# Parallel Simulated Annealing Algorithm for Graph Coloring Problem

Save this PDF as:

Size: px
Start display at page:

Download "Parallel Simulated Annealing Algorithm for Graph Coloring Problem"

## Transcription

1 Parallel Simulated Annealing Algorithm for Graph Coloring Problem Szymon Łukasik 1, Zbigniew Kokosiński 2, and Grzegorz Świętoń 2 1 Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, Warsaw, Poland 2 Department of Automatic Control, Cracow University of Technology ul. Warszawska 24, Cracow, Poland Abstract. The paper describes an application of Parallel Simulated Annealing (PSA) for solving one of the most studied NP-hard optimization problems: Graph Coloring Problem (GCP). Synchronous master-slave model with periodic solution update is being used. The paper contains description of the method, recommendations for optimal parameters settings and summary of results obtained during algorithm s evaluation. A comparison of our novel approach to a PGA metaheuristic proposed in the literature is given. Finally, directions for further work in the subject are suggested. Key words: graph coloring, parallel simulated annealing, parallel metaheuristic 1 Introduction Let G = (V, E) be a given graph, where V is a set of V = n vertices and E set of E = m graph edges. Graph Coloring Problem (GCP) [1, 2] is defined as a task of finding an assignment of k colors to vertices c : V {1,..., k}, k n, such that there is no conflict of colors between adjacent vertices, i.e. (u, v) E : c(u) c(v) and number of colors k used is minimal (such k is called the graph chromatic number χ(g)). A number of GCP variants is used for testing printed circuits, frequency assignment in telecommunication, job scheduling and other combinatorial optimization tasks. The problem is known to be NP hard [3]. Intensive studies of the problem resulted in a large number of approximate and exact solving methods. GCP was the subject of Second DIMACS Challenge [4] held in 1993 and Computational Symposium on Graph Coloring and Generalizations organized in The graph instances [5] and reported research results are frequently used in development of new coloring algorithms and for reference purposes. Most algorithms designed for GCP are iterative heuristics [11], such as genetic algorithms [6], simulated annealing [7, 8], tabu or local search techniques [9], minimizing selected cost functions. At the time of this writing, the only parallel metaheuristic for GCP is parallel genetic algorithm [10, 12 15].

2 2 S. Łukasik, Z. Kokosiński, G. Świętoń The purpose of the paper is to present a new algorithm capable of solving GCP, developed on the basis of Parallel Simulated Annealing (PSA) method [16]. Recent years brought a rapid development of PSA techniques. Classical Simulated Annealing [17] was transformed into parallel processing environment in various ways: most popular approaches involve parallel moves, where single Markov chain is being evaluated by multiple processing units calculating possible moves from one state to another. The other method uses multiple threads for computing independent chains of solutions and exchanging the obtained results on a regular basis. Broad studies of both techniques can be found in [18, 19]. The PSA scheme for GCP, proposed by the authors, includes above strategies with the rate of current solution update used as a distinctive control parameter. The paper is organized as follows. Next section is devoted to the description of the proposed PSA algorithm. Besides its general structure, details of cooling schedule and cost function being used as well as neighborhood solution generation procedure are given. Subsequent part of the paper presents results of algorithm s experimental evaluation. Final part of the contribution gives general comments on the performance of PSA algorithm, and possible directions for future work in the subject. 2 Parallel Simulated Annealing PSA algorithm for GCP introduced in this paper uses multiple processors working concurrently on individual chains and agreeing about current solutions at fixed iteration intervals. The aim of the routine is to minimize chosen cost function, with storing the best solution found. The coordination of the algorithm is performed in master slave model one of processing units is responsible for collecting solutions, choosing the current one and distributing it among slave units. The exchange interval e i is a parameter which decides which PSA scheme is being used. Setting e i = 1 is equivalent to producing single chain of solutions using multiple moves strategy. Increasing the interval e i leads to creating semiindependent chains on all slave processors starting at each of concurrent rounds with the same established solution. Setting e i to infinity results in performing independent simulated annealing runs. The general scheme of the algorithm is presented below: Parallel Simulated Annealing for Graph Coloring Problem if proc=master best_cost:=infinity; if proc=slave // generate initial solution randomly at each slave solution[proc]:=generate_initial_solution(); for iter:=1 to iter_no do if proc=slave // each slave generates a new solution neighbor_solution[proc]:=generate_neighbor_sol(solution[proc]);

3 Parallel SA Algorithm for Graph Coloring Problem 3 // and accepts it as a current one according to SA methodology solution[proc]:=anneal(neighbor_solution[proc],solution[proc],t); // all solutions are then gathered at master Gather_at_master(solution[proc]); if proc=master current_cost:=infinity; // find solution with minimum cost and set it as a current one for j:=1 to slaves_no do if Cost(solution[j])<current_cost current_solution:=solution[j]; current_cost:=cost(solution[j]); // update best solution found (if applicable) if current_cost<best_cost best_solution:=current_solution; best_cost:=current_cost; // if stop condition fulfilled - end main loop if best_cost<=target_cost break; // distribute periodically current solution among all slaves if iter mod e_i = 0 solution[proc]:=distribute(current_solution); // update annealing temperature if appropriate T:=Update_Temperature(T); if proc=master return best_solution; Detailed information about our Simulated Annealing algorithm like cooling scheme, representation of the solution, method for generation of neighborhood and cost calculation will be given in following subsections. 2.1 Cooling Schedule Choosing proper temperature schedule is crucial for algorithm based on Simulated Annealing methodology since it influence the acceptance probability of positive transitions (i.e. when a cost difference cost,i between generated neighbor and initial solution is positive) given by Metropolis [20]: P ( cost,i ) = e cost,i T i. (1) As a result of intensive studies in this area multiple cooling strategies were developed [21]. The cooling schedule used here is the exponential one: T i+1 = αt i, (2) where α is the cooling rate (usually set at level [22]) for each cooling step. Every SA step consists of M i iterations. For the exponential schedule following holds: M i+1 = βm i. (3)

4 4 S. Łukasik, Z. Kokosiński, G. Świętoń In order to extend gradually SA runs at lower temperature levels constant β is chosen usually from the range [1.01, 1.20]. In addition to proper cooling schedule one has to choose correct initial temperature T 0. The authors used the most common method that involves calculating average cost difference cost,0 from a set of pilot runs consisting of positive transitions from an initial state. Preliminary temperature assuring desired initial acceptance probability P ( cost,0 ) can be calculated afterwards from equation: cost,0 T 0 = ln P ( cost,0 ). (4) The alternative approach could follow a universal method for initial temperature selection introduced in [23]. 2.2 Solution Representation and Neighborhood Generation A graph coloring c is represented by a sequence of natural numbers c =< c[1],..., c[n] >, c[i] {1,..., k}, which is equivalent to set partition representation with exactly k non empty blocks. A rule for generation of a neighbor solution can be selected out of a wide range of existing methods [24]. For the purpose of the presented algorithm the following form of restricted 1-exchange neighborhood is used: Restricted 1-exchange neighborhood for Graph Coloring Problem // check for vertices with color conflicts conflict_vertices:=find_conflicting_vertices(c); if sizeof(conflict_vertices)>0 do // if conflicts were found choose a random conflicting vertex vertex_to_change:=random(conflict_vertices); // and replace its color randomly with one of the colors {1,...,k+1} c[vertex_to_change]:=random(k+1); else // if no conflicts are found choose random vertex vertex_to_change:=random(n); // and replace its color randomly with one of the colors {1,...,k} c[vertex_to_change]:=random(k); return c; 2.3 Cost Assessment As a quality measure of a selected coloring c the following cost function was used [13]: f(c) = q(u, v) + d + k, (5) (u,v) E where q is a penalty function: { 2 when c(u) = c(v) q(u, v) = (6) 0 otherwise

5 Parallel SA Algorithm for Graph Coloring Problem 5 d is a coefficient for solution with conflicts: { 1 when (u,v) E q(u, v) > 0 d = 0 when (u,v) E q(u, v) = 0 (7) and k is the number of colors used. 3 Experimental Evaluation For testing purposes an implementation of the algorithm based on Message Passing Interface was prepared. All experiments with simulated parallelism were carried out on Intel R Xeon TM machine. As test instances standard DIMACS graphs, obtained from [5], were used. For experiments following values of SA control parameters were chosen: α = 0.95 and β = Initial temperature was determined from a pilot run consisting of 1% (relative to overall iteration number) positive transitions. The termination condition was either achieving the optimal solution or the required number of iterations. Due to space limitations only most representative results are presented in the paper. The full set of simulation data can be found on the first author s web site (http://www.pk.edu.pl/~szymonl). 3.1 SA Parameters Settings At first, the optimal values of SA parameters were under investigation. Essential results of those experiments are gathered in Table 1. Table 1. Influence of Simulated Annealing parameters on algorithm s performance Graph P ( cost,0 ) T f k 0 G(V,E) Description Results Best P Results Best T f Results Best k 0 anna, χ(g) = 11 best f(c) % T χ(g) V = 138 avg. f(c) E = 493 σ f(c) queen8_8, χ(g) = 9 best f(c) % T χ(g) V = 64 avg. f(c) E = 728 σ f(c) mulsol.i.4, χ(g) = 31 best f(c) % T χ(g) 5 V = 197 avg. f(c) E = 3925 σ f(c) myciel7, χ(g) = 8 best f(c) % T χ(g) 5 V = 191 avg. f(c) E = 2360 σ f(c) Opening set of 500 runs with final temperature T f = 0.1, iter_no = 10000, randomly generated initial solution with k = χ(g) and the initial probability

6 6 S. Łukasik, Z. Kokosiński, G. Świętoń changing within the range 10% 90% proved that the best algorithm s performance, measured primarily by minimum average cost function (the second criterion was the iteration number), is achieved for high initial probabilities with an optimum found at about 60% 80%. It was observed, however, that the exact choice of P ( cost,0 ) in this range is not very significant for the overall algorithm s performance. Obtained results confirmed a hypothesis that for more complex problems it is advisable to use higher values of initial temperature. In the next experiment the optimal final temperature (relative to T 0 ) was under examination. For fixed P ( cost,0 ) = 70%, iter_no = and k = χ(g) the best results were obtained for T f [0.01, 0.2] T 0. Again, higher solution quality for more complex graph instances was achieved with increased temperature ratios. The influence of initial number of colors k 0 on the solution quality was also determined experimentally. The range [χ(g) 5, χ(g) + 5] was under consideration with P ( cost,0 ) = 70%, T f = 0.05 T 0 and iter_no = It was observed that using initial color number slightly different than chromatic number do not affect significantly the algorithm s performance. For some graph instances it is even recommended to start with colorings with k 0 lower than χ(g). In the end it should be noted that above presented statements are to be treated as overall guidelines for SA parameters settings obtained from a relatively small set of graphs. The exact values for those parameters depend largely on the considered class of graph instances. 3.2 Influence of Parallelization Schemes The second stage of the computing experiments involved examination of algorithm s performance with different parallelization schemes and comparison with results obtained with sequential Simulated Annealing algorithm. For PSA the configurations with e i = {1, 2, 4, 6, 8, 10, } and slaves number from 2 to 18, were tested with various graph instances. To examine the effect of parallelization on the processing time the same number of iterations iter_no = was set for both sequential SA and PSA algorithms (in PSA each slave performs only iter_no/slaves_no iterations). For the temperature schedule following settings were applied: P ( cost,0 ) = 70% and T f = 0.05 T 0. Obtained results include mean values of the cost function, the number of conflict free/optimal solutions, the number of iterations needed to find an optimal coloring (if applicable), and algorithm s execution time t[s] (until best solution has been found). The summary of the results is presented in Table 2. Best and worst parallel configurations, in terms of average f(c) and processing time, with the obtained results are reported. As a reference average performance of the algorithm is given as well. PSA clearly outperforms the sequential Simulated Annealing in terms of computation time. Moreover, applying parallelization improves the quality of the obtained solution. It can be seen though that it is important to select a proper configuration of the PSA algorithm to achieve its high efficiency. For most problem instances it is advisable to use multiple moves strategy with optimal,

7 Parallel SA Algorithm for Graph Coloring Problem 7 relatively small, number of slaves. There exists one exception to the presented statement - for the class of mulsol.i graphs significantly better results were obtained with fully independent SA runs. The worst results of using Parallel Simulated Annealing were obtained when a high number of slaves was involved in the computations and parallelization scheme was far from the optimal one. Table 2. Experimental evaluation of the PSA algorithm for GCP Graph SA PSA Results PSA Config. G(V,E) Description Results Best Worst Average Best Worst games120 avg. f(c) slaves 18 slaves χ(g) = 9 c. f. c /opt. c 100/ / / /100 e i = 1 e i = V = 120 avg. iter. /opt. c E = 638 avg. t[s] /best c anna avg. f(c) slaves 18 slaves χ(g) = 11 c. f. c /opt. c 100/ / /72 100/98 e i = 1 e i = 1 V = 138 avg. iter. /opt. c E = 493 avg. t[s] /best c myciel7 avg. f(c) slaves 18 slaves χ(g) = 8 c. f. c /opt. c 100/ / /43 100/95 e i = 1 e i = 1 V = 191 avg. iter. /opt. c E = 2360 avg. t[s] /best c miles500 avg. f(c) slaves 17 slaves χ(g) = 20 c. f. c /opt. c 100/ / /90 100/98 e i = 1 e 1 = 1 V = 128 avg. iter. /opt. c E = 1170 avg. t[s] /best c mulsol.i.4 avg. f(c) slaves 17 slaves χ(g) = 31 c. f. c /opt. c 100/96 100/81 100/0 100/1 e i = e i = 1 V = 197 avg. iter. /opt. c E = 3925 avg. t[s] /best c queen8_8 avg. f(c) slaves 16 slaves χ(g) = 9 c. f. c /opt. c 100/3 100/19 100/0 100/3 e i = 1 e i = V = 64 avg. iter. /opt. c E = 728 avg. t[s] /best c le450_15b avg. f(c) slaves 18 slaves χ(g) = 15 c. f. c /opt. c 100/0 100/0 100/0 100/0 e i = 1 e i = V = 450 avg. iter. /opt. c E = 8169 avg. t[s] /best c Comparison with Parallel Genetic Algorithm The last stage of the testing procedure involved comparison of time efficiency of the PSA algorithm and Parallel Genetic Algorithm introduced in [12]. The implementation of the PGA for GCP used in [13] was applied. Both algorithms

8 8 S. Łukasik, Z. Kokosiński, G. Świętoń were executed on the same machine for selected DIMACS graph instances and computation time needed to find optimal coloring was reported. PGA was executed with 3 islands, subpopulations consisting of 60 individuals, migration rate 5, migration size 5 with the best individuals being distributed, initial number of colors 4 and operators: CEX crossover (with 0.6 probability), First Fit mutation (with 0.1 probability). For PSA 3 slaves were used, P ( cost,0 ) = 70%, T f = 0.05 T 0, iter_no = (for instance mulsol.i.1 to find optimal solution runs of length iterations were needed). For most instances multiple moves strategy was applied. One exception was mulsol.i class of graphs where, according to earlier observations, independent SA runs were executed. Results of the experiments, enclosed in Table 3, clearly demonstrate that PSA performance is comparable to the one achieved by the PGA. For some graph instances, like book graphs and miles500, the proposed algorithm was found to be superior. On the other hand, there exist a group of problems relatively easy to solve by PGA and, at the same time, difficult to solve by PSA (like mulsol.i.1). Table 3. Comparison of time efficiency of PGA and PSA algorithms applied for GCP Graph t[s] Graph t[s] G(V,E) PSA PGA G(V,E) PSA PGA anna, χ(g) = mulsol.i.4, χ(g) = V = 138, E = 493 V = 185, E = 3946 myciel7, χ(g) = mulsol.i.1, χ(g) = V = 191, E = 2360 V = 197, E = 3925 miles500, χ(g) = games120, χ(g) = V = 128, E = 1170 V = 120, E = Conclusion In the paper a new Parallel Simulated Annealing algorithm for GCP was introduced and evaluated. First experiments revealed that its performance depends on choosing a cooling schedule and generation of the initial coloring suitable to the considered problem. Some general guidelines were derived for the algorithm s settings that ensure a better solution quality. Further research in the subject could concern adaptive cooling schedules and generation of initial solution by means of an approximate method. Choosing an optimal number of processing units and parallelization scheme for the PSA was also under consideration. We found that problem specification essentially influence the proper choice of these elements. However, it can be stated as a general remark that the highest efficiency of the master slave PSA algorithm is achieved for optimal, relatively small number of slaves. During the performance evaluation the PSA algorithm was proved to be an effective tool for solving Graph Coloring Problem. The experiments showed that

9 Parallel SA Algorithm for Graph Coloring Problem 9 it achieves a similar performance level as PGA. The comparison results of both methods showed that none of them is superior. It encourages efforts for development of a new hybrid metaheuristics which would benefit from advantages of both PGA and PSA approaches. The overall concept of a hybrid algorithm could implement the idea presented in [25] and include some other improvements of the standard PSA scheme as proposed in [26]. References 1. Kubale, M. (Eds.): Graph colorings. American Mathematical Society, (2004). 2. Jensen T.R., Toft B.: Graph coloring problems. Wiley Interscience, New York (1995) 3. Garey R., Johnson D.S.: Computers and intractability. A guide to the theory of NP completeness. W. H. Freeman, New York (1979) 4. Johnson, D.S., Trick, M.A. (Eds.): Cliques, Coloring and Satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Science 26 (1996) 5. Graph coloring instances: 6. Fleurent, C., Ferland, J.A.: Genetic and Hybrid Algorithms for Graph Coloring. Annals of Operations Research 63 (1996) Chams, M., Hertz, A., de Werra, D.: Some Experiments with Simulated Annealing for Coloring Graphs. European Journal of Operational Research 32 (1987) Johnson, D.S., Aragon, C.R., McGeoch, L., Schevon, C.: Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning. Operations Research 39/3 (1991) Galinier, P., Hertz, A.: A Survey of Local Search Methods for Graph Coloring. Computers & Operations Research 33 (2006) Alba E. (Ed.): Parallel Metaheuristics. John Wiley & Sons, New York (2005) 11. Szyfelbein, D.: Metaheuristics in graph coloring. In: Kubale M. (Ed.): Discrete optimization. Models and methods for graph coloring. WNT, Warszawa (2002) (in Polish) 12. Kokosiński Z., Kołodziej M., Kwarciany K.: Parallel genetic algorithm for graph coloring problem. Proc. ICCS 2004, LNCS 3036 (2004) Kokosiński, Z., Kwarciany, K., Kołodziej, M.: Efficient Graph Coloring with Parallel Genetic Algorithms. Computing and Informatics 24/2 (2005) Łukasik, Sz.: Parallel Genetic Algorithms using Message Passing Paradigm for Graph Coloring Problem. Journal of Electrical Engineering 56/12/s (2005) Kokosiński Z., Kwarciany K.: On sum coloring of graphs with parallel genetic algorithms. Proc. ICANNGA 2007, LNCS 4431 (2007) Azencott, R. (Ed.): Simulated Annealing: Parallelization Techniques. John Wiley & Sons, New York (1992) 17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M. : Optimization by Simulated Annealing. Science 220 (1983) Diekmann, R., Lüling, R., Simon, J.: Problem Independent Distributed Simulated Annealing and its Applications. Working Paper, University of Paderborn, Germany 19. Lee, S.-Y., Lee, K.G: Synchronous and Asynchronous Parallel Simulated Annealing with Multiple Markov Chains. IEEE Transactions on Parallel and Distributed Systems 7/10 (1996)

10 10 S. Łukasik, Z. Kokosiński, G. Świętoń 20. Metropolis, N.A., Rosenbluth, A., Teller, A., Teller E.: Equation of State Calculations by Fast Computing Machines. Journal of Chemical Physics 21 (1953) Ingber, A.L.: Simulated Annealing: Practice versus Theory. Journal of Mathematical Computation Modelling 18/11 (1993) Sait S.M., Youssef H.: Iterative computer algorithms with applications in engineering. IEEE Computer Society, Los Alamitos (1999) 23. Ben-Ameur, W.: Computing the Initial Temperature of Simulated Annealing. Computational Optimization and Applications 29 (2004) Avanthay, C., Hertz, A., Zufferey, N.: A Variable Neighborhood Search for Graph Coloring. European Journal of Operational Research 151 (2003) Tomoyuki, H., Mitsunori, M., Ogura, M.: Parallel Simulated Annealing using Genetic Crossover. Science and Engineering Review of Doshisha University 41/2 (2000) Bożejko, W., Wodecki, M.: The New Concepts in Parallel Simulated Annealing Method. Proc. ICAISC 2004, LNCS 3070 (2004)

### Parallel Computing of Kernel Density Estimates with MPI

Parallel Computing of Kernel Density Estimates with MPI Szymon Lukasik Department of Automatic Control, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland Szymon.Lukasik@pk.edu.pl

### Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

### A Binary Model on the Basis of Imperialist Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0

212 International Conference on System Engineering and Modeling (ICSEM 212) IPCSIT vol. 34 (212) (212) IACSIT Press, Singapore A Binary Model on the Basis of Imperialist Competitive Algorithm in Order

### A Reactive Tabu Search for Service Restoration in Electric Power Distribution Systems

IEEE International Conference on Evolutionary Computation May 4-11 1998, Anchorage, Alaska A Reactive Tabu Search for Service Restoration in Electric Power Distribution Systems Sakae Toune, Hiroyuki Fudo,

### CAD Algorithms. P and NP

CAD Algorithms The Classes P and NP Mohammad Tehranipoor ECE Department 6 September 2010 1 P and NP P and NP are two families of problems. P is a class which contains all of the problems we solve using

### Optimized Software Component Allocation On Clustered Application Servers. by Hsiauh-Tsyr Clara Chang, B.B., M.S., M.S.

Optimized Software Component Allocation On Clustered Application Servers by Hsiauh-Tsyr Clara Chang, B.B., M.S., M.S. Submitted in partial fulfillment of the requirements for the degree of Doctor of Professional

### HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE

HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE Subodha Kumar University of Washington subodha@u.washington.edu Varghese S. Jacob University of Texas at Dallas vjacob@utdallas.edu

### Parallel CLM starting solutions comparison *

4 th International Conference on Industrial Engineering and Industrial Management XIV Congreso de Ingeniería de Organización Donostia- San Sebastián, September 8 th -10 th 2010 Parallel CLM starting solutions

### The Multi-Item Capacitated Lot-Sizing Problem With Safety Stocks In Closed-Loop Supply Chain

International Journal of Mining Metallurgy & Mechanical Engineering (IJMMME) Volume 1 Issue 5 (2013) ISSN 2320-4052; EISSN 2320-4060 The Multi-Item Capacated Lot-Sizing Problem Wh Safety Stocks In Closed-Loop

### Load Balancing. Load Balancing 1 / 24

Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait

### Lecture. Simulation and optimization

Course Simulation Lecture Simulation and optimization 1 4/3/2015 Simulation and optimization Platform busses at Schiphol Optimization: Find a feasible assignment of bus trips to bus shifts (driver and

### The Problem of Scheduling Technicians and Interventions in a Telecommunications Company

The Problem of Scheduling Technicians and Interventions in a Telecommunications Company Sérgio Garcia Panzo Dongala November 2008 Abstract In 2007 the challenge organized by the French Society of Operational

### Small Maximal Independent Sets and Faster Exact Graph Coloring

Small Maximal Independent Sets and Faster Exact Graph Coloring David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science The Exact Graph Coloring Problem: Given an undirected

### Distributed Dynamic Load Balancing for Iterative-Stencil Applications

Distributed Dynamic Load Balancing for Iterative-Stencil Applications G. Dethier 1, P. Marchot 2 and P.A. de Marneffe 1 1 EECS Department, University of Liege, Belgium 2 Chemical Engineering Department,

### Integer Programming: Algorithms - 3

Week 9 Integer Programming: Algorithms - 3 OPR 992 Applied Mathematical Programming OPR 992 - Applied Mathematical Programming - p. 1/12 Dantzig-Wolfe Reformulation Example Strength of the Linear Programming

### A greedy algorithm for the DNA sequencing by hybridization with positive and negative errors and information about repetitions

BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 1, 2011 DOI: 10.2478/v10175-011-0015-0 Varia A greedy algorithm for the DNA sequencing by hybridization with positive and negative

### Best Monotone Degree Bounds for Various Graph Parameters

Best Monotone Degree Bounds for Various Graph Parameters D. Bauer Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030 S. L. Hakimi Department of Electrical and Computer

### Cloud Storage and Online Bin Packing

Cloud Storage and Online Bin Packing Doina Bein, Wolfgang Bein, and Swathi Venigella Abstract We study the problem of allocating memory of servers in a data center based on online requests for storage.

### Reichelt, Dirk ; Gmilkowsky, Peter ; Linser, Sebastian : A study of an iterated local search on the reliable communication networks design problem

Reichelt, Dirk ; Gmilkowsky, Peter ; Linser, Sebastian : A study of an iterated local search on the reliable communication networks design problem Zuerst erschienen in: Applications of evolutionary computing.

### A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem

A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem Sayedmohammadreza Vaghefinezhad 1, Kuan Yew Wong 2 1 Department of Manufacturing & Industrial Engineering, Faculty of Mechanical

### An Empirical Study of Two MIS Algorithms

An Empirical Study of Two MIS Algorithms Email: Tushar Bisht and Kishore Kothapalli International Institute of Information Technology, Hyderabad Hyderabad, Andhra Pradesh, India 32. tushar.bisht@research.iiit.ac.in,

### PLAANN as a Classification Tool for Customer Intelligence in Banking

PLAANN as a Classification Tool for Customer Intelligence in Banking EUNITE World Competition in domain of Intelligent Technologies The Research Report Ireneusz Czarnowski and Piotr Jedrzejowicz Department

Chapter 7 Load Balancing and Termination Detection Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection

### Guessing Game: NP-Complete?

Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

### Distributed Computing over Communication Networks: Maximal Independent Set

Distributed Computing over Communication Networks: Maximal Independent Set What is a MIS? MIS An independent set (IS) of an undirected graph is a subset U of nodes such that no two nodes in U are adjacent.

### On the k-path cover problem for cacti

On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

### Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar

Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples

### On the Ramsey Number R(4, 6)

On the Ramsey Number R(4, 6) Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809 ge@cs.indstate.edu Submitted: Mar 6, 2012; Accepted: Mar 23, 2012;

### A Tool for Generating Partition Schedules of Multiprocessor Systems

A Tool for Generating Partition Schedules of Multiprocessor Systems Hans-Joachim Goltz and Norbert Pieth Fraunhofer FIRST, Berlin, Germany {hans-joachim.goltz,nobert.pieth}@first.fraunhofer.de Abstract.

### Local Search. 22c:145 Artificial Intelligence. Local Search: General Principle. Hill-climbing search. Local Search. Intro example: N-queens

So far: methods that systematically explore the search space, possibly using principled pruning (e.g., A*) c:145 Artificial Intelligence Local Search Readings Textbook: Chapter 4:1 and 6:4 Current best

### Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware

Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware Mahyar Shahsavari, Zaid Al-Ars, Koen Bertels,1, Computer Engineering Group, Software & Computer Technology

### A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment

A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment Panagiotis D. Michailidis and Konstantinos G. Margaritis Parallel and Distributed

### Extended Finite-State Machine Inference with Parallel Ant Colony Based Algorithms

Extended Finite-State Machine Inference with Parallel Ant Colony Based Algorithms Daniil Chivilikhin PhD student ITMO University Vladimir Ulyantsev PhD student ITMO University Anatoly Shalyto Dr.Sci.,

### Load Balancing Techniques

Load Balancing Techniques 1 Lecture Outline Following Topics will be discussed Static Load Balancing Dynamic Load Balancing Mapping for load balancing Minimizing Interaction 2 1 Load Balancing Techniques

### Load Balancing and Termination Detection

Chapter 7 Load Balancing and Termination Detection 1 Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection

### STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1

STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1 Prajakta Joglekar, 2 Pallavi Jaiswal, 3 Vandana Jagtap Maharashtra Institute of Technology, Pune Email: 1 somanprajakta@gmail.com,

### A Hybrid Tabu Search Method for Assembly Line Balancing

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 443 A Hybrid Tabu Search Method for Assembly Line Balancing SUPAPORN

### Cycle transversals in bounded degree graphs

Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.

### School Timetabling in Theory and Practice

School Timetabling in Theory and Practice Irving van Heuven van Staereling VU University, Amsterdam Faculty of Sciences December 24, 2012 Preface At almost every secondary school and university, some

### Tutorial 8. NP-Complete Problems

Tutorial 8 NP-Complete Problems Decision Problem Statement of a decision problem Part 1: instance description defining the input Part 2: question stating the actual yesor-no question A decision problem

### Empirical Study of Tabu Search, Simulated Annealing and Multi-Start in Fieldbus Scheduling

Empirical Study of Tabu Search, Simulated Annealing and Multi-Start in Fieldbus Scheduling Lucy María Franco Vargas Universidade Federal de Santa Catarina Caixa Postal 476 88.040-900 Florianópolis SC Brasil

### Decentralized Utility-based Sensor Network Design

Decentralized Utility-based Sensor Network Design Narayanan Sadagopan and Bhaskar Krishnamachari University of Southern California, Los Angeles, CA 90089-0781, USA narayans@cs.usc.edu, bkrishna@usc.edu

### An Integer Programming Model for the School Timetabling Problem

An Integer Programming Model for the School Timetabling Problem Geraldo Ribeiro Filho UNISUZ/IPTI Av. São Luiz, 86 cj 192 01046-000 - República - São Paulo SP Brazil Luiz Antonio Nogueira Lorena LAC/INPE

### Optimization Based Data Mining in Business Research

Optimization Based Data Mining in Business Research Praveen Gujjar J 1, Dr. Nagaraja R 2 Lecturer, Department of ISE, PESITM, Shivamogga, Karnataka, India 1,2 ABSTRACT: Business research is a process of

### A number of tasks executing serially or in parallel. Distribute tasks on processors so that minimal execution time is achieved. Optimal distribution

Scheduling MIMD parallel program A number of tasks executing serially or in parallel Lecture : Load Balancing The scheduling problem NP-complete problem (in general) Distribute tasks on processors so that

### Big Data Graph Algorithms

Christian Schulz CompSE seminar, RWTH Aachen, Karlsruhe 1 Christian Schulz: Institute for Theoretical www.kit.edu Informatics Algorithm Engineering design analyze Algorithms implement experiment 1 Christian

### M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3), 2011, 1001-1006

A Design of Centralized Meeting Scheduler with Distance Metrics M. Sugumaran Department of Computer Science and Engineering,Pondicherry Engineering College, Puducherry, India. Abstract Meeting scheduling

### Heuristic Algorithm for the Parallel Machine Total Weighted Tardiness Scheduling Problem

Heuristic Algorithm for the Parallel Machine Total Weighted Tardiness Scheduling Problem Rosiane Rodrigues rosiane@cos.ufrj.br COPPE - Engenharia de Sistemas e Computação Universidade Federal do Rio de

### Resource Allocation in a Client/Server System for Massive Multi-Player Online Games

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 12, DECEMBER 2014 3127 Resource Allocation in a Client/Server System for Massive Multi-Player Online Games Luis Diego Briceño, Howard Jay Siegel, Fellow, IEEE,

### JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

### An Ant Colony Optimization Approach to the Software Release Planning Problem

SBSE for Early Lifecyle Software Engineering 23 rd February 2011 London, UK An Ant Colony Optimization Approach to the Software Release Planning Problem with Dependent Requirements Jerffeson Teixeira de

### MULTI-OBJECTIVE OPTIMIZATION USING PARALLEL COMPUTATIONS

MULTI-OBJECTIVE OPTIMIZATION USING PARALLEL COMPUTATIONS Ausra Mackute-Varoneckiene, Antanas Zilinskas Institute of Mathematics and Informatics, Akademijos str. 4, LT-08663 Vilnius, Lithuania, ausra.mackute@gmail.com,

### Optimizing Testing Efficiency with Error-Prone Path Identification and Genetic Algorithms

Optimizing Testing Efficiency with Error-Prone Path Identification and Genetic Algorithms James R. Birt Renate Sitte Griffith University, School of Information Technology Gold Coast Campus PBM 50 Gold

### Algorithm Design and Analysis Homework #6 Due: 1pm, Monday, January 9, === Homework submission instructions ===

Algorithm Design and Analysis Homework #6 Due: 1pm, Monday, January 9, 2012 === Homework submission instructions === Submit the answers for writing problems (including your programming report) through

### A Study of Crossover Operators for Genetic Algorithm and Proposal of a New Crossover Operator to Solve Open Shop Scheduling Problem

American Journal of Industrial and Business Management, 2016, 6, 774-789 Published Online June 2016 in SciRes. http://www.scirp.org/journal/ajibm http://dx.doi.org/10.4236/ajibm.2016.66071 A Study of Crossover

### High-Mix Low-Volume Flow Shop Manufacturing System Scheduling

Proceedings of the 14th IAC Symposium on Information Control Problems in Manufacturing, May 23-25, 2012 High-Mix Low-Volume low Shop Manufacturing System Scheduling Juraj Svancara, Zdenka Kralova Institute

### Fast Generation of Optimal Music Playlists using Local Search

Fast Generation of Optimal Music Playlists using Local Search Steffen Pauws, Wim Verhaegh, Mark Vossen Philips Research Europe High Tech Campus 34 5656 AE Eindhoven The Netherlands steffen.pauws/wim.verhaegh@philips.com

### Nonlinear Model Predictive Control of Hammerstein and Wiener Models Using Genetic Algorithms

Nonlinear Model Predictive Control of Hammerstein and Wiener Models Using Genetic Algorithms Al-Duwaish H. and Naeem, Wasif Electrical Engineering Department/King Fahd University of Petroleum and Minerals

### Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm

Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Manal F. Younis Computer Department, College

### Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm

24 Genetic Algorithm Based on Darwinian Paradigm Reproduction Competition Survive Selection Intrinsically a robust search and optimization mechanism Slide -47 - Conceptual Algorithm Slide -48 - 25 Genetic

### Finding and counting given length cycles

Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected

### Holland s GA Schema Theorem

Holland s GA Schema Theorem v Objective provide a formal model for the effectiveness of the GA search process. v In the following we will first approach the problem through the framework formalized by

### Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

### Self-organized Multi-agent System for Service Management in the Next Generation Networks

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS ISBN 978-86-7031-188-6, pp. 18-24, 2011 Self-organized Multi-agent System for Service Management in the Next Generation Networks Mario Kusek

### MapReduce Approach to Collective Classification for Networks

MapReduce Approach to Collective Classification for Networks Wojciech Indyk 1, Tomasz Kajdanowicz 1, Przemyslaw Kazienko 1, and Slawomir Plamowski 1 Wroclaw University of Technology, Wroclaw, Poland Faculty

### Load Balancing and Termination Detection

Chapter 7 slides7-1 Load Balancing and Termination Detection slides7-2 Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination

### Efficient Scheduling of Arbitrary Task Graphs to Multiprocessors using A Parallel Genetic Algorithm

Efficient Scheduling of Arbitrary Task Graphs to Multiprocessors using A Parallel Genetic Algorithm Yu-Kwong Kwok and Ishfaq Ahmad Department of Computer Science The Hong Kong University of Science and

### NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with

### A Markovian model of the RED mechanism solved with a cluster of computers

Annales UMCS Informatica AI 5 (2006) 19-27 Annales UMCS Informatica Lublin-Polonia Sectio AI http://www.annales.umcs.lublin.pl/ A Markovian model of the RED mechanism solved with a cluster of computers

### Load balancing in a heterogeneous computer system by self-organizing Kohonen network

Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by self-organizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.

### Research Article Service Composition Optimization Using Differential Evolution and Opposition-based Learning

Research Journal of Applied Sciences, Engineering and Technology 11(2): 229-234, 2015 ISSN: 2040-7459; e-issn: 2040-7467 2015 Maxwell Scientific Publication Corp. Submitted: May 20, 2015 Accepted: June

### Definition. A graph is a collection of vertices, and edges between them. They are often represented by a drawing:

1. GRAPHS AND COLORINGS Definition. A graph is a collection of vertices, and edges between them. They are often represented by a drawing: 3 vertices 3 edges 4 vertices 4 edges 4 vertices 6 edges A graph

### SAMPLES OF HIGHER RATED WRITING: LAB 5

SAMPLES OF HIGHER RATED WRITING: LAB 5 1. Task Description Lab report 5. (April 14) Graph Coloring. Following the guidelines, and keeping in mind the assessment criteria, using where appropriate experimental

### Competitive Analysis of On line Randomized Call Control in Cellular Networks

Competitive Analysis of On line Randomized Call Control in Cellular Networks Ioannis Caragiannis Christos Kaklamanis Evi Papaioannou Abstract In this paper we address an important communication issue arising

### Matthias F.M. Stallmann Department of Computer Science North Carolina State University Raleigh, NC 27695-8206

Matthias F.M. Stallmann Department of Computer Science North Carolina State University Raleigh, NC 27695-8206 August, 1990 UNIFORM PLANAR EMBEDDING IS NP-COMPLETE* MATTHIAS F.M. STALLMANN Key Words. planar

### Load Balancing on a Non-dedicated Heterogeneous Network of Workstations

Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Dr. Maurice Eggen Nathan Franklin Department of Computer Science Trinity University San Antonio, Texas 78212 Dr. Roger Eggen Department

### Web Cluster Dynamic Load Balancing- GA Approach

Web Cluster Dynamic Load Balancing- GA Approach Chin Wen Cheong FOSEE, MultiMedia University 7545 Buit Beruang Malacca, Malaysia wcchin@mmu.edu.my Amy Lim Hui Lan Faculty of Information Technology MultiMedia

### Computational Game Theory and Clustering

Computational Game Theory and Clustering Martin Hoefer mhoefer@mpi-inf.mpg.de 1 Computational Game Theory? 2 Complexity and Computation of Equilibrium 3 Bounding Inefficiencies 4 Conclusion Computational

### The Metropolis Algorithm

The Metropolis Algorithm Statistical Systems and Simulated Annealing Physics 170 When studying systems with a great many particles, it becomes clear that the number of possible configurations becomes exceedingly

### Class constrained bin covering

Class constrained bin covering Leah Epstein Csanád Imreh Asaf Levin Abstract We study the following variant of the bin covering problem. We are given a set of unit sized items, where each item has a color

### An Efficient Algorithm for Solving a Stochastic Location-Routing Problem

Journal of mathematics and computer Science 12 (214) 27 38 An Efficient Algorithm for Solving a Stochastic LocationRouting Problem H.A. HassanPour a, M. MosadeghKhah a, M. Zareei 1 a Department of Industrial

### A COOL AND PRACTICAL ALTERNATIVE TO TRADITIONAL HASH TABLES

A COOL AND PRACTICAL ALTERNATIVE TO TRADITIONAL HASH TABLES ULFAR ERLINGSSON, MARK MANASSE, FRANK MCSHERRY MICROSOFT RESEARCH SILICON VALLEY MOUNTAIN VIEW, CALIFORNIA, USA ABSTRACT Recent advances in the

### On the Relationship between Classes P and NP

Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,

### Genetic algorithms. Maximise f(x), xi Code every variable using binary string Eg.(00000) (11111)

Genetic algorithms Based on survival of the fittest. Start with population of points. Retain better points Based on natural selection. ( as in genetic processes) Genetic algorithms L u Maximise f(x), xi

### An ant colony optimization for single-machine weighted tardiness scheduling with sequence-dependent setups

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 19 An ant colony optimization for single-machine weighted tardiness

### Artificial Intelligence Methods (G52AIM)

Artificial Intelligence Methods (G52AIM) Dr Rong Qu rxq@cs.nott.ac.uk Constructive Heuristic Methods Constructive Heuristics method Start from an empty solution Repeatedly, extend the current solution

### Load Balancing and Termination Detection

Chapter 7 Slide 1 Slide 2 Load Balancing and Termination Detection Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination

### META-HEURISTIC ALGORITHMS FOR A TRANSIT ROUTE DESIGN

Advanced OR and AI Methods in Transportation META-HEURISTIC ALGORITHMS FOR A TRANSIT ROUTE DESIGN Jongha HAN 1, Seungjae LEE 2, Jonghyung KIM 3 Absact. Since a Bus Transit Route Networ (BTRN) design problem

### Multiobjective Multicast Routing Algorithm

Multiobjective Multicast Routing Algorithm Jorge Crichigno, Benjamín Barán P. O. Box 9 - National University of Asunción Asunción Paraguay. Tel/Fax: (+9-) 89 {jcrichigno, bbaran}@cnc.una.py http://www.una.py

### A* Algorithm Based Optimization for Cloud Storage

International Journal of Digital Content Technology and its Applications Volume 4, Number 8, November 21 A* Algorithm Based Optimization for Cloud Storage 1 Ren Xun-Yi, 2 Ma Xiao-Dong 1* College of Computer

### Solving LEGO brick layout problem using Evolutionary Algorithms

Solving LEGO brick layout problem using Evolutionary Algorithms Pavel Petrovic Evolutionary Computation and Artificial Life Group (EVAL) Department of Computer and Information Science, Norwegian University

### Solving the Vehicle Routing Problem with Genetic Algorithms

Solving the Vehicle Routing Problem with Genetic Algorithms Áslaug Sóley Bjarnadóttir April 2004 Informatics and Mathematical Modelling, IMM Technical University of Denmark, DTU Printed by IMM, DTU 3 Preface

### FPGA-based Multithreading for In-Memory Hash Joins

FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded

### A Review And Evaluations Of Shortest Path Algorithms

A Review And Evaluations Of Shortest Path Algorithms Kairanbay Magzhan, Hajar Mat Jani Abstract: Nowadays, in computer networks, the routing is based on the shortest path problem. This will help in minimizing

### A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms

A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms MIGUEL CAMELO, YEZID DONOSO, HAROLD CASTRO Systems and Computer Engineering Department Universidad de los

### A very brief introduction to genetic algorithms

A very brief introduction to genetic algorithms Radoslav Harman Design of experiments seminar FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS COMENIUS UNIVERSITY IN BRATISLAVA 25.2.2013 Optimization problems:

### NAIS: A Calibrated Immune Inspired Algorithm to solve Binary Constraint Satisfaction Problems

NAIS: A Calibrated Immune Inspired Algorithm to solve Binary Constraint Satisfaction Problems Marcos Zuñiga 1, María-Cristina Riff 2 and Elizabeth Montero 2 1 Projet ORION, INRIA Sophia-Antipolis Nice,

### A Service Revenue-oriented Task Scheduling Model of Cloud Computing

Journal of Information & Computational Science 10:10 (2013) 3153 3161 July 1, 2013 Available at http://www.joics.com A Service Revenue-oriented Task Scheduling Model of Cloud Computing Jianguang Deng a,b,,