# ANT COLONY OPTIMIZATION ALGORITHM FOR RESOURCE LEVELING PROBLEM OF CONSTRUCTION PROJECT

Save this PDF as:

Size: px
Start display at page:

Download "ANT COLONY OPTIMIZATION ALGORITHM FOR RESOURCE LEVELING PROBLEM OF CONSTRUCTION PROJECT"

## Transcription

1 ANT COLONY OPTIMIZATION ALGORITHM FOR RESOURCE LEVELING PROBLEM OF CONSTRUCTION PROJECT Ying XIONG 1, Ya Ping KUANG 2 1. School of Economics and Management, Being Jiaotong Univ., Being, China. 2. College of Civil Engineering and Architecture, Zheiang Univ., Hangzhou, China. Abstract: Resource leveling is one of the most crucial aspects of construction proect planning. Early attempts to solve resource leveling problem of construction proect can be categorized into three areas: mathematical programming models, heuristic models and global search algorithms. The primary disadvantage of mathematical programming models is that they cannot solve large and complex networks effectively. Heuristic models provide good solutions but do not guarantee optimality. Therefore, some global search algorithms such as genetic algorithms and neural networks have been applied for this problem by many researchers. This paper introduces a hybrid model combining serial schedule generation scheme (SSGS) with ant colony optimization (ACO) algorithm to deal with the resource leveling problem of construction proect. This model uses SSGS to generate a feasible schedule and employs ant algorithm to search the optimal schedule from solution space. To verify the efficiency and performance of the proposed model, an example was conducted and the results were compared with that of the exhaustive enumeration. The results of the example show that the proposed model based on ACO algorithm can produce the global optimal solution by searching only a small fraction of the total search space. That means the proposed model in this paper is an attractive alternative to solving resource leveling problem of construction proect and is useful and beneficial for decision-making during the proect planning. Keywords: resource leveling; ant colony optimization (ACO); serial schedule generation scheme (SSGS); construction proect 1 Introduction Resource leveling is one of the most crucial aspects of construction proect planning. The obective of resource leveling problem is to minimize the peak demand and fluctuations in the pattern of resource usage. The peak demand and fluctuations of resource are undesirable for the contractor because they can cause the following problems (Stevens 1990; Martinez and Ioannou 1993; Son and Skibniewski 1999): It is expensive to hire and fire labor on a short-term basis to satisfy fluctuating resource requirements. Resources cannot be managed efficiently, if the schedule demands more output per day than possible with available resources. Existing methods for resource leveling problem can be categorized into three areas: mathematical programming models, heuristic models and global search algorithms. Little research has been done to solve the resource leveling problem using mathematical programming models (e.g. Bandelloni et al. 1994; Mattila and Abraham 1998), since the models are only suitable for small networks. Heuristic models are non-computer approaches that rely on the rules of thumb of decision-makers. Common heuristic models for resource leveling problem include minimum moment method (Harris 1978), packing method (Harris 1990), and local optimizer (Son and Skibniewski 1999). Although the heuristic models can handle very large proects, the solutions they provide still need improvement in the areas of efficiency and optimality. To overcome the weaknesses of both the mathematical programming models and heuristic models, some evolutionary methods characterized by global search capability have been introduced for resource leveling problem. For instance, Chan et al. (1996) proposed a model for allocating resources using genetic algorithms. Son and Skibniewski (1999) developed a multi-heuristic model called hybrid model combining the local optimizer with simulated annealing for resource leveling. Savin et al. (1996) used neural networks for resource leveling. In this paper, we propose a hybrid model incorporating serial schedule generation scheme (SSGS) with ant colony optimization (ACO) algorithm for resource leveling problem. The ACO algorithm was proposed as a global search algorithm for the solution of combinatorial optimization problems in the early nineties (Dorigo 384

2 et al., 1991; Dorigo, 1992; Dorigo et al., 1996). As its name suggests, ACO has been inspired by the real ant s foraging behavior. In ACO, several generations of artificial ants search for good solutions. Every ant of a generation builds a solution step by step going through several probabilistic decisions. In general, ants that find a good solution mark their paths through the decision space by putting some amount of pheromone on the edges of the path. The following ants of the next generations are attracted by the pheromone so that they search in the solution space near previous good solutions. In addition to the pheromone information, the ants will usually be guided by some problem-specific heuristic information for evaluating the possible decisions. 2 Description of Resource Leveling Problem Resource leveling problem is the optimization problem to scheduling the activities of a proect so that the fluctuation in day-to-day resource requirement is minimized while given precedence constrains between the activities are satisfied. Formally, J= {0, 1,, n+1} denotes the set of activities of a proect. We assume that a precedence relation is given between the activities. An activity list is a permutation of the activities such that every activity comes in the list before all activities that are its successors in the precedence relation. Every activity J has a duration d. The resource requirement per time unit when activity is scheduled is r. Let P be the set of direct predecessors of activity J. Activity 0 is the only start activity that has no predecessor and activity n+1 is the only end activity. Both the start activity and end activity have no resource requirement and have duration zero. A schedule for the proect is represented by the vector (s 0, s 1,, s n+1 ), where s is the start time of activity J. A schedule is feasible if it satisfies the following constrains: max( s + d ) " s " LF # d (1) k! P k k where LF is the latest finish time of activity. The left-hand side of inequation (1) means that activity J must not be started before all its predecessors are finished, and the right-hand side of inequation (1) means that the start time of activity J must not be later than (LF -d ) since the proect should be finished in the due date. The lower bound of start time for every activity is the earliest start time ES. So the start time s can be determined by the following equation: s = ES + i (2) where i is the time interval between the actual start time and the earliest start time of activity. Obviously, i should satisfy the following inequation: max( s + d ) " ES # i # LF " d " ES = TF (3) k! P k k where TF is the total float time of activity. The obective of resource leveling problem is to minimize the fluctuation in day-to-day resource requirement which can be defined as follows (Son and Skibniewski 1999): Z T ( ) 2 =! y t= 1 t (4) where T is the proect duration obtained from the critical path method (CPM) or given according to the construction contract; y t is the sum of resource requirements of the activities performed at time unit t. Let A = { s < t! s + d } be the set of activities which are being processed at day t, then y t is computed t according to Eq.(5). y = " r (5) t! At 3 Serial Schedule Generation Scheme (SSGS) We used serial schedule generation scheme (SSGS) for the generation of a schedule. SSGS is one of standard 385

3 heuristic methods for the resource leveling problem (cf. Son and Skibniewski 1999). The SSGS starts with a partial schedule that contains only the start activity 0 at time 0. Then, SSGS constructs the complete schedule in n stages, where at each stage one activity is added to the partial schedule constructed so far. In every stage g, one activity is selected from the set of available activities! ( g), i.e. activities that have not been scheduled so far and where each predecessor has already been scheduled. The SSGS can be supplied with an activity list, i.e. an ordered list of all activities. In this case, SSGS always choose the first activity in the list that is feasible. The start time of the activities must satisfy the inequation (1). The procedure of SSGS is shown as follows: Procedure SSGS! ( g) : all activities which can be started precedence-feasible in stage g. 1: for g = 0 to n+1 do 2: calculate the eligible set! ( g) 3: select one activity! ( g) 4: schedule at the start time s = ES + i, i![max( s + d ) " ES, TF ] k! P k k 5: end for In order to obtain an optimal solution, in each stage of procedure SSGS, the selected activity chooses the start time according to the probability derived from ACO algorithm. 4 ACO Algorithm The general idea of our ACO approach is to apply the ant algorithm for determining the start time of selected activity in stage g when used by SSGS. In every generation, each of m ants constructs one solution by selecting start time for all activities of the proect. For the selection of start time for selected activity in stage g, the ant uses heuristic information as well as pheromone information. The heuristic information, denoted by!, and the pheromone information, denoted by!, are indicators of how good it seems to perform activity at time unit ( ES + i) ( i = 0,1,, TF ). The heuristic information is generated by some problem-dependent heuristic and the pheromone information stems from former ants that have found good solutions. The main steps of ACO algorithm for resource leveling problem are described as follows. Step 1: Generate initial solutions. Initially, all artificial ants have a partial schedule that contains only the start activity 0 at time 0. Then the SSGS is used to randomly construct the complete schedule for every ant, which means randomly selecting start time of each activity for every ant which must satisfy the inequation (3). Step 2: Compute the obective value of resource leveling problem. Computing the obective value of resource leveling problem explored by each ant according to Eq. (4) and Eq. (5). Step 3: Establish the solution pool, and find out the best solution found so far. There are two main purposes of establishing the solution pool. The first is to reduce unnecessary repeated computation during running the algorithm. When a new solution is generated, first search the solution pool. If current solution is already existed in the solution pool, then output the corresponding obective value, otherwise calculate them according to Eq.(4)-(5). The second is to find out the best solution found so far which will be used to update the pheromone information. Step 4: Update the pheromone information. The best solution found so far is used to update the pheromone information. However, before that, some portion of pheromone is evaporated according to! = (1 # ") \$! (6) where! is the evaporation rate. The parameter! is used to avoid unlimited accumulation of the pheromone information and it enables the algorithm to forget previously done bad decisions. Then, for every activity J, 386

4 some amount of pheromone is added to element! of the pheromone matrix, where ( ES + i) is the start time of activity of the best solution found so far. This is an elitist strategy that leads ants to search near the * best-found solution. The amount of pheromone added is Q / Z, where Z * is the obective function value of the best-found schedule; and Q is a constant, representing the amount of pheromone an ant put on the path after an exploitaion. So the pheromone information can be calculated according to *! = (1 # ") \$! + Q / Z (7) Step 5: Compute the selection probability of start time for each activity. The activity determines the start time according to the probability as follows:! " ' [# ] [ \$ ] if max( sk + dk ) & ES < i ( TF! " ) [# ] [ ] k P h \$ % h p =, * (8) h% [max( sk + dk )& ES, TF ] ) k% P ) + 0 otherwise where а, β are control parameters that control the relative importance of the pheromone information and the heuristic information respectively. In our ACO algorithm, heuristic information is defined as the relative improvement of obective function value between the current schedule and initial schedule. The initial schedule S 0 is the schedule that all activities are scheduled at the earliest start time, i.e. S 0 = (0, ES 1,, ES n+1 ). The current schedule S is the schedule that only activity is scheduled at time unit (ES +i) while other activities are scheduled at the earliest start time. Therefore the improvement of obective function value ΔZ between S 0 and S is calculated as Eq. (9):! Z = Z( S ) " Z( S ) (9) 0 Considering the influence of negative value and the dimension of ΔZ, we define the heuristic information as follows: \$ max( " Z ) # " Z i % if TF > 0! max( Z ) Z = &( " # " i % i %' 0 if TF = 0 (i = 0, 1,, TF ; = 0, 1,, n+1) (10) Step 6: Construct a schedule for every ant. In our ACO an artificial ant k chooses the start time for all activities to construct a schedule by applying the following probabilistic formula:! " ' arg max ((# h) ( \$ ) ) + h if q q0 h% [max( sk + dk )& ES, TF ] i, * -! < = k% P. / 0 +1 (11) I otherwise where q is a value chosen randomly with uniformly probability in [0,1]; q0 (0 q0 1) is a parameter and I is a random variable selected according to the probability distribution derived from Eq. (8). In this selection mode, in fact two selections should be done. First generate a random number q uniformly distributed between 0 and 1, and comparing q with q 0 that is a predetermined parameter. If q<q 0, then the selection of i is done according to the first means, i.e. selecting the value of h that maximizing the value in the bracket of Eq. (11). On the contrary, if q q 0, then i is selected according to the probability distribution derived from Eq. (8). Step 7. Add the new solution from exploitation to the solution pool, and find out the best solution found so far. Repeat Step 4 to Step 7, till the end condition is satisfied. 387

5 5 Examples and Results To verify the accuracy of the algorithm, a 13-activity CPM network derived from Son and Skibniewski (1999) was fitted into the prototype model. Figure 1 shows the precedence relationship of the network and Table 1 shows the relevant activity information. In accordance with the above-mentioned steps, a computer program to implementing the searching for satisfactory solutions is designed. To reduce computation and fully make use of the convenience and performance of existing software, the writers used Microsoft Visual Basic Application for Excel as a tool to program. The network modeling, basic data input, and statistical analysis of results are implemented in Microsoft Excel, while the developed program aims to implement the ACO algorithm for resource leveling. Parameters of the algorithm were tuned by trial and error. For each set of parameters, 10 trials were done. The parameters were determined mainly based on the average obective value of optimal solutions found by the 10 trials, and secondly take the size of the solution pool into account. To explain the determination of the parameters, we use q 0, а and β as the example, for they have great influence on the results of the trials. Table 2 shows the test results of different values of q 0, meanwhile other parameters are set as follows: а = 1, β = 1, m = 40, Q = 10 5, iteration number = 30, ρ = 0.1. It is obvious that the performance of the algorithm is better when the value of q 0 is 0.7. Table 3 shows the test results of different combination of а and β, meanwhile other parameters are set as follows: m = 40 Q = 10 5 iteration number = 30 ρ = 0.1 q 0 = 0.7. Obviously, the performance of the algorithm is better when (а, β) = (0, 1) and (1, 1). However, although the algorithm can always obtain the best solution from the solution pool when (а, β) = (0, 1), it won t converge to the global optimum. Hence we recommend (а, β) = (1, 1) as the best combination of а and β. DU RES R Act. Name DUR: Duration RES: Requirement of resource Critical Path Act. Name: Activity Name 5 6 A 10 5 C 10 4 F 5 7 G 5 8 K 0 0 Start 10 3 B 5 4 D 10 0 H 10 8 L 5 9 M 5 5 I 5 6 E 10 6 J Figure 1 The network of example Table 1 Relevant activity information of example ACT DUR ES EF LS LF TF RES A B C D E F G H I J K L M

6 Table 2 Test results of different values of q 0 q Average obective values of optimal solutions Average size of the solution pool Table 3 Test results of different combination of а and β (а, β) (1,0) (0,1) (1,1) (1,2) (2,1) Average obective values of optimal solutions Average size of the solution pool Final parameters are set as follows: m = 40, Q = 10 5, ρ = 0.1, а = 1, β = 1, q 0 = 0.7, iteration number = 30. The bar chart of the initial schedule and the optimal schedule are shown in Figure 2 and Figure 3. The resource profile of the initial schedule and the optimal schedule are shown in Figure 4 and Figure 5. As it can be seen, compared with the resource profile of the initial schedule, the fluctuation in day-to-day resource requirement of the optimal schedule is improved distinctly. The optimal schedule obtained from the ACO algorithm is equal to that of the exhaustive enumeration. In addition, the average size of the solution pool is 299, which means the ACO algorithm can find the optimal schedule through searching 229 feasible schedules. In contrast, 98,784 feasible schedules should be tested to obtain the optimal schedules by the exhaustive enumeration. Figure 6 shows the means of Z for every iteration. It can be seen that a significant convergence occurs without much fluctuation. Days ACT DUR RES A 5 6 B 10 3 C 10 5 D 5 4 E 5 6 F 10 4 G 5 7 H 10 0 I 5 5 J 10 6 K 5 8 L 10 8 M 5 9 Figure 2 Bar chart of initial schedule 6 Conclusion Resource leveling problem of construction proect is a large scale optimization problem. The existing techniques using heuristic and mathematical programming are not efficient or accurate enough for solving resource leveling problem of real-life construction proects. This paper has presented a model which can be used for resource leveling problem in construction management to improve the utilization of the resources related to the construction proect. This model uses the SSGS to generate a feasible schedule and employs ant algorithm to search the optimal schedule from solution space. To verify the efficiency and performance of the 389

7 proposed model, an example derived from Son and Skibniewski (1999) was conducted and the results were compared with that of the exhaustive enumeration. The results of the example show that the proposed model based on ACO algorithm can produce the global optimal solution by searching only a small fraction of the total search space. Days ACT DUR RES A 5 6 B 10 3 C 10 5 D 5 4 E 5 6 F 10 4 G 5 7 H 10 0 I 5 5 J 10 6 K 5 8 L 10 8 M 5 9 Figure 3 Bar chart of the optimal schedule Resource units Pro ect days Figure 4 Resource profile of initial schedule Resource units Pro ect days Figure 5 Resource profile of the optimal schedule 390

8 Mean of Z Number of iteration Figure 6 Relationship between mean of Z and iteration References Bandelloni, M., Tucci, M., and Rinaldi, R. (1994). Optimal resource leveling using non-serial dynamic programming, Eur. J. Operation Res., 78(2), Chan, W., Chua, D. K. H., and Kannan, G. (1996). Construction resource scheduling with genetic algorithms, J. Constr. Engrg. and Mgmt., ASCE, 122(2), Dorigo, M. (1992). Optimization, Learning and Natural Algorithms, Ph.D. thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy. Dorigo, M., Maniezzo, V., and Colorni, A. (1991). Positive feedback as a search strategy, Tech.. rep Dipartimento di Elettronica, Politecnico di Milano, Italy Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant system: Optimization by a colony of cooperating agents, IEEE Transactions on system, Man, and Cybernetics Part B, 26 (1), Harris, R. B. (1990). Packing method for resource leveling (PACK), J. Constr. Engrg. and Mgmt., ASCE, 116(2), Harris, R. B. (1978). Precedence and arrow networking techniques for construction, Wiley, New York. Martinez, J., and Ioannou, P. (1993). Resource leveling based on the modified minimum moment heuristic, Proc.,5th Int. Conf., Computing in Civ. And Bulid. Engrg., ASCE, Reston, Va., Mattila, K. G., and Abraham, D. M. (1998). Resource leveling of linear schedules using integer linear programming, J. Constr. Engrg. and Mgmt., ASCE, 124(3), Savin, D., Alkass, S., and Fazio, P. (1996). Construction resource leveling using neural networks, Can. J. Civ. Engrg., Ottawa, 23(4), Son, J. and Skibniewski, M. J. (1999). Multiheuristic approach for resource leveling problem in construction engineering: hybrid approach, Journal of construction engineering and management, 125(1), Stevens, J. D. (1990). Techniques for construction network scheduling. McGraw-Hill, New York. 391

### A GENETIC ALGORITHM FOR RESOURCE LEVELING OF CONSTRUCTION PROJECTS

A GENETIC ALGORITHM FOR RESOURCE LEVELING OF CONSTRUCTION PROJECTS Mahdi Abbasi Iranagh 1 and Rifat Sonmez 2 Dept. of Civil Engrg, Middle East Technical University, Ankara, 06800, Turkey Critical path

### ALGORITHM FOR DETERMINING CONTROLLING PATH CONSIDERING RESOURCE CONTINUITY

ALGORITHM FOR DETERMINING CONTROLLING PATH CONSIDERING RESOURCE CONTINUITY By Mohammad A. Ammar 1 and Emad Elbeltagi 2 ABSTRACT: Scheduling of construction projects that have multiple units, wherein activities

### Software Project Planning and Resource Allocation Using Ant Colony Optimization with Uncertainty Handling

Software Project Planning and Resource Allocation Using Ant Colony Optimization with Uncertainty Handling Vivek Kurien1, Rashmi S Nair2 PG Student, Dept of Computer Science, MCET, Anad, Tvm, Kerala, India

### A genetic algorithm for resource allocation in construction projects

Creative Construction Conference 2015 A genetic algorithm for resource allocation in construction projects Sofia Kaiafa, Athanasios P. Chassiakos* Sofia Kaiafa, Dept. of Civil Engineering, University of

### Resource Allocation for Repetitive Construction Schedules: An Ant Colony Optimization Approach

Resource Allocation for Repetitive Construction Schedules: An Ant Colony Optimization Approach Mohamed A. El-Gafy, Ph.D., P.E., M.A.I. Illinois State University Normal, Illinois Project scheduling is one

### Project Planning and Scheduling

Project Planning and Scheduling MFS606 Project Planning Preliminary Coordination Detailed Task Description Objectives Budgeting Scheduling Project Status Monitoring When, What, Who Project Termination

### STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1

STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1 Prajakta Joglekar, 2 Pallavi Jaiswal, 3 Vandana Jagtap Maharashtra Institute of Technology, Pune Email: 1 somanprajakta@gmail.com,

### OPTIMIZATION MODEL OF EXTERNAL RESOURCE ALLOCATION FOR RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEMS

OPTIMIZATION MODEL OF EXTERNAL RESOURCE ALLOCATION FOR RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEMS Kuo-Chuan Shih Shu-Shun Liu Ph.D. Student, Graduate School of Engineering Science Assistant Professor,

### An Improved Ant Colony Optimization Algorithm for Software Project Planning and Scheduling

An Improved Ant Colony Optimization Algorithm for Software Project Planning and Scheduling Avinash Mahadik Department Of Computer Engineering Alard College Of Engineering And Management,Marunje, Pune Email-avinash.mahadik5@gmail.com

### An ant colony optimization for single-machine weighted tardiness scheduling with sequence-dependent setups

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 19 An ant colony optimization for single-machine weighted tardiness

### ME 407 Mechanical Engineering Design Spring 2016

ME 407 Mechanical Engineering Design Spring 2016 Project Planning & Management Asst. Prof. Dr. Ulaş Yaman Acknowledgements to Dieter, Engineering Design, 4 th edition Ullman, The Mechanical Design Process,

### Resources Management

Resources Management. Introduction s we have seen in network scheduling, the basic inputs to criticalpath analysis are the individual project activities, their durations, and their dependency relationships.

### Using Ant Colony Optimization for Infrastructure Maintenance Scheduling

Using Ant Colony Optimization for Infrastructure Maintenance Scheduling K. Lukas, A. Borrmann & E. Rank Chair for Computation in Engineering, Technische Universität München ABSTRACT: For the optimal planning

### A Multi-objective Scheduling Model for Solving the Resource-constrained Project Scheduling and Resource Leveling Problems. Jia Hu 1 and Ian Flood 2

A Multi-objective Scheduling Model for Solving the Resource-constrained Project Scheduling and Resource Leveling Problems Jia Hu 1 and Ian Flood 2 1 Ph.D. student, Rinker School of Building Construction,

### A Proposed Scheme for Software Project Scheduling and Allocation with Event Based Scheduler using Ant Colony Optimization

A Proposed Scheme for Software Project Scheduling and Allocation with Event Based Scheduler using Ant Colony Optimization Arjita sharma 1, Niyati R Bhele 2, Snehal S Dhamale 3, Bharati Parkhe 4 NMIET,

. 1/ CHAPTER- 4 SIMULATION RESULTS & DISCUSSION CHAPTER 4 SIMULATION RESULTS & DISCUSSION 4.1: ANT COLONY OPTIMIZATION BASED ON ESTIMATION OF DISTRIBUTION ACS possesses

### Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi

Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture - 15 Limited Resource Allocation Today we are going to be talking about

### A SIMULATION MODEL FOR RESOURCE CONSTRAINED SCHEDULING OF MULTIPLE PROJECTS

A SIMULATION MODEL FOR RESOURCE CONSTRAINED SCHEDULING OF MULTIPLE PROJECTS B. Kanagasabapathi 1 and K. Ananthanarayanan 2 Building Technology and Construction Management Division, Department of Civil

### Project management: a simulation-based optimization method for dynamic time-cost tradeoff decisions

Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2009 Project management: a simulation-based optimization method for dynamic time-cost tradeoff decisions Radhamés

### On-line scheduling algorithm for real-time multiprocessor systems with ACO

International Journal of Intelligent Information Systems 2015; 4(2-1): 13-17 Published online January 28, 2015 (http://www.sciencepublishinggroup.com/j/ijiis) doi: 10.11648/j.ijiis.s.2015040201.13 ISSN:

### The Project Scheduling and Decision Mechanism Based on the Multi-Resource Leveling

EPPM, Singapore, 20-21 Sep 2011 The Project Scheduling and Decision Mechanism Based on the Multi-Resource Leveling Abstract Hsiang-Hsi Huang 1, Jia-Chen Shiu 2, Tai-Lin Chen 3 Except for optimizing the

### Application of Critical Path Method scheduling to research plan and management of graduate students research project in engineering education

OPEN ACCESS Engineering Leaders Conference 2014 Application of Critical Path Method scheduling to research plan and management of graduate students research project in engineering education M.O. Daramola

### Scheduling and resource planning (for construction) SCHEDULING

2.3.7. Scheduling and resource planning (for construction) SCHEULING Project scheduling is a method whereby the tasks necessary to be performed in order to achieve project completion are arranged in a

### Computer based Scheduling Tool for Multi-product Scheduling Problems

Computer based Scheduling Tool for Multi-product Scheduling Problems Computer based Scheduling Tool for Multi-product Scheduling Problems Adirake Chainual, Tawatchai Lutuksin and Pupong Pongcharoen Department

### State-Based Probabilistic Scheduling Using STROBOSCOPE s CPM Add-On

Proceedings, Construction Congress V, ASCE Stuart D. Anderson,ed State-Based Probabilistic Scheduling Using STROBOSCOPE s CPM Add-On by Julio C. Martinez 1 and Photios G. Ioannou 2 Abstract Critical path

### Network Calculations

Network Calculations The concepts and graphical techniques described in this week s readings form the basis of the tools widely used today to manage large projects. There is no way of simplifying the tasks

### Scheduling Glossary Activity. A component of work performed during the course of a project.

Scheduling Glossary Activity. A component of work performed during the course of a project. Activity Attributes. Multiple attributes associated with each schedule activity that can be included within the

### An ACO Approach to Solve a Variant of TSP

An ACO Approach to Solve a Variant of TSP Bharat V. Chawda, Nitesh M. Sureja Abstract This study is an investigation on the application of Ant Colony Optimization to a variant of TSP. This paper presents

### Research on Task Planning Based on Activity Period in Manufacturing Grid

Research on Task Planning Based on Activity Period in Manufacturing Grid He Yu an, Yu Tao, Hu Da chao Abstract In manufacturing grid (MG), activities of the manufacturing task need to be planed after the

### Swarm Intelligence Algorithms Parameter Tuning

Swarm Intelligence Algorithms Parameter Tuning Milan TUBA Faculty of Computer Science Megatrend University of Belgrade Bulevar umetnosti 29, N. Belgrade SERBIA tuba@ieee.org Abstract: - Nature inspired

### A Hybrid Technique for Software Project Scheduling and Human Resource Allocation

A Hybrid Technique for Software Project Scheduling and Human Resource Allocation A. Avinash, Dr. K. Ramani Department of Information Technology Sree Vidyanikethan Engineering College, Tirupati Abstract

### ACO Hypercube Framework for Solving a University Course Timetabling Problem

ACO Hypercube Framework for Solving a University Course Timetabling Problem José Miguel Rubio, Franklin Johnson and Broderick Crawford Abstract We present a resolution technique of the University course

### CISC 322 Software Architecture. Project Scheduling (PERT/CPM) Ahmed E. Hassan

CISC 322 Software Architecture Project Scheduling (PERT/CPM) Ahmed E. Hassan Project A project is a temporary endeavour undertaken to create a "unique" product or service A project is composed of a number

### A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN PSO ALGORITHM

International Journal of Research in Computer Science eissn 2249-8265 Volume 2 Issue 3 (212) pp. 17-23 White Globe Publications A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN ALGORITHM C.Kalpana

### An Improved ACO Algorithm for Multicast Routing

An Improved ACO Algorithm for Multicast Routing Ziqiang Wang and Dexian Zhang School of Information Science and Engineering, Henan University of Technology, Zheng Zhou 450052,China wzqagent@xinhuanet.com

### OPTIMIZATION OF RESOURCE ALLOCATION AND LEVELING USING GENETIC ALGORITHMS

OPTIMIZATION OF RESOURCE ALLOCATION AND LEVELING USING GENETIC ALGORITHMS By Tarek Hegazy, 1 Member, ASCE ABSTRACT: Resource allocation and leveling are among the top challenges in project management.

### Power Plant Maintenance Scheduling Using Ant Colony Optimization

16 Power Plant Maintenance Scheduling Using Ant Colony Optimization Wai Kuan Foong, Holger Robert Maier and Angus Ross Simpson School of Civil & Environmental Engineering, University of Adelaide Australia

### International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

### Research Article A Novel Resource-Leveling Approach for Construction Project Based on Differential Evolution

Construction Engineering, Article ID 648938, 7 pages http://dx.doi.org/10.1155/2014/648938 Research Article A Novel Resource-Leveling Approach for Construction Project Based on Differential Evolution Hong-Hai

### THE ACO ALGORITHM FOR CONTAINER TRANSPORTATION NETWORK OF SEAPORTS

THE ACO ALGORITHM FOR CONTAINER TRANSPORTATION NETWORK OF SEAPORTS Zian GUO Associate Professor School of Civil and Hydraulic Engineering Dalian University of Technology 2 Linggong Road, Ganjingzi District,

### International Journal of Emerging Technology & Research

International Journal of Emerging Technology & Research An Implementation Scheme For Software Project Management With Event-Based Scheduler Using Ant Colony Optimization Roshni Jain 1, Monali Kankariya

### Project Time Management

Project Time Management Plan Schedule Management is the process of establishing the policies, procedures, and documentation for planning, developing, managing, executing, and controlling the project schedule.

### Goals of the Unit. spm - 2014 adolfo villafiorita - introduction to software project management

Project Scheduling Goals of the Unit Making the WBS into a schedule Understanding dependencies between activities Learning the Critical Path technique Learning how to level resources!2 Initiate Plan Execute

### Operational Research. Project Menagement Method by CPM/ PERT

Operational Research Project Menagement Method by CPM/ PERT Project definition A project is a series of activities directed to accomplishment of a desired objective. Plan your work first..then work your

### Obtaining Optimal Software Effort Estimation Data Using Feature Subset Selection

Obtaining Optimal Software Effort Estimation Data Using Feature Subset Selection Abirami.R 1, Sujithra.S 2, Sathishkumar.P 3, Geethanjali.N 4 1, 2, 3 Student, Department of Computer Science and Engineering,

### Abstract Title: Planned Preemption for Flexible Resource Constrained Project Scheduling

Abstract number: 015-0551 Abstract Title: Planned Preemption for Flexible Resource Constrained Project Scheduling Karuna Jain and Kanchan Joshi Shailesh J. Mehta School of Management, Indian Institute

### Ant colony optimization techniques for the vehicle routing problem

Advanced Engineering Informatics 18 (2004) 41 48 www.elsevier.com/locate/aei Ant colony optimization techniques for the vehicle routing problem John E. Bell a, *, Patrick R. McMullen b a Department of

### Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm

www.ijcsi.org 54 Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm Linan Zhu 1, Qingshui Li 2, and Lingna He 3 1 College of Mechanical Engineering, Zhejiang

### Implementing Ant Colony Optimization for Test Case Selection and Prioritization

Implementing Ant Colony Optimization for Test Case Selection and Prioritization Bharti Suri Assistant Professor, Computer Science Department USIT, GGSIPU Delhi, India Shweta Singhal Student M.Tech (IT)

### INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print), ISSN 0976 6367(Print) ISSN 0976 6375(Online)

### Project Scheduling: PERT/CPM

Project Scheduling: PERT/CPM CHAPTER 8 LEARNING OBJECTIVES After completing this chapter, you should be able to: 1. Describe the role and application of PERT/CPM for project scheduling. 2. Define a project

### An ACO Model for a Non-stationary Formulation of the Single Elevator Problem

An ACO Model for a Non-stationary Formulation of the Single Elevator Problem S. Molina, G. Leguizamón Universidad Nacional de San Luis, Ejército de los Andes 950, (5700) San Luis, Argentina {smolina,legui}@unsl.edu.ar

### Modified Ant Colony Optimization for Solving Traveling Salesman Problem

International Journal of Engineering & Computer Science IJECS-IJENS Vol:3 No:0 Modified Ant Colony Optimization for Solving Traveling Salesman Problem Abstract-- This paper presents a new algorithm for

### HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS

HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS R. Angel Preethima 1, Margret Johnson 2 1 Student, Computer Science and Engineering, Karunya

### Production Scheduling for Dispatching Ready Mixed Concrete Trucks Using Bee Colony Optimization

American J. of Engineering and Applied Sciences 3 (1): 7-14, 2010 ISSN 1941-7020 2010 Science Publications Production Scheduling for Dispatching Ready Mixed Concrete Trucks Using Bee Colony Optimization

### An ACO-based Approach for Scheduling Task Graphs with Communication Costs

An ACO-based Approach for Scheduling Task Graphs with Communication Costs Markus Bank Udo Hönig Wolfram Schiffmann FernUniversität Hagen Lehrgebiet Rechnerarchitektur 58084 Hagen, Germany {Markus.Bank,

### STUDY ON APPLICATION OF GENETIC ALGORITHM IN CONSTRUCTION RESOURCE LEVELLING

STUDY ON APPLICATION OF GENETIC ALGORITHM IN CONSTRUCTION RESOURCE LEVELLING N.Satheesh Kumar 1,R.Raj Kumar 2 PG Student, Department of Civil Engineering, Kongu Engineering College, Perundurai, Tamilnadu,India

### Biological inspired algorithm for Storage Area Networks (ACOSAN)

Biological inspired algorithm for Storage Area Networks (ACOSAN) Anabel Fraga Vázquez 1 1 Universidad Carlos III de Madrid Av. Universidad, 30, Leganés, Madrid, SPAIN afraga@inf.uc3m.es Abstract. The routing

### Cambridge International AS and A Level Computer Science

Topic support guide Cambridge International AS and A Level Computer Science 9608 For examination from 2017 Topic 4.4.3 Project management PERT and GANTT charts Cambridge International Examinations retains

### Network Planning and Analysis

46 Network Planning and Analysis 1. Objective: What can you tell me about the project? When will the project finish? How long will the project take (project total duration)? 2. Why is this topic Important

### THE LEAN-RESOURCES BASED CONSTRUCTION PROJECT PLANNING AND CONTROL SYSTEM

THE LEAN-RESOURCES BASED CONSTRUCTION PROJECT PLANNING AND CONTROL SYSTEM Tzu-An Chiang Department of Business Administration, National Taipei University of Business, Taipei (100), Taiwan phdallen@ntub.edu.tw

### The Problem of Scheduling Technicians and Interventions in a Telecommunications Company

The Problem of Scheduling Technicians and Interventions in a Telecommunications Company Sérgio Garcia Panzo Dongala November 2008 Abstract In 2007 the challenge organized by the French Society of Operational

### Chapter 11 Monte Carlo Simulation

Chapter 11 Monte Carlo Simulation 11.1 Introduction The basic idea of simulation is to build an experimental device, or simulator, that will act like (simulate) the system of interest in certain important

### Review of Solving Software Project Scheduling Problem with Ant Colony Optimization

Review of Solving Software Project Scheduling Problem with Ant Colony Optimization K.N.Vitekar 1, S.A.Dhanawe 2, D.B.Hanchate 3 ME 2 nd Year, Dept. of Computer Engineering, VPCOE, Baramati, Pune, Maharashtra,

### A Constraint Programming Application for Rotating Workforce Scheduling

A Constraint Programming Application for Rotating Workforce Scheduling Markus Triska and Nysret Musliu Database and Artificial Intelligence Group Vienna University of Technology {triska,musliu}@dbai.tuwien.ac.at

### Research on the Performance Optimization of Hadoop in Big Data Environment

Vol.8, No.5 (015), pp.93-304 http://dx.doi.org/10.1457/idta.015.8.5.6 Research on the Performance Optimization of Hadoop in Big Data Environment Jia Min-Zheng Department of Information Engineering, Beiing

### Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm

, pp. 99-108 http://dx.doi.org/10.1457/ijfgcn.015.8.1.11 Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm Wang DaWei and Wang Changliang Zhejiang Industry Polytechnic College

### ACO FOR OPTIMAL SENSOR LAYOUT

Stefka Fidanova 1, Pencho Marinov 1 and Enrique Alba 2 1 Institute for Parallel Processing, Bulgarian Academy of Science, Acad. G. Bonchev str. bl.25a, 1113 Sofia, Bulgaria 2 E.T.S.I. Informatica, Grupo

### EA and ACO Algorithms Applied to Optimizing Location of Controllers in Wireless Networks

2 EA and ACO Algorithms Applied to Optimizing Location of Controllers in Wireless Networks Dac-Nhuong Le, Hanoi University of Science, Vietnam National University, Vietnam Optimizing location of controllers

### ONLINE SUPPLEMENTAL BAPPENDIX PROJECT SCHEDULES WITH PERT/CPM CHARTS

ONLINE SUPPLEMENTAL BAPPENDIX PROJECT SCHEDULES WITH PERT/CPM CHARTS Chapter 3 of Systems Analysis and Design in a Changing World explains the techniques and steps required to build a project schedule

### Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) Exploits foraging behavior of ants Path optimization Problems mapping onto foraging are ACO-like TSP, ATSP QAP Travelling Salesman Problem (TSP) Why? Hard, shortest path problem

### Scheduling. Anne Banks Pidduck Adapted from John Musser

Scheduling Anne Banks Pidduck Adapted from John Musser 1 Today Network Fundamentals Gantt Charts PERT/CPM Techniques 2 WBS Types: Process, product, hybrid Formats: Outline or graphical organization chart

### Construction Scheduling using Non Traditional Optimization.

Construction Scheduling using Non Traditional Optimization. A thesis submitted in partial fullfillment of the requirements for the Degree of BACHELOR OF TECHNOLOGY in CIVIL ENGINEERING By Samdani Saurabh

### The ACO Encoding. Alberto Moraglio, Fernando E. B. Otero, and Colin G. Johnson

The ACO Encoding Alberto Moraglio, Fernando E. B. Otero, and Colin G. Johnson School of Computing and Centre for Reasoning, University of Kent, Canterbury, UK {A.Moraglio, F.E.B.Otero, C.G.Johnson}@kent.ac.uk

### Clustering and scheduling maintenance tasks over time

Clustering and scheduling maintenance tasks over time Per Kreuger 2008-04-29 SICS Technical Report T2008:09 Abstract We report results on a maintenance scheduling problem. The problem consists of allocating

### ARTIFICIAL NEURAL NETWORKS FOR ADAPTIVE MANAGEMENT TRAFFIC LIGHT OBJECTS AT THE INTERSECTION

The 10 th International Conference RELIABILITY and STATISTICS in TRANSPORTATION and COMMUNICATION - 2010 Proceedings of the 10th International Conference Reliability and Statistics in Transportation and

### BMOA: Binary Magnetic Optimization Algorithm

International Journal of Machine Learning and Computing Vol. 2 No. 3 June 22 BMOA: Binary Magnetic Optimization Algorithm SeyedAli Mirjalili and Siti Zaiton Mohd Hashim Abstract Recently the behavior of

### A novel ACO technique for Fast and Near Optimal Solutions for the Multi-dimensional Multi-choice Knapsack Problem

A novel ACO technique for Fast and Near Optimal Solutions for the Multi-dimensional Multi-choice Knapsack Problem Shahrear Iqbal, Md. Faizul Bari, Dr. M. Sohel Rahman AlEDA Group Department of Computer

### Solving Traveling Salesman Problem by Using Improved Ant Colony Optimization Algorithm

Solving Traveling Salesman Problem by Using Improved Ant Colony Optimization Algorithm Zar Chi Su Su Hlaing and May Aye Khine, Member, IACSIT Abstract Ant colony optimization () is a heuristic algorithm

### Scheduling Resources and Costs

Student Version CHAPTER EIGHT Scheduling Resources and Costs McGraw-Hill/Irwin Copyright 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Gannt Chart Developed by Henry Gannt in 1916 is used

### A DISTRIBUTED APPROACH TO ANT COLONY OPTIMIZATION

A DISTRIBUTED APPROACH TO ANT COLONY OPTIMIZATION Eng. Sorin Ilie 1 Ph. D Student University of Craiova Software Engineering Department Craiova, Romania Prof. Costin Bădică Ph. D University of Craiova

### Finding Liveness Errors with ACO

Hong Kong, June 1-6, 2008 1 / 24 Finding Liveness Errors with ACO Francisco Chicano and Enrique Alba Motivation Motivation Nowadays software is very complex An error in a software system can imply the

### MuACOsm A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines

MuACOsm A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines Daniil Chivilikhin and Vladimir Ulyantsev National Research University of IT, Mechanics and Optics St.

### Collaborative Scheduling using the CPM Method

MnDOT Project Management Office Presents: Collaborative Scheduling using the CPM Method Presenter: Jonathan McNatty, PSP Senior Schedule Consultant DRMcNatty & Associates, Inc. Housekeeping Items Lines

### Project Scheduling. Introduction

Project Scheduling Introduction In chapter, the O and ON networks were presented, also the time and cost of individual activities based were calculated. Yet, however, we do not know how long is the total

### Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi

Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture - 9 Basic Scheduling with A-O-A Networks Today we are going to be talking

### A Service Revenue-oriented Task Scheduling Model of Cloud Computing

Journal of Information & Computational Science 10:10 (2013) 3153 3161 July 1, 2013 Available at http://www.joics.com A Service Revenue-oriented Task Scheduling Model of Cloud Computing Jianguang Deng a,b,,

### Project Management Chapter 3

Project Management Chapter 3 How Project Management fits the Operations Management Philosophy Operations As a Competitive Weapon Operations Strategy Project Management Process Strategy Process Analysis

### A Computer Application for Scheduling in MS Project

Comput. Sci. Appl. Volume 1, Number 5, 2014, pp. 309-318 Received: July 18, 2014; Published: November 25, 2014 Computer Science and Applications www.ethanpublishing.com Anabela Tereso, André Guedes and

### Research RESOURCE SCHEDULING OF CONSTRUCTION PROJECTS USING GENETIC ALGORITHM Devikamalam. J 1, Jane Helena. H 2. Address for Correspondence

Devikamalam, et al., International Journal of Advanced Engineering Technology Research Paper RESOURCE SCHEDULING OF CONSTRUCTION PROJECTS USING GENETIC ALGORITHM Devikamalam. J 1, Jane Helena. H 2 Address

### A Survey on Load Balancing Techniques Using ACO Algorithm

A Survey on Load Balancing Techniques Using ACO Algorithm Preeti Kushwah Department of Computer Science & Engineering, Acropolis Institute of Technology and Research Indore bypass road Mangliya square

### 8. Project Time Management

8. Project Time Management Project Time Management closely coordinated Two basic approaches -bottom-up (analytical) -top-down (expert judgement) Processes required to ensure timely completion of the project

### MULTI-OBJECTIVE OPTIMIZATION FOR RESOURCE DRIVEN SCHEDULING IN CONSTRUCTION PROJECTS DHO HEON JUN DISSERTATION

MULTI-OBJECTIVE OPTIMIZATION FOR RESOURCE DRIVEN SCHEDULING IN CONSTRUCTION PROJECTS BY DHO HEON JUN DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

### by strong pheromone concentrations. The pheromone trail allows the ants to find their

Ant Algorithms for Discrete Optimization Marco Dorigo and Gianni Di Caro IRIDIA, Université Libre de Bruxelles Brussels, Belgium {mdorigo,gdicaro}@ulb.ac.be Luca M. Gambardella IDSIA, Lugano, Switzerland

### A. O. Odior Department of Production Engineering University of Benin, Edo State. E-mail: waddnis@yahoo.com

2012 Cenresin Publications www.cenresinpub.org APPLICATION OF PROJECT MANAGEMENT TECHNIQUES IN A CONSTRUCTION FIRM Department of Production Engineering University of Benin, Edo State. E-mail: waddnis@yahoo.com

### Basic Concepts. Project Scheduling and Tracking. Why are Projects Late? Relationship between People and Effort

Basic s Project Scheduling and Tracking The process of building a schedule for any case study helps really understand how it s done. The basic idea is to get across to break the software project into well-defined

### A SURVEY ON WORKFLOW SCHEDULING IN CLOUD USING ANT COLONY OPTIMIZATION

Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 2, February 2014,