BIG DATA FOR MODELLING 2.0

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "BIG DATA FOR MODELLING 2.0"

Transcription

1 BIG DATA FOR MODELLING 2.0 ENHANCING MODELS WITH MASSIVE REAL MOBILITY DATA DATA INTEGRATION Lorenzo Meschini - CEO, PTV SISTeMA COST TU1004 final Conference Paris, 11 May 2015 Seite 1

2 BIG DATA TRADITIONAL DEFINITION A collection of data too massive to be handled efficiently by traditional databases tools and methods Big Data IS NOT only related to non-trivial sizes of data, but it IS rooted in the push to discover hidden/useful insights in data. Seite 2

3 BIG DATA THE THREE "V"s : Volume, Velocity, Variety VOLUME is the sheer size of the data being collected VELOCITY is the speed at which data is flowing into a business s infrastructure and the ability of software solutions to receive and process that data quickly VARIETY refers to different data format incoming into your platform, and the challenge to be able to take raw, (un)structured data and organize it. Seite 3

4 BIG DATA READY TO USE? Three challenges besides data availability from a business point of view: STORE: can you store the vast amounts of data being collected? PROCESS: can you organize, clean, and analyze the data collected? ACCESS: Can you search and query this data in a organized manner? Seite 4

5 FINDING HIDDEN DATA INSIGHTS Once you get beyond storage and management, you still have the enormous task of creating actionable business intelligence (BI) from the datasets you ve collected. There are so many types of analytic models, and different ways of providing infrastructure for this process. But the analytics solution must scale, too. Ultimately, analytics tools rely on a great deal of reasoning and analysis to extract data patterns and data insights, but this capacity means nothing for a business if they can t then create actionable intelligence. Seite 5

6 SOME STATISTICS (2015) Big Data Plans are Underway for Most Organizations RDBMS Still Dominates the Broader IT Industry Almost All Orgs Expect Their Storage Needs to Grow Exponentially Seite 6

7 WHAT ABOUT BIG TRANSPORT & MOBILITY DATA? The market already offers world or continent wide services and solutions based on individual vehicle and/or people mobility trajectories or movements Raw data sources Vehicle Trajectories form black boxes for insurance applications or vehicle location systems Vehicle Trajectories from navigation systems Crowd sourcing from Mobile phone apps Localization of mobile phones Offered services / products Real time traffic monitoring & information Performance measures Maps Speed profiles and travel times on road segments Travel time matrices Observed od matrices Trajectories Seite 7

8 WHAT ABOUT BIG PUBLIC TRANSPORT & MOBILITY DATA? Public transport data are currently collected and stored on a local base: Raw data sources Service plans PT vehicle trajectories from AVL and AVM systems PT events (delay/cancellation/rerouting) Tickets emission/collections Crowd sourcing from Mobile phone apps Services produced are currently often limited within the entities collecting the data Real time information Performance and Level of Service measures Clearing Service planning (schedule) Some companies are trying to bring services to a global level Aggregating local data Seite 8

9 CHALLENGES ENABLERS AND OPPORTUNITIES Challenges Collecting data on PT worldwide: data are (owned?) by different authorities that won't provide them Go multimodal: collecting Bike, pedestrians counts Mode of transport identification car, bike, PT can be very similar in urban contexts Same trip, several transport systems Enablers Open data Crowd sourcing Internet of things Opportunities Smart cities Seite 9

10 PUBLIC TRANSPORT DATA MINING FOR MODELLING 2.0 Big Data (historical) on PuT Computer Science Transportation Engineering Pure statistical/machine learning approach Modelling approach + Calibration by data Modelling Seite 10

11 DATA DRIVEN MODELS - TODAY Input: from same raw FCD data that provide today speed profiles Output: calibrated traffic models + route choice Network attributes Free flow speeds Capacities FCD raw trajectories Optima Data Driven Demand OD matrices Network graph Traffic zones Available flow counts Route choice Turning ratio (by destination zone) Seite 11

12 DATA DRIVEN MODELS - TOMORROW Input: from same raw FCD data that provide today speed profiles Output: calibrated traffic models + route choice Multi modal trips Optima Data Driven Network attributes Free flow speeds Transit Capacities Waiting times Acess / Egress / Interchange points Demand OD matrices Modal split Network & Service graph Traffic zones Multi modal flow counts Route choice Turning ratio (by destination zone) Seite 12

13 DATA DRIVEN MODELS FUNCTIONAL OVERVIEW Observed Vehicle trajectories Link speeds by day type ASSIGNMENT MATRIX UPDATE Zones (Origin destinations) Map Matching & speed calc. Splitting rates by destination and day type Assignment matrix estimation Assignment matrix by day type Graph Day types definitions Observed matrices by day type Assignment matrix by day type Zones (Origin destinations) Flow measures OD matrix correction OD MATRIX UPDATE Zones (Origin destinations) Initial Graph Link speeds by day type speed, capacity and jam density correction GRAPH UPDATE Initial OD matrix Corrected OD matrices by day type Corrected OD matrices by day type Corrected Graph Graph Seite 13

14 MODELLING 2.0 AN EXAMPLE Creation of a graph model for Transport Assignment Running the Big Data analysis tools you discover, from FCD probes for example, that some streets should be included into the model because they are deeply used!!! Running online Big Data tools you can update in real time parameters of your model, for example for the route choice model the turn probabilities at a given intersection. Seite 14

15 BIG DATA & DATA DRIVEN MODELS FUTURE NEEDS Big data can contribute to enhance calibrating and validating all our models Trip generation Trip distribution Mode choice Route choice Supply calibration We need to conceive new calibrating methodologies Capacity and flow level recognition Transport system & mode recognition Path choice recognition Seite 15

16 Thank you Lorenzo Meschini CEO, PTV SISTeMA Realtime Solutions Director, PTV Group Seite 16

The Role of Big Data and Analytics in the Move Toward Scientific Transportation Engineering

The Role of Big Data and Analytics in the Move Toward Scientific Transportation Engineering The Role of Big Data and Analytics in the Move Toward Scientific Transportation Engineering Bob McQueen CEO The 0cash Company Orlando, Florida bobmcqueen@0cash.com Topics Introduction Smart cities What

More information

Public Sector Solutions

Public Sector Solutions Public Sector Solutions The New Jersey DOT Command Center uses INRIX real-time data and analytics to monitor congestion and deploy resources proactively to manage traffic flow and inform travelers. INRIX

More information

MODELING TRANSPORTATION DEMAND USING EMME/2 A CASE STUDY OF HIROSHIMA URBAN AREA

MODELING TRANSPORTATION DEMAND USING EMME/2 A CASE STUDY OF HIROSHIMA URBAN AREA MODELING TRANSPORTATION DEMAND USING EMME/2 A CASE STUDY OF HIROSHIMA URBAN AREA By Masazumi Ono Overseas Services Division, FUKKEN Co., Ltd. Hiroshima Japan 10-11 Hikari-machi Higasi-ku Hiroshima, Japan

More information

John A. Volpe National Transportation Systems Center. Connected Vehicle and Big Data: Current Practices, Emerging Trends and Potential Implications

John A. Volpe National Transportation Systems Center. Connected Vehicle and Big Data: Current Practices, Emerging Trends and Potential Implications John A. Volpe National Transportation Systems Center Connected Vehicle and Big Data: Current Practices, Emerging Trends and Potential Implications March 27, 2014 Purpose and Organization Purpose set the

More information

Multimodal Services in Vienna. Dr. Michael Lichtenegger, Neue Urbane Mobilität Wien GmbH

Multimodal Services in Vienna. Dr. Michael Lichtenegger, Neue Urbane Mobilität Wien GmbH Multimodal Services in Vienna Dr. Michael Lichtenegger, Neue Urbane Mobilität Wien GmbH Tomorrow Today Yesterday Agenda I ll talk about 6 Levels of Integration to achieve a high level of Quality & Usability

More information

The TomTom Manifesto Reducing Congestion for All Big traffic data for smart mobility, traffic planning and traffic management

The TomTom Manifesto Reducing Congestion for All Big traffic data for smart mobility, traffic planning and traffic management The TomTom Manifesto Reducing Congestion for All Big traffic data for smart mobility, traffic planning and traffic management Ralf-Peter Schäfer Fellow & VP Traffic and Travel Information Product Unit

More information

Ramesh Bhashyam Teradata Fellow Teradata Corporation bhashyam.ramesh@teradata.com

Ramesh Bhashyam Teradata Fellow Teradata Corporation bhashyam.ramesh@teradata.com Challenges of Handling Big Data Ramesh Bhashyam Teradata Fellow Teradata Corporation bhashyam.ramesh@teradata.com Trend Too much information is a storage issue, certainly, but too much information is also

More information

Apigee Insights Increase marketing effectiveness and customer satisfaction with API-driven adaptive apps

Apigee Insights Increase marketing effectiveness and customer satisfaction with API-driven adaptive apps White provides GRASP-powered big data predictive analytics that increases marketing effectiveness and customer satisfaction with API-driven adaptive apps that anticipate, learn, and adapt to deliver contextual,

More information

Professional navigation solutions for trucks and fleets

Professional navigation solutions for trucks and fleets Professional navigation solutions for trucks and fleets are there tools that can get you through anything? Narrow roads, low bridges, no opportunities to turn around a lot of roads are not made for freight

More information

Video Analytics Applications for the Retail Market

Video Analytics Applications for the Retail Market Comprehensive Video Analytics Solutions Customer Traffic In-Store Customer Behavior Operational Efficiency Loss Prevention, Security & Safety Video Analytics Applications for the Retail Market How Agent

More information

Integrating mobility services through a B2B platform. e-monday, 20. Juli 2015. Steffen Schaefer, Siemens AG.

Integrating mobility services through a B2B platform. e-monday, 20. Juli 2015. Steffen Schaefer, Siemens AG. Integrating mobility services through a B2B platform e-monday, 20. Juli 2015. Steffen Schaefer, Siemens AG. Restricted Siemens AG 2015 All rights reserved. Answers for infrastructure and cities. Talking

More information

redesigning the data landscape to deliver true business intelligence Your business technologists. Powering progress

redesigning the data landscape to deliver true business intelligence Your business technologists. Powering progress redesigning the data landscape to deliver true business intelligence Your business technologists. Powering progress The changing face of data complexity The storage, retrieval and management of data has

More information

The New Mobility: Using Big Data to Get Around Simply and Sustainably

The New Mobility: Using Big Data to Get Around Simply and Sustainably The New Mobility: Using Big Data to Get Around Simply and Sustainably The New Mobility: Using Big Data to Get Around Simply and Sustainably Without the movement of people and goods from point to point,

More information

Network development and design

Network development and design Network development and design A short introduction to the MOVE Meter: a web based tool to support your planning process pagina 2 // 6-Nov-15 // Content 1. MOVE Mobility 2. MOVE Meter introduction 3. The

More information

Using MATSim for Public Transport Analysis

Using MATSim for Public Transport Analysis February 13, 2014, Hasselt. ORDERin F Seminar 3 Using MATSim for Public Transport Analysis Marcel Rieser Senozon AG rieser@senozon.com Agenda 2 MATSim The Berlin Model Public Transport in Berlin Analyzing

More information

USE OF STATE FLEET VEHICLE GPS DATA FOR TRAVEL TIME ANALYSIS

USE OF STATE FLEET VEHICLE GPS DATA FOR TRAVEL TIME ANALYSIS USE OF STATE FLEET VEHICLE GPS DATA FOR TRAVEL TIME ANALYSIS David P. Racca Center for Applied Demography and Survey Research (CADSR) University of Delaware Graham Hall, Rm 284, Newark, Delaware 19716

More information

Big Data Use Cases Update

Big Data Use Cases Update Big Data Use Cases Update Sanat Joshi Industry Solutions Manufacturing Industries Business Unit 1 Data Explosion Web & social networks experienced it first Infographic by Go-gulf.com 2 Number Of Connected

More information

Overview of the Travel Demand Forecasting Methodology

Overview of the Travel Demand Forecasting Methodology Overview of the Travel Demand Forecasting Methodology Prepared by the Central Transportation Planning Staff (CTPS) Authors: Scott A. Peterson, Manager Ian Harrington, Chief Planner March 29, 2008 1 OVERVIEW

More information

Traffic Management for a Smarter City:Istanbul Istanbul Metropolitan Municipality

Traffic Management for a Smarter City:Istanbul Istanbul Metropolitan Municipality Traffic Management for a Smarter City:Istanbul Istanbul Metropolitan Municipality Traffic Management for a Smarter City: Istanbul There is no doubt for Traffic Management to be an issue in a crowded city

More information

Implementation of traffic effect estimations. for intermodal dynamic routing services on VIELMOBIL - an. ITS-platform for the RheinMain region

Implementation of traffic effect estimations. for intermodal dynamic routing services on VIELMOBIL - an. ITS-platform for the RheinMain region Implementation of traffic effect estimations for intermodal dynamic routing services on VIELMOBIL - an ITS-platform for the RheinMain region Rüdiger BERNHARD, Enrico STEIGER, Stefan KRAMPE, Stefan KOLLARITS,

More information

Connected Cities Research Program

Connected Cities Research Program Connected Cities Research Program Intelligent Transportation Systems Joint Program Office (ITS JPO) NSF Workshop on Smart Cities Arlington, VA, November 10, 2015 Marcia Pincus Program Manager, Environment

More information

QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM

QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QlikView Technical Case Study Series Big Data June 2012 qlikview.com Introduction This QlikView technical case study focuses on the QlikView deployment

More information

QUANTITATIVE METHODS IN SUSTAINABLE URBAN TRANSPORT PLANNING.

QUANTITATIVE METHODS IN SUSTAINABLE URBAN TRANSPORT PLANNING. QUANTITATIVE METHODS IN SUSTAINABLE URBAN TRANSPORT PLANNING www.ptvgroup.com Dr Uwe Reiter Belgrade, 16 May 2013 OVERVIEW 1. Principles of Sustainable Urban Planning 2. Sustainable Transport Planning

More information

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014 5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for

More information

Enterprise Information Integration (EII) A Technical Ally of EAI and ETL Author Bipin Chandra Joshi Integration Architect Infosys Technologies Ltd

Enterprise Information Integration (EII) A Technical Ally of EAI and ETL Author Bipin Chandra Joshi Integration Architect Infosys Technologies Ltd Enterprise Information Integration (EII) A Technical Ally of EAI and ETL Author Bipin Chandra Joshi Integration Architect Infosys Technologies Ltd Page 1 of 8 TU1UT TUENTERPRISE TU2UT TUREFERENCESUT TABLE

More information

www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage

www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage If every image made and every word written from the earliest stirring of civilization

More information

URBAN ITS EXPERT GROUP GUIDELINES FOR ITS DEPLOYMENT IN URBAN AREAS MULTIMODAL INFORMATION

URBAN ITS EXPERT GROUP GUIDELINES FOR ITS DEPLOYMENT IN URBAN AREAS MULTIMODAL INFORMATION URBAN ITS EXPERT GROUP GUIDELINES FOR ITS DEPLOYMENT IN URBAN AREAS MULTIMODAL INFORMATION December 2012 Abbreviations und Acronyms Abbreviation CEN DAB DATEX EC ETSI GPS GSM ISO ITS MIS MMI NeTEx NTS

More information

Enhance Collaboration and Data Sharing for Faster Decisions and Improved Mission Outcome

Enhance Collaboration and Data Sharing for Faster Decisions and Improved Mission Outcome Enhance Collaboration and Data Sharing for Faster Decisions and Improved Mission Outcome Richard Breakiron Senior Director, Cyber Solutions Rbreakiron@vion.com Office: 571-353-6127 / Cell: 803-443-8002

More information

The world s most popular transportation modeling suite

The world s most popular transportation modeling suite technical brochure of cube The world s most popular transportation modeling suite Cube is the most widely used and most complete transportation analysis system in the world. With Cube 5, Citilabs integrates

More information

Network development and design

Network development and design Network development and design A short introduction to the MOVE Meter: a web based tool to support your planning process pagina 2 Content 1. Introduction 2. MOVE Mobility 3. The MOVE Meter in AUSTIN (TX)

More information

Big Data and Your Data Warehouse Philip Russom

Big Data and Your Data Warehouse Philip Russom Big Data and Your Data Warehouse Philip Russom TDWI Research Director for Data Management April 5, 2012 Sponsor Speakers Philip Russom Research Director, Data Management, TDWI Peter Jeffcock Director,

More information

INTEGRATION OF PUBLIC TRANSPORT AND NMT PRINCIPLES AND APPLICATION IN AN EAST AFRICAN CONTEXT

INTEGRATION OF PUBLIC TRANSPORT AND NMT PRINCIPLES AND APPLICATION IN AN EAST AFRICAN CONTEXT INTEGRATION OF PUBLIC TRANSPORT AND NMT PRINCIPLES AND APPLICATION IN AN EAST AFRICAN CONTEXT MARK BRUSSEL CONTENTS Examples of integration from the Netherlands Rationale and principles of integration

More information

OVERVIEW MAJOR FEATURES OF THE MODEL. Some important features of the model set are listed below.

OVERVIEW MAJOR FEATURES OF THE MODEL. Some important features of the model set are listed below. Support to the Casey Overpass Study Central Transportation Planning Staff Support Staff to the Boston Region MPO Overview of the Regional Travel Demand Model Set May 18, 2011 OVERVIEW The model set that

More information

CELL PHONE TRACKING. Index. Purpose. Description. Relevance for Large Scale Events. Options. Technologies. Impacts. Integration potential

CELL PHONE TRACKING. Index. Purpose. Description. Relevance for Large Scale Events. Options. Technologies. Impacts. Integration potential CELL PHONE TRACKING Index Purpose Description Relevance for Large Scale Events Options Technologies Impacts Integration potential Implementation Best Cases and Examples 1 of 10 Purpose Cell phone tracking

More information

Big Data overview. Livio Ventura. SICS Software week, Sept 23-25 Cloud and Big Data Day

Big Data overview. Livio Ventura. SICS Software week, Sept 23-25 Cloud and Big Data Day Big Data overview SICS Software week, Sept 23-25 Cloud and Big Data Day Livio Ventura Big Data European Industry Leader for Telco, Energy and Utilities and Digital Media Agenda some data on Data Big Data

More information

Setting the Standard for Safe City Projects in the United States

Setting the Standard for Safe City Projects in the United States Leading Safe Cities Setting the Standard for Safe City Projects in the United States Edge360 is a provider of Safe City solutions to State & Local governments, helping our clients ensure they have a secure,

More information

A New Era Of Analytic

A New Era Of Analytic Penang egovernment Seminar 2014 A New Era Of Analytic Megat Anuar Idris Head, Project Delivery, Business Analytics & Big Data Agenda Overview of Big Data Case Studies on Big Data Big Data Technology Readiness

More information

Probes and Big Data: Opportunities and Challenges

Probes and Big Data: Opportunities and Challenges Probes and Big Data: Opportunities and Challenges Fiona Calvert, Director Information Services and Mapping, Department of Transport Planning and Local Infrastructure New data sources, probes and big data

More information

VISIT OUR FURTHER WITH FORD 2015 COLLECTION FOR MORE. Download page

VISIT OUR FURTHER WITH FORD 2015 COLLECTION FOR MORE. Download page Jun 23, 2015 SAN FRANCISCO Ford Smart Mobility Shifts from Research to Implementation; Company Announces New Programs, Next Areas of Focus Ford enters the implementation phase of its Ford Smart Mobility

More information

From Big Data to Smart Data How to improve public transport through modelling and simulation.

From Big Data to Smart Data How to improve public transport through modelling and simulation. From Big Data to Smart Data How to improve public transport through modelling and simulation. Dr. Alex Erath, Pieter Fourie, Sergio Ordó ~ nez, Artem Chakirov FCL Research Module: Mobility and Transportation

More information

Data Mining and Analytics in Realizeit

Data Mining and Analytics in Realizeit Data Mining and Analytics in Realizeit November 4, 2013 Dr. Colm P. Howlin Data mining is the process of discovering patterns in large data sets. It draws on a wide range of disciplines, including statistics,

More information

September 8th 8:30 AM 10:00 AM PL1: Reinventing Policy to Support the New ITS

September 8th 8:30 AM 10:00 AM PL1: Reinventing Policy to Support the New ITS September 8th 8:30 AM 10:00 AM PL1: Reinventing Policy to Support the New ITS September 8th 10:30 AM 12:00 PM AM01: Sustainable Transportation Performance Measures: Best Practices September 8th 10:30 AM

More information

Prof.dr.ir. Hans van Lint AvL Hoogleraar Traffic simulation & Computing

Prof.dr.ir. Hans van Lint AvL Hoogleraar Traffic simulation & Computing Prof.dr.ir. Hans van Lint AvL Hoogleraar Traffic simulation & Computing Plans in 14: (Real-time) diagnostics, estimation & prediction Evaluation & assessment (Open-source) Multiscale Simulation Research

More information

Parking Management. Index. Purpose. Description. Relevance for Large Scale Events. Options. Technologies. Impacts. Integration potential

Parking Management. Index. Purpose. Description. Relevance for Large Scale Events. Options. Technologies. Impacts. Integration potential Parking Management Index Purpose Description Relevance for Large Scale Events Options Technologies Impacts Integration potential Implementation Best Cases and Examples 1 of 13 Purpose Parking planning

More information

Smart Cities. Opportunities for Service Providers

Smart Cities. Opportunities for Service Providers Smart Cities Opportunities for Service Providers By Zach Cohen Smart cities will use technology to transform urban environments. Cities are leveraging internet pervasiveness, data analytics, and networked

More information

Green Mobility - an action plan for the way forward

Green Mobility - an action plan for the way forward Green Mobility - an action plan for the way forward Annette Kayser Project Manager, M. Sc. City of Copenhagen The Øresund Region 2.4 mio. Inhabitants in the Region. ¾ of these at the Danish side 540.000

More information

siemens.com/mobility Travel smarter with electronic ticketing

siemens.com/mobility Travel smarter with electronic ticketing siemens.com/mobility Travel smarter with electronic ticketing Translated reprint from: Nahverkehrs-praxis, March 2013 Travel smarter with electronic ticketing In future, intelligent electronic ticketing

More information

Infrastructure and Growth Leadership Advisory Group Ideas and Approaches Survey

Infrastructure and Growth Leadership Advisory Group Ideas and Approaches Survey Infrastructure and Growth Leadership Advisory Group Ideas and Approaches Survey In its second meeting, the Infrastructure and Growth Leadership Advisory Group expanded and refined the list of approaches/ideas

More information

Floating Car Data in the Netherlands

Floating Car Data in the Netherlands Floating Car Data in the Netherlands Aad de Hoog Ministry of Transport, Public Works and Water Management The Netherlands 1 Overview Setting the scene Concept, technique and results Dutch policy Future

More information

INTERSEC BENCHMARK. High Performance for Fast Data & Real-Time Analytics Part I: Vs Hadoop

INTERSEC BENCHMARK. High Performance for Fast Data & Real-Time Analytics Part I: Vs Hadoop INTERSEC BENCHMARK High Performance for Fast Data & Real-Time Analytics Part I: Vs Hadoop BENCHMARK VS HADOOP (STAND ALONE OR COMBINED) Intersec solution in a Redhat Openstack NFV framework complements

More information

Business Intelligence: Using Data for More Than Analytics

Business Intelligence: Using Data for More Than Analytics Business Intelligence: Using Data for More Than Analytics Session 672 Session Overview Business Intelligence: Using Data for More Than Analytics What is Business Intelligence? Business Intelligence Solution

More information

A Dynamic Multimodal Route Planner for Rome. Luca Allulli Damiano Morosi Roma Servizi per la Mobilità

A Dynamic Multimodal Route Planner for Rome. Luca Allulli Damiano Morosi Roma Servizi per la Mobilità A Dynamic Multimodal Route Planner for Rome Luca Allulli Damiano Morosi Roma Servizi per la Mobilità Public transport (PT) in Rome Roma Servizi per la Mobilità: transport agency, in charge of Planning

More information

Text Mining for Business Intelligence

Text Mining for Business Intelligence Project Proposal (Draft) Text Mining for Business Intelligence By Abhinut Srimasorn (5322793399) Advisor Dr. Thanaruk Theeramunkong School of Information, Computer and Communication Technology, Sirindhorn

More information

American Public Transit Association Bus & Paratransit Conference

American Public Transit Association Bus & Paratransit Conference American Public Transit Association Bus & Paratransit Conference Intelligent Transportation Systems Integrating Technologies for Mobility Management & Transportation Coordination May 24, 2011 RouteMatch

More information

Cloud ITS: Reducing Congestion & Saving Lives

Cloud ITS: Reducing Congestion & Saving Lives Cloud ITS: Reducing Congestion & Saving Lives In 2008, for the first time in human history, the proportion of the worlds population based in urban areas was greater than 50 percent. *IBM Report: Transportation

More information

and 7 Queensland Transport, Moving People Connecting Communities: A Passenger Transport Strategy for Queensland 2007 2017, 2006

and 7 Queensland Transport, Moving People Connecting Communities: A Passenger Transport Strategy for Queensland 2007 2017, 2006 and 7 Key result area 1 Shaping the future Developing new products and services, planning and behavioural change 1. Change behaviour to encourage sustainable transport choices To develop an awareness of

More information

Eco friendly Route Planning

Eco friendly Route Planning Eco friendly Route Planning The ecompass Approach Christos Zaroliagis Computer Technology Institute & Press Diophantus, Greece 1 ecompass eco friendly urban Multi modal route PlAnning Services for mobile

More information

Why Talk About Transport in Africa? SUSTAINABLE URBAN TRANSPORT IN AFRICA: ISSUES AND CHALLENGES. Urbanization and Motorization in Africa

Why Talk About Transport in Africa? SUSTAINABLE URBAN TRANSPORT IN AFRICA: ISSUES AND CHALLENGES. Urbanization and Motorization in Africa SUSTAINABLE URBAN TRANSPORT IN AFRICA: ISSUES AND CHALLENGES Presented by Brian Williams UN-Habitat Why Talk About Transport in Africa? Families and individuals spend upwards of 30% of their incomes on

More information

A Simple Method to Forecast Travel Demand in Urban Public Transport

A Simple Method to Forecast Travel Demand in Urban Public Transport Acta Polytechnica Hungarica Vol. 9, No. 4, 2012 A Simple Method to Forecast Travel Demand in Urban Public Transport Balázs Horváth Széchenyi István University Department of Transport Egyetem tér 1, H-9026

More information

ICT Perspectives on Big Data: Well Sorted Materials

ICT Perspectives on Big Data: Well Sorted Materials ICT Perspectives on Big Data: Well Sorted Materials 3 March 2015 Contents Introduction 1 Dendrogram 2 Tree Map 3 Heat Map 4 Raw Group Data 5 For an online, interactive version of the visualisations in

More information

Big Data for Transportation: Measuring and Monitoring Travel

Big Data for Transportation: Measuring and Monitoring Travel 1 Big Data for Transportation: Measuring and Monitoring Travel Frank Franczyk, MSc. P.Eng., Benoit Coupal, MSc. Persen Technologies Incorporated (PERSENTECH) Introduction Relevant and reliable transportation

More information

Feed forward mechanism in public transport

Feed forward mechanism in public transport Feed forward mechanism in public transport Data driven optimisation dr. ir. N. van Oort Assistant professor public transport EMTA Meeting London, TfL October 2014 1 Developments in industry Focus on cost

More information

Top 10 Business Intelligence (BI) Requirements Analysis Questions

Top 10 Business Intelligence (BI) Requirements Analysis Questions Top 10 Business Intelligence (BI) Requirements Analysis Questions Business data is growing exponentially in volume, velocity and variety! Customer requirements, competition and innovation are driving rapid

More information

How the oil and gas industry can gain value from Big Data?

How the oil and gas industry can gain value from Big Data? How the oil and gas industry can gain value from Big Data? Arild Kristensen Nordic Sales Manager, Big Data Analytics arild.kristensen@no.ibm.com, tlf. +4790532591 April 25, 2013 2013 IBM Corporation Dilbert

More information

Berlin Traffic Management Centre (VMZ) Mobility management in conurbation

Berlin Traffic Management Centre (VMZ) Mobility management in conurbation Berlin Berlin Traffic Management Centre () Dr.-Ing. Ralf Kohlen Copenhagen, 18 th January 2010 Berlin Traffic Management Centre () Berlin Folie 2 _Presentation_ Berlin Traffic Management Centre () Hamburg

More information

Population Analytics. Population Analytics: A New Opportunity for Mobile Operators. » Mobile Operators POPULATION ANALYTICS BENEFITS AT A GLANCE

Population Analytics. Population Analytics: A New Opportunity for Mobile Operators. » Mobile Operators POPULATION ANALYTICS BENEFITS AT A GLANCE Population Analytics Population Analytics: A New Opportunity for Mobile Operators Few new mobile-based technologies have the potential to change the way that organisations think about their customers and

More information

The Future of Business Analytics is Now! 2013 IBM Corporation

The Future of Business Analytics is Now! 2013 IBM Corporation The Future of Business Analytics is Now! 1 The pressures on organizations are at a point where analytics has evolved from a business initiative to a BUSINESS IMPERATIVE More organization are using analytics

More information

Big Data: What You Should Know. Mark Child Research Manager - Software IDC CEMA

Big Data: What You Should Know. Mark Child Research Manager - Software IDC CEMA Big Data: What You Should Know Mark Child Research Manager - Software IDC CEMA Agenda Market Dynamics Defining Big Data Technology Trends Information and Intelligence Market Realities Future Applications

More information

The Role of the BI Competency Center in Maximizing Organizational Performance

The Role of the BI Competency Center in Maximizing Organizational Performance The Role of the BI Competency Center in Maximizing Organizational Performance Gloria J. Miller Dr. Andreas Eckert MaxMetrics GmbH October 16, 2008 Topics The Role of the BI Competency Center Responsibilites

More information

Bu si n ess In tel l i gen ce: Leveragi ng D at a to B et ter Man age yo u r B u si n ess D r i ve r s

Bu si n ess In tel l i gen ce: Leveragi ng D at a to B et ter Man age yo u r B u si n ess D r i ve r s Bu si n ess In tel l i gen ce: Leveragi ng D at a to B et ter Man age yo u r B u si n ess D r i ve r s We Work Where You Work A DEFINITION OF BUSINESS INTELLIGENCE Business Intelligence is defined as a

More information

Data Catalogs for Hadoop Achieving Shared Knowledge and Re-usable Data Prep. Neil Raden Hired Brains Research, LLC

Data Catalogs for Hadoop Achieving Shared Knowledge and Re-usable Data Prep. Neil Raden Hired Brains Research, LLC Data Catalogs for Hadoop Achieving Shared Knowledge and Re-usable Data Prep Neil Raden Hired Brains Research, LLC Traditionally, the job of gathering and integrating data for analytics fell on data warehouses.

More information

Architecture & Experience

Architecture & Experience Architecture & Experience Data Mining - Combination from SAP HANA, R & Hadoop Markus Severin, Solution Principal Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein

More information

Your business technologists. Powering progress

Your business technologists. Powering progress Your business technologists. Powering progress Informed decisions using trusted intelligence Turn complex data into simple intelligence Many public sector organizations struggle with Big Data. They are

More information

Knowledge Discovery and Data. Data Mining vs. OLAP

Knowledge Discovery and Data. Data Mining vs. OLAP Knowledge Discovery and Data Mining Data Mining vs. OLAP Sajjad Haider Spring 2010 1 Acknowledgement All the material in this presentation is taken from the Internet. A simple search of Data Mining vs.

More information

Fleet management system as actuator for public transport priority

Fleet management system as actuator for public transport priority 10th ITS European Congress, Helsinki, Finland 16 19 June 2014 TP 0226 Fleet management system as actuator for public transport priority Niels van den Bosch 1, Anders Boye Torp Madsen 2 1. IMTECH Traffic

More information

Delivering Smart Answers!

Delivering Smart Answers! Companion for SharePoint Topic Analyst Companion for SharePoint All Your Information Enterprise-ready Enrich SharePoint, your central place for document and workflow management, not only with an improved

More information

Big Data better business benefits

Big Data better business benefits Big Data better business benefits Paul Edwards, HouseMark 2 December 2014 What I ll cover.. Explain what big data is Uses for Big Data and the potential for social housing What Big Data means for HouseMark

More information

Intelligent Business Operations and Big Data. 2014 Software AG. All rights reserved.

Intelligent Business Operations and Big Data. 2014 Software AG. All rights reserved. Intelligent Business Operations and Big Data 1 What is Big Data? Big data is a popular term used to acknowledge the exponential growth, availability and use of information in the data-rich landscape of

More information

Deep Insights Smart Decisions Motionlogic

Deep Insights Smart Decisions Motionlogic Deep Insights Smart Decisions Motionlogic About Motionlogic Big Data business of Deutsche Telekom 100% subsidiary Analytics of people movement behavior and demographic indicators Using anonymized network

More information

Turning Big Data into Big Insights

Turning Big Data into Big Insights mwd a d v i s o r s Turning Big Data into Big Insights Helena Schwenk A special report prepared for Actuate May 2013 This report is the fourth in a series and focuses principally on explaining what s needed

More information

Improving public transport decision making, planning and operations by using Big Data

Improving public transport decision making, planning and operations by using Big Data Improving public transport decision making, planning and operations by using Big Data Cases from Sweden and the Netherlands dr. ir. N. van Oort dr. Oded Cats Assistant professor public transport Assistant

More information

Government Technology Trends to Watch in 2014: Big Data

Government Technology Trends to Watch in 2014: Big Data Government Technology Trends to Watch in 2014: Big Data OVERVIEW The federal government manages a wide variety of civilian, defense and intelligence programs and services, which both produce and require

More information

RESEARCH REPORT. The State of Streaming Big Data Analytics: 2014 Survey Results

RESEARCH REPORT. The State of Streaming Big Data Analytics: 2014 Survey Results RESEARCH REPORT The State of Streaming Big Data Analytics: 2014 Survey Results April 2014 Executive Summary As the speed of business accelerates, organizations produce increasingly vast volumes of high

More information

Machine Data Analytics with Sumo Logic

Machine Data Analytics with Sumo Logic Machine Data Analytics with Sumo Logic A Sumo Logic White Paper Introduction Today, organizations generate more data in ten minutes than they did during the entire year in 2003. This exponential growth

More information

The World s Most Powerful and Popular Travel Forecasting Software

The World s Most Powerful and Popular Travel Forecasting Software The World s Most Powerful and Popular Travel Forecasting Software TransCAD is the most comprehensive, flexible, and capable travel demand modeling software ever created. TransCAD supports all styles of

More information

Driving business intelligence to new destinations

Driving business intelligence to new destinations IBM SPSS Modeler and IBM Cognos Business Intelligence Driving business intelligence to new destinations Integrating IBM SPSS Modeler and IBM Cognos Business Intelligence Contents: 2 Mining for intelligence

More information

Complex, true real-time analytics on massive, changing datasets.

Complex, true real-time analytics on massive, changing datasets. Complex, true real-time analytics on massive, changing datasets. A NoSQL, all in-memory enabling platform technology from: Better Questions Come Before Better Answers FinchDB is a NoSQL, all in-memory

More information

SAN FRANCISCO INTEGRATING LAND USE AND TRANSPORT PLANNING PROCEDURES WITH EMME/2 IN CAPE TOWN, SOUTH AFRICA

SAN FRANCISCO INTEGRATING LAND USE AND TRANSPORT PLANNING PROCEDURES WITH EMME/2 IN CAPE TOWN, SOUTH AFRICA 12 TH INTERNATIONAL EMME/2 CONFERENCE SAN FRANCISCO INTEGRATING LAND USE AND TRANSPORT PLANNING PROCEDURES WITH EMME/2 IN CAPE TOWN, SOUTH AFRICA by Kostas Rontiris : Director, VKE Engineers, P O Box 1462

More information

GLASGOW CITY COUNCIL PEOPLE TRIP ASSESSMENT

GLASGOW CITY COUNCIL PEOPLE TRIP ASSESSMENT GLASGOW CITY COUNCIL PEOPLE TRIP ASSESSMENT An analysis of benefits and drawbacks By JMP Consulting Note This report is an independent analysis of Glasgow City Council s People Trip Assessment method.

More information

E-navigation, from sensors to ship behaviour analysis

E-navigation, from sensors to ship behaviour analysis E-navigation, from sensors to ship behaviour analysis Laurent ETIENNE, Loïc SALMON French Naval Academy Research Institute Geographic Information Systems Group laurent.etienne@ecole-navale.fr loic.salmon@ecole-navale.fr

More information

Appendix J Santa Monica Travel Demand Forecasting Model Trip Generation Rates

Appendix J Santa Monica Travel Demand Forecasting Model Trip Generation Rates Appendix J Santa Monica Travel Demand Forecasting Model Trip Generation Rates SANTA MONICA TRAVEL DEMAND FORECASTING MODEL TRIP GENERATION RATES SUBMITTED BY: 201 Santa Monica Blvd., Suite 500 Santa Monica,

More information

A Bicycle Accident Study Using GIS Mapping and Analysis

A Bicycle Accident Study Using GIS Mapping and Analysis A Bicycle Accident Study Using GIS Mapping and Analysis Petra Staats, Graduate Assistant, Transportation Policy Institute, Rutgers University, New Brunswick, NJ, USA pstaats@eden.rutgers.edu Summary Surveys

More information

GROW WITH BIG DATA Third Eye Consulting Services & Solutions LLC.

GROW WITH BIG DATA Third Eye Consulting Services & Solutions LLC. GROW WITH BIG DATA Third Eye Consulting Services & Solutions LLC. Connected Cars Driving Us to a Better Us - In Real Time What is a Connected Car? Connected Car - Definition A connected car is a car that

More information

Big Data and Advanced Analytics Technologies for the Smart Grid

Big Data and Advanced Analytics Technologies for the Smart Grid 1 Big Data and Advanced Analytics Technologies for the Smart Grid Arnie de Castro, PhD SAS Institute IEEE PES 2014 General Meeting July 27-31, 2014 Panel Session: Using Smart Grid Data to Improve Planning,

More information

INSURANCE INFORMATION AND MONITORING CENTER

INSURANCE INFORMATION AND MONITORING CENTER INSURANCE INFORMATION AND MONITORING CENTER AYDIN SATICI Managing Director April 2015 Sigorta Bilgi ve Gözetim Merkezi 1. 2. Mobile Accident Report Application 3. Fraud Management System and Social Network

More information

PERFORMANCE MEASURES FOR MOBILITY MANAGEMENT PROGRAMS

PERFORMANCE MEASURES FOR MOBILITY MANAGEMENT PROGRAMS PERFORMANCE MEASURES FOR MOBILITY MANAGEMENT PROGRAMS Jon E. Burkhardt and Joohee Yum December 30, 2010 In order to be able to assess progress in the implementation of mobility management programs, a system

More information

Big Data in Transportation Engineering

Big Data in Transportation Engineering Big Data in Transportation Engineering Nii Attoh-Okine Professor Department of Civil and Environmental Engineering University of Delaware, Newark, DE, USA Email: okine@udel.edu IEEE Workshop on Large Data

More information

Hexaware E-book on Predictive Analytics

Hexaware E-book on Predictive Analytics Hexaware E-book on Predictive Analytics Business Intelligence & Analytics Actionable Intelligence Enabled Published on : Feb 7, 2012 Hexaware E-book on Predictive Analytics What is Data mining? Data mining,

More information

Transforming the Telecoms Business using Big Data and Analytics

Transforming the Telecoms Business using Big Data and Analytics Transforming the Telecoms Business using Big Data and Analytics Event: ICT Forum for HR Professionals Venue: Meikles Hotel, Harare, Zimbabwe Date: 19 th 21 st August 2015 AFRALTI 1 Objectives Describe

More information

A User s Introduction to. Global Rescue s GRID TM Mobile Application

A User s Introduction to. Global Rescue s GRID TM Mobile Application A User s Introduction to Global Rescue s GRID TM Mobile Application GRID TM Mobile App Highlights Travel Preparation and Planning the featured destination reports and country risk ratings provide travelers

More information