used ID3 to expla the theory o C4.5. Deto 3. V has values whch are ot repeated, show as {V,,V }, ad D s separated to subsets D, D,,D. D s the example umber o data set D. T s the umber o example that VV, C req(c, T), umber o example o C C v s the umber o example o C where VV. Probablty o C : C req( C, T) PC ( ) (3) Probablty whe V v : Pv ( ) C v Probablty o C whe V v : PC ( v) Deto 4. Iormato ga rato () Class ormato etropy: C C EC ( ) PC ( ) log( pc ( ) log( ) k req ( C, T ) req ( C, T ) log ( ) T o(t) (4) () Class codto etropy: EC ( V) Pv ( ) ( )log ( ) PC v PC v C C v v log o(t ) o v (T) (5) (3) Iormato ga Ga(C,V) E(C) - H(C V) o(t) ov(t) (4) Iormato etropy o attrbute V T EV ( ) Pv ( )log( Pv ( )) - T T log ( ) splt o(v) (6) T (5) Iormato ga rato Ga - rato(v) E(C,V)/E(V) ga(v)/splt-o(v) (7) C4.5 uses a ormato ga rato select attrbute to splt, whch yelds better ormato ga tha ID CART CART (classcato ad regresso tree) s aother decso tree algorthm developed by Brema (Brema et al. 984). The tree s costructed based o the trag set ad the prued by the mmum cost-complexty prcple (Jag 994). Ulke C4.5, whch uses ormato etropy as the measuremet o choosg a splttg attrbute, t uses mpurty. Some key theores are show below (Prather et al. 997): Impurty, k t ( ) pw ( t)log pw ( t) (8) Best dvso, ( s, t) ( t) p ( t ) p ( t ) (9) L L R R I there s o sgcat decrease the mpurty measuremet, ad the ext dvsos caot be completed, ode t wll be the termal ode. The class w related to termal ode t s that whch maxmzes the codtoal probablty pw ( t ) (Prather et al. 997). 3.5 Ch-squared automatc teracto detector, CHAID CHAID s oe o the oldest tree-classcato methods. It was orgally proposed by Kass (980). Accordg to Rpley, 996, the CHAID algorthm s a descedet o THAID developed by Morga ad Messeger, 973. CHAID grows o-bary trees through a relatvely smple algorthm that s partcularly well suted or the aalyss o larger data sets, ad t has bee partcularly popular marketg research. The algorthm proceeds as ollows: () Preparg predctors: create categorcal predctors out o ay cotuous predctors by dvdg the respectve cotuous dstrbutos to a umber o categores wth a approxmately equal umber o observatos. () Mergg categores: cycle through the predctors to determe or each predctor the par o (predctor) categores that s least sgcatly deret wth respect to the depedet varable; or classcato problems (where the depedet varable s categorcal as well), t wll compute a Ch-square test (Pearso Ch-square). I the statstcal sgcace or the respectve par o predctor categores s sgcat, the t wll compute a Boerro-adusted p-value or the set o categores or the respectve predctor. (3) Selectg the splt varable: choose the splt-the-predctor varable wth the smallest adusted p-value,.e., the predctor varable that wll yeld the most sg-
6 A Comparatve Study o Medcal Data Classcato Methods Based o Decso Tree ad System Recostructo Aalyss 07 Table 3. Comparso o expermetal results by varous algorthms Correcto rate comparso o decso tree algorthms decso-tree algorthm data type teral ode umber max. tree depth leaves umber[0] correcto rate C4.5 raw data % weghted data % CART raw data % weghted data % CHAID raw data % weghted data 3 8.% Exhaustve CHAID raw data % weghted data % cat splt; the smallest (Boerro) adusted p- value or ay predctor s greater tha some alpha-tosplt value, the o urther splts wll be perormed ad the respectve ode s a termal ode. Cotue ths process utl o urther splts ca be perormed. Exhaustve CHAID, a modcato o the basc CHAID algorthm, perorms a more thorough mergg ad testg o predctor varables, ad hece requres more computg tme. For large data sets, ad those wth may cotuous predctor varables, ths modcato o the smpler CHAID algorthm may requre sgcat computg tme. 4. EXPERIMENT DESIGN Ater we dgtalzed the CHD (coroary heart dsease) data (,73 records o 7 attrbutes), about,400 records were used as trag sets; the remag 33 were cosdered as the testg data sets. From these, we get two kds o data: raw ad weghted. Attrbutes ths part o data have equal probablty, whle the other part o data s weghted by the system recostructo method so that each attrbute has a weght value. We wll use these two kds o data as the expermet data. The aalyss methods the expermet wll be C4.5, CART, CHAID, ad Exhaustve CHAID. We use every algorthm o the raw ad weghted data to compare the decso-tree parameters ad correcto rate. The results are show Table 3. Fgure clearly reveals that the weghted data have a hgher correcto rate tha the raw data. A good decso tree usually s udged by the ollowg aspects: mmum lea umber, mmum tree depth, ad correcto rate. From the expermets we leared that weghted data ca get a better correcto rate tha raw data. From the same data set we ca see that CHAID ca get mmum lea umber ad mmum tree depth, C4.5 the mddle ad CART the last posto (see Fgure 3). From the gure, we ca see that whether data s weghted does ot aect the two parameters Max tree depth(raw data) Max teee depth(weghted data) lea umber(raw data) lea umber(weghted data) C4.5 CART CHAID E-CHAID Fgure 3. Decso-tree algorthm parameters comparso Deret sgs represet deret parameters ad deret data sets: damods are maxmum tree depth o ot-weghted data; empty crcles are the maxmum tree depth o weghted data; tragles are lea umbers o otweghted data; ad empty cubes are the lea umber o weghted data % raw data weghted data 5. CONCLUSION Correcto rate 85.00% 80.00% 75.00% 70.00% 65.00% C4.5 CART CHAID E-CHAID Fgure. Correcto rate comparso o decso tree The decso-tree algorthm s oe o the most eectve classcato methods. The data we used the paper were collected drectly rom clcal dagoses, ad ther relablty cormed by coroary artery radography. The data wll udge the ececy ad correcto rate o the algorthm. From the data we get the cocluso that data weghted by the system-recostructo method ca get a hgher correcto rate but wll have lttle eect o the lea umber ad tree depth o the decso tree.
7 08 Tzug-I Tag Gag Zheg Yalou Huag Guagu Shu Pegtao Wag The work wll be several parts. Frst, we wll compare the methods o weghtg the data, whch wll d the best method or weghtg data used decsotree classcato. Secod, we wll study the deret classcato methods, such as eural etworks ad geetc algorthms, based o the weghted data that we studed beore. Thrd, we wll study prcple compoet aalyss, rough set, eature selecto to reduce the attrbutes o the coroary heart dsease data. Reereces Ashby, W. R. (965), Costrat Aalyss o May-dmesoal Relatos, Geeral Systems Yearbook, 9, Asladoga, Y. A. ad Mahaa, G. A. (004), Evdece Combato Medcal Data mg, Proceedgs o Iteratoal Coerece o Iormato Techology: Codg ad Computg, IEEE. Berso, A. ad Smth, S. J. (997), Data Warehousg, Data Mg, & OLAP, 365, McGraw-Hl. Bttecourt, H. R. ad Clarke, R. T. (997), Use o Classcato ad Regresso Trees (CART) to Classy Remotely Sesed Dgtal Images, IEEE, Brema, L., Fredma, J. H., Olshe, R. A., ad Stoe, C.J. (984), Classcato ad Decso trees, Belmot, CA: Wadsworth. Cavallo, R. E. ad Klr, G.. J. (979), Recostructablty Aalyss o Mult-dmesoal Relatos: A Theoretcal Bass or Computer-aded Determato o Acceptable Systems Models, It. J. o Geeral Systems, 5, Cavallo, R. E. ad Klr, G.. J. (98), Recostructablty Aalyss: Evaluato o Recostructo Hypotheses, It. J. o Geeral Systems, 7, 7-3. Jag, J.-S. R. (994), Structure Determato Fuzzy Modelg: A uzzy CART Approach, IEEE, Joes, B. (998), A Program or Recostructablty Aalyss, It. J. o Geeral Systems, 5, Klr, G.J. (976), Idetcato o Geeratve Structures Emprcal Data, It. J. o Geeral Systems, 3, No., Martíez-Muñoz, G. ad Suárez, A. (004), Usg all Data to Geerate Decso Tree Esemble, IEEE Tra. O Systems, Ma ad Cyberetcs part C: Applca-tos ad Revew, 34, No Prather, J. C., Lobach, D. F., Goodw, L. K., Hales, J. W., Hage, M. L., ad Hammod, W. E. (997), Medcal Data Mg: Kowledge Dscovery a Clcal Data Warehouse, Proc AMIA Aual Fall Symposum, 0-5. Qula, J. R. (983), Learg Ecet Classcato Procedures ad Ther Applcato to Chess ad Games, Mache Learg: A Artcal Itellgece Approach,, Qula, J. R. (986), Iducto o Decso Trees, Mache Learg,, Shu, G. (997), Recostructo Aalyss Methods or Forecastg, Rsks, Desg, Dyamcal Problems ad Applcatos, Secod Workshop o IIGSS, Shu, G. (998), Recostructablty Aalyss wth Multversty Iormato ad Kowledge, Systems Scece ad ts Applcatos, Thrd Workshop o IIGSS, Shu, G. (000), Recostructablty Aalyss Cha Specal Issue, It. J. o Geeral Systems, 9, No. 3. Zwck, M. ad OCCAM (000), A Recostructablty Aalyss Sotware Package, World Cogress o the Systems Sceces/44th Aual Meetg o ISSS, Toroto, Caada, July, 6-.
Software Reliability Index Reasonable Allocation Based on UML
Sotware Relablty Idex Reasoable Allocato Based o UML esheg Hu, M.Zhao, Jaeg Yag, Guorog Ja Sotware Relablty Idex Reasoable Allocato Based o UML 1 esheg Hu, 2 M.Zhao, 3 Jaeg Yag, 4 Guorog Ja 1, Frst Author
Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering
Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information
A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog, Frst ad Correspodg Author
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
Green Master based on MapReduce Cluster
Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of
Maintenance Scheduling of Distribution System with Optimal Economy and Reliability
Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity
Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute
A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree
, pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal
ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN
Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
Study on prediction of network security situation based on fuzzy neutral network
Avalable ole www.ocpr.com Joural of Chemcal ad Pharmaceutcal Research, 04, 6(6):00-06 Research Artcle ISS : 0975-7384 CODE(USA) : JCPRC5 Study o predcto of etwork securty stuato based o fuzzy eutral etwork
IP Network Topology Link Prediction Based on Improved Local Information Similarity Algorithm
Iteratoal Joural of Grd Dstrbuto Computg, pp.141-150 http://dx.do.org/10.14257/jgdc.2015.8.6.14 IP Network Topology Lk Predcto Based o Improved Local Iformato mlarty Algorthm Che Yu* 1, 2 ad Dua Zhem 1
AN ALGORITHM ABOUT PARTNER SELECTION PROBLEM ON CLOUD SERVICE PROVIDER BASED ON GENETIC
Joural of Theoretcal ad Appled Iformato Techology 0 th Aprl 204. Vol. 62 No. 2005-204 JATIT & LLS. All rghts reserved. ISSN: 992-8645 www.jatt.org E-ISSN: 87-395 AN ALGORITHM ABOUT PARTNER SELECTION PROBLEM
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
An IG-RS-SVM classifier for analyzing reviews of E-commerce product
Iteratoal Coferece o Iformato Techology ad Maagemet Iovato (ICITMI 205) A IG-RS-SVM classfer for aalyzg revews of E-commerce product Jaju Ye a, Hua Re b ad Hagxa Zhou c * College of Iformato Egeerg, Cha
A Parallel Transmission Remote Backup System
2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College
Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK
Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag
Credibility Premium Calculation in Motor Third-Party Liability Insurance
Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53
Constrained Cubic Spline Interpolation for Chemical Engineering Applications
Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel
Optimizing Software Effort Estimation Models Using Firefly Algorithm
Joural of Software Egeerg ad Applcatos, 205, 8, 33-42 Publshed Ole March 205 ScRes. http://www.scrp.org/joural/jsea http://dx.do.org/0.4236/jsea.205.8304 Optmzg Software Effort Estmato Models Usg Frefly
Fault Tree Analysis of Software Reliability Allocation
Fault Tree Aalyss of Software Relablty Allocato Jawe XIANG, Kokch FUTATSUGI School of Iformato Scece, Japa Advaced Isttute of Scece ad Techology - Asahda, Tatsuokuch, Ishkawa, 92-292 Japa ad Yaxag HE Computer
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011
Cyber Jourals: Multdscplary Jourals cece ad Techology, Joural of elected Areas Telecommucatos (JAT), Jauary dto, 2011 A ovel rtual etwork Mappg Algorthm for Cost Mmzg ZHAG hu-l, QIU Xue-sog tate Key Laboratory
The Digital Signature Scheme MQQ-SIG
The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese
Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software
J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao
The impact of service-oriented architecture on the scheduling algorithm in cloud computing
Iteratoal Research Joural of Appled ad Basc Sceces 2015 Avalable ole at www.rjabs.com ISSN 2251-838X / Vol, 9 (3): 387-392 Scece Explorer Publcatos The mpact of servce-oreted archtecture o the schedulg
DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT
ESTYLF08, Cuecas Meras (Meres - Lagreo), 7-9 de Septembre de 2008 DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT José M. Mergó Aa M. Gl-Lafuete Departmet of Busess Admstrato, Uversty of Barceloa
On Error Detection with Block Codes
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,
A particle Swarm Optimization-based Framework for Agile Software Effort Estimation
The Iteratoal Joural Of Egeerg Ad Scece (IJES) olume 3 Issue 6 Pages 30-36 204 ISSN (e): 239 83 ISSN (p): 239 805 A partcle Swarm Optmzato-based Framework for Agle Software Effort Estmato Maga I, & 2 Blamah
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
Discrete-Event Simulation of Network Systems Using Distributed Object Computing
Dscrete-Evet Smulato of Network Systems Usg Dstrbuted Object Computg Welog Hu Arzoa Ceter for Itegratve M&S Computer Scece & Egeerg Dept. Fulto School of Egeerg Arzoa State Uversty, Tempe, Arzoa, 85281-8809
Report 52 Fixed Maturity EUR Industrial Bond Funds
Rep52, Computed & Prted: 17/06/2015 11:53 Report 52 Fxed Maturty EUR Idustral Bod Fuds From Dec 2008 to Dec 2014 31/12/2008 31 December 1999 31/12/2014 Bechmark Noe Defto of the frm ad geeral formato:
Web Service Composition Optimization Based on Improved Artificial Bee Colony Algorithm
JOURNAL OF NETWORKS, VOL. 8, NO. 9, SEPTEMBER 2013 2143 Web Servce Composto Optmzato Based o Improved Artfcal Bee Coloy Algorthm Ju He The key laboratory, The Academy of Equpmet, Beg, Cha Emal: [email protected]
Speeding up k-means Clustering by Bootstrap Averaging
Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg
Software Aging Prediction based on Extreme Learning Machine
TELKOMNIKA, Vol.11, No.11, November 2013, pp. 6547~6555 e-issn: 2087-278X 6547 Software Agg Predcto based o Extreme Learg Mache Xaozh Du 1, Hum Lu* 2, Gag Lu 2 1 School of Software Egeerg, X a Jaotog Uversty,
Application of Grey Relational Analysis in Computer Communication
Applcato of Grey Relatoal Aalyss Computer Commucato Network Securty Evaluato Jgcha J Applcato of Grey Relatoal Aalyss Computer Commucato Network Securty Evaluato *1 Jgcha J *1, Frst ad Correspodg Author
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
Using Data Mining Techniques to Predict Product Quality from Physicochemical Data
Usg Data Mg Techques to Predct Product Qualty from Physcochemcal Data A. Nachev 1, M. Hoga 1 1 Busess Iformato Systems, Cares Busess School, NUI, Galway, Irelad Abstract - Product qualty certfcato s sometmes
Regression Analysis. 1. Introduction
. Itroducto Regresso aalyss s a statstcal methodology that utlzes the relato betwee two or more quattatve varables so that oe varable ca be predcted from the other, or others. Ths methodology s wdely used
A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS
A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS I Ztou, K Smaïl, S Delge, F Bmbot To cte ths verso: I Ztou, K Smaïl, S Delge, F Bmbot. A COMPARATIVE STUDY BETWEEN POLY- CLASS AND MULTICLASS
Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation
Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
A particle swarm optimization to vehicle routing problem with fuzzy demands
A partcle swarm optmzato to vehcle routg problem wth fuzzy demads Yag Peg, Ye-me Qa A partcle swarm optmzato to vehcle routg problem wth fuzzy demads Yag Peg 1,Ye-me Qa 1 School of computer ad formato
Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks
Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]
Developing tourism demand forecasting models using machine learning techniques with trend, seasonal, and cyclic components
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, 05, Vol.3, No. 4 Developg toursm demad forecastg models usg mache learg techques wth tred, seasoal, ad cyclc compoets S. Cakurt ad A. Subas Abstract
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
CIS603 - Artificial Intelligence. Logistic regression. (some material adopted from notes by M. Hauskrecht) CIS603 - AI. Supervised learning
CIS63 - Artfcal Itellgece Logstc regresso Vasleos Megalookoomou some materal adopted from otes b M. Hauskrecht Supervsed learg Data: D { d d.. d} a set of eamples d < > s put vector ad s desred output
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
ROULETTE-TOURNAMENT SELECTION FOR SHRIMP DIET FORMULATION PROBLEM
28-30 August, 2013 Sarawak, Malaysa. Uverst Utara Malaysa (http://www.uum.edu.my ) ROULETTE-TOURNAMENT SELECTION FOR SHRIMP DIET FORMULATION PROBLEM Rosshary Abd. Rahma 1 ad Razam Raml 2 1,2 Uverst Utara
RUSSIAN ROULETTE AND PARTICLE SPLITTING
RUSSAN ROULETTE AND PARTCLE SPLTTNG M. Ragheb 3/7/203 NTRODUCTON To stuatos are ecoutered partcle trasport smulatos:. a multplyg medum, a partcle such as a eutro a cosmc ray partcle or a photo may geerate
Integrating Production Scheduling and Maintenance: Practical Implications
Proceedgs of the 2012 Iteratoal Coferece o Idustral Egeerg ad Operatos Maagemet Istabul, Turkey, uly 3 6, 2012 Itegratg Producto Schedulg ad Mateace: Practcal Implcatos Lath A. Hadd ad Umar M. Al-Turk
Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li
Iteratoal Joural of Scece Vol No7 05 ISSN: 83-4890 Proecto model for Computer Network Securty Evaluato wth terval-valued tutostc fuzzy formato Qgxag L School of Software Egeerg Chogqg Uversty of rts ad
Fast, Secure Encryption for Indexing in a Column-Oriented DBMS
Fast, Secure Ecrypto for Idexg a Colum-Oreted DBMS Tgja Ge, Sta Zdok Brow Uversty {tge, sbz}@cs.brow.edu Abstract Networked formato systems requre strog securty guaratees because of the ew threats that
The Application of Intuitionistic Fuzzy Set TOPSIS Method in Employee Performance Appraisal
Vol.8, No.3 (05), pp.39-344 http://dx.do.org/0.457/uesst.05.8.3.3 The pplcato of Itutostc Fuzzy Set TOPSIS Method Employee Performace pprasal Wag Yghu ad L Welu * School of Ecoomcs ad Maagemet, Shazhuag
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts
Optmal replacemet ad overhaul decsos wth mperfect mateace ad warraty cotracts R. Pascual Departmet of Mechacal Egeerg, Uversdad de Chle, Caslla 2777, Satago, Chle Phoe: +56-2-6784591 Fax:+56-2-689657 [email protected]
Robust Realtime Face Recognition And Tracking System
JCS& Vol. 9 No. October 9 Robust Realtme Face Recogto Ad rackg System Ka Che,Le Ju Zhao East Cha Uversty of Scece ad echology Emal:[email protected] Abstract here s some very mportat meag the study of realtme
ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil
ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable
Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines
(ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005
How To Make A Supply Chain System Work
Iteratoal Joural of Iformato Techology ad Kowledge Maagemet July-December 200, Volume 2, No. 2, pp. 3-35 LATERAL TRANSHIPMENT-A TECHNIQUE FOR INVENTORY CONTROL IN MULTI RETAILER SUPPLY CHAIN SYSTEM Dharamvr
Time Series Forecasting by Using Hybrid. Models for Monthly Streamflow Data
Appled Mathematcal Sceces, Vol. 9, 215, o. 57, 289-2829 HIKARI Ltd, www.m-hkar.com http://dx.do.org/1.12988/ams.215.52164 Tme Seres Forecastg by Usg Hybrd Models for Mothly Streamflow Data Sraj Muhammed
How To Balance Load On A Weght-Based Metadata Server Cluster
WLBS: A Weght-based Metadata Server Cluster Load Balacg Strategy J-L Zhag, We Qa, Xag-Hua Xu *, Ja Wa, Yu-Yu Y, Yog-Ja Re School of Computer Scece ad Techology Hagzhou Daz Uversty, Cha * Correspodg author:[email protected]
Curve Fitting and Solution of Equation
UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed
The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0
Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may
Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion
2011 Iteratoal Coferece o Ecoomcs ad Face Research IPEDR vol.4 (2011 (2011 IACSIT Press, Sgapore Forecastg Tred ad Stoc Prce wth Adaptve Exteded alma Flter Data Fuso Betollah Abar Moghaddam Faculty of
Load Balancing Algorithm based Virtual Machine Dynamic Migration Scheme for Datacenter Application with Optical Networks
0 7th Iteratoal ICST Coferece o Commucatos ad Networkg Cha (CHINACOM) Load Balacg Algorthm based Vrtual Mache Dyamc Mgrato Scheme for Dataceter Applcato wth Optcal Networks Xyu Zhag, Yogl Zhao, X Su, Ruyg
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
AP Statistics 2006 Free-Response Questions Form B
AP Statstcs 006 Free-Respose Questos Form B The College Board: Coectg Studets to College Success The College Board s a ot-for-proft membershp assocato whose msso s to coect studets to college success ad
An Operating Precision Analysis Method Considering Multiple Error Sources of Serial Robots
MAEC Web of Cofereces 35, 02013 ( 2015) DOI: 10.1051/ mateccof/ 2015 3502013 C Owe by the authors, publshe by EDP Sceces, 2015 A Operatg Precso Aalyss Metho Coserg Multple Error Sources of Seral Robots
Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center
200 IEEE 3rd Iteratoal Coferece o Cloud Computg Dyamc Provsog Modelg for Vrtualzed Mult-ter Applcatos Cloud Data Ceter Jg B 3 Zhlag Zhu 2 Ruxog Ta 3 Qgbo Wag 3 School of Iformato Scece ad Egeerg College
Proactive Detection of DDoS Attacks Utilizing k-nn Classifier in an Anti-DDos Framework
World Academy of Scece, Egeerg ad Techology Iteratoal Joural of Computer, Electrcal, Automato, Cotrol ad Iformato Egeerg Vol:4, No:3, 2010 Proactve Detecto of DDoS Attacks Utlzg k-nn Classfer a At-DDos
Impact of Interference on the GPRS Multislot Link Level Performance
Impact of Iterferece o the GPRS Multslot Lk Level Performace Javer Gozalvez ad Joh Dulop Uversty of Strathclyde - Departmet of Electroc ad Electrcal Egeerg - George St - Glasgow G-XW- Scotlad Ph.: + 8
Statistical Intrusion Detector with Instance-Based Learning
Iformatca 5 (00) xxx yyy Statstcal Itruso Detector wth Istace-Based Learg Iva Verdo, Boja Nova Faulteta za eletroteho raualštvo Uverza v Marboru Smetaova 7, 000 Marbor, Sloveja [email protected] eywords:
Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.
Proceedgs of the 21 Wter Smulato Coferece B. Johasso, S. Ja, J. Motoya-Torres, J. Huga, ad E. Yücesa, eds. EMPIRICAL METHODS OR TWO-ECHELON INVENTORY MANAGEMENT WITH SERVICE LEVEL CONSTRAINTS BASED ON
A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS
L et al.: A Dstrbuted Reputato Broker Framework for Web Servce Applcatos A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS Kwe-Jay L Departmet of Electrcal Egeerg ad Computer Scece
Business Bankruptcy Prediction Based on Survival Analysis Approach
Busess Bakruptcy Predcto Based o Survval Aalyss Approach ABSTRACT Mg-Chag Lee Natoal Kaohsug Uversty of Appled Scece, Tawa Ths study sampled compaes lsted o Tawa Stock Exchage that examed facal dstress
