Black-box and Gray-box Strategies for Virtual Machine Migration

Size: px
Start display at page:

Download "Black-box and Gray-box Strategies for Virtual Machine Migration"

Transcription

1 Black-box and Gray-box Strategies for Virtual Machine Migration Wood, et al (UMass), NSDI07 Context: Virtual Machine Migration 1

2 Introduction Want agility in server farms to reallocate resources devoted to applications. Look at building on virtualization, specifically capability of migrating virtual machines from one physical machine to another. Focus of paper is how to detect the need for such migrations (hotspots) and determine where a VM should be migrated. Examine black-box (only observe VM) vs. gray-box (some OS-level knowledge) strategies. System called Sandpiper, after a migratory bird. Note, but do not investigate possibility of assigning more resources to an existing VM. 2

3 System Overview Work built on Xen and its existing VM migration capabilities. Track processor, network and memory usage to determine hotspots. Determines what VMs to migrate, where to move them, and how much resources to allocate for migrated VM. 3

4 Black-Box Monitoring CPU: XenMon tracks CPU usage of resident VMs. Disk/network I/O CPU assigned to Domain-0 and must be apportioned. Network: Domain-0 implements the network interface driver so it can track network usage. Use /proc/net/dev to monitor activity on each virtual interface. Memory: Only known to OS within each VM. Can indirectly track swap activity in Domain-0. Most problematic part for black-box approach. 4

5 Gray-Box Monitoring Use a light-weight monitoring daemon that runs inside of a VM. Gathers stats from /proc interface in Linux CPU, network and memory usage. Profiling Profiling Engine periodically obtains a resource usage report from each nucleus. Periodic reports are combined over time window W to track trends. Maintain both distribution and time series over this window. 5

6 Hotspot Detection Performed on a per-physical server basis. Look for cases where the usage of a resource exceeds a threshold. Also look for violations of SLA agreements (response time) on a per-vm basis. Also if memory utilization exceeds a threshold. Detect a hotspot if k out of n observations as well as next predicted value exceed a threshold. n = k = 1 is the most aggressive detection approach. flexible descriptive approach Uses time-series prediction technique. 6

7 Resource Provisioning If a hotspot is detected, need to determine how many resources that the overloaded VM does need. In black-box approach, observed CPU and network bandwidth for a VM may be constrained if other VMs are using their fair share. In such cases will under-estimate the actual peak need. May be only able to guess for actual needs. Simpler for memory as each VM has a fixed amount of physical memory assigned to it not flexible like CPU and network. Simply add a fixed amount of memory to determine peak. With gray-box scale CPU by λ peak /λ cap where λ peak is the estimated peak arrival rate. Also used to determine peak network needs (along with mean request file size). 7

8 Hotspot Mitigation Determine which VMs to migrate and where to do so. Try to minimize migration overhead (amount of data transferred). Apply greedy algorithm to move VMs from most to least loaded physical servers. Use CPU-network-memory volume of a physical or virtual machine. Tries to pick based on largest VSR (volume/size ratio) where size is the memory footprint trying to pick VM to move with most volume and least memory footprint. Alternate approach is to swap VMs going to be more expensive. 8

9 Implementation Based on Xen. Use 3 out of 5 observations and 75% threshold to determine a hotspot. Nucleus is written in Python. Gray-box gathers stats from /proc 20 servers running Linux and Xen 3.0 with at least 1GB RAM. Apache servers serving dynamic PHP web pages. Cluster of Linux servers generates load using httperf. 9

10 Migration Effectiveness Try to move highest VSR VM to least loaded PM. Maximizes amount of displace load from hotspot per megabyte of data transferred. 10

11 Other Tests VM swaps incur more overhead, but increase chances of mitigating hotspots in clusters with high average utilization. Can handle mixed resource hotspots. Gray-box approach can better infer memory usage. 11

12 Prototype Data Center Evaluation 35 VMs (running a mix of applications) across 16 physical servers LAMP Linux, Apache, MySQL, PHP Use RUBiS as a test application to implement an ebay-like auction web site and workload generator. Relative to a static approach, Sandpiper performs much better in resolving hotspot situations not surprising! 12

13 Additional Tests Sandpiper itself has negligible impact on performance. Primary scaling issue is the placement algorithm. Sandpiper limits instability by only initiating migrations when it has found a better solution. Need to find right thresholds. 13

14 Related Work Process migration in the 1980s network connections not really considered. VM migration provides a means, authors have built a framework on top. Shared hosting environments. Estimating resource needs. 14

15 Summary Extensive amount of work. Lots of decisions that look reasonable Built a working system with hotspot alleviation in 20s to minutes. Compare effectiveness of black-box and gray-box strategies. Good engineering work. Little to compare work with. 15

Black-box and Gray-box Strategies for Virtual Machine Migration

Black-box and Gray-box Strategies for Virtual Machine Migration Black-box and Gray-box Strategies for Virtual Machine Migration Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif Univ. of Massachusetts Amherst Intel, Portland Abstract Virtualization

More information

Black-box and Gray-box Strategies for Virtual Machine Migration

Black-box and Gray-box Strategies for Virtual Machine Migration Black-box and Gray-box Strategies for Virtual Machine Migration Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif Univ. of Massachusetts Amherst Intel, Portland Abstract Virtualization

More information

Aaron J. Elmore, Carlo Curino, Divyakant Agrawal, Amr El Abbadi. [aelmore,agrawal,amr] @ cs.ucsb.edu ccurino @ microsoft.com

Aaron J. Elmore, Carlo Curino, Divyakant Agrawal, Amr El Abbadi. [aelmore,agrawal,amr] @ cs.ucsb.edu ccurino @ microsoft.com Aaron J. Elmore, Carlo Curino, Divyakant Agrawal, Amr El Abbadi [aelmore,agrawal,amr] @ cs.ucsb.edu ccurino @ microsoft.com 2 Fifty+ Years of Virtualization Virtualized Processing Virtualized Memory Fifty+

More information

Memory Buddies: Exploiting Page Sharing for Server Consolidation in Virtualized Data Centers

Memory Buddies: Exploiting Page Sharing for Server Consolidation in Virtualized Data Centers University of Massachusetts, Technical Report TR36-7 1 Memory Buddies: Exploiting Page Sharing for Server Consolidation in Virtualized Data Centers Timothy Wood, Gabriel Tarasuk-Levin, Jim Cipar*, Peter

More information

Dynamic Resource allocation in Cloud

Dynamic Resource allocation in Cloud Dynamic Resource allocation in Cloud ABSTRACT: Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the touted gains in the cloud model come from

More information

Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing

Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing Volume 5, Issue 1, January 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Survey on Load

More information

GeoCloud Project Report USGS/EROS Spatial Data Warehouse Project

GeoCloud Project Report USGS/EROS Spatial Data Warehouse Project GeoCloud Project Report USGS/EROS Spatial Data Warehouse Project Description of Application The Spatial Data Warehouse project at the USGS/EROS distributes services and data in support of The National

More information

Avoiding Performance Bottlenecks in Hyper-V

Avoiding Performance Bottlenecks in Hyper-V Avoiding Performance Bottlenecks in Hyper-V Identify and eliminate capacity related performance bottlenecks in Hyper-V while placing new VMs for optimal density and performance Whitepaper by Chris Chesley

More information

Enhancing the Scalability of Virtual Machines in Cloud

Enhancing the Scalability of Virtual Machines in Cloud Enhancing the Scalability of Virtual Machines in Cloud Chippy.A #1, Ashok Kumar.P #2, Deepak.S #3, Ananthi.S #4 # Department of Computer Science and Engineering, SNS College of Technology Coimbatore, Tamil

More information

Full and Para Virtualization

Full and Para Virtualization Full and Para Virtualization Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF x86 Hardware Virtualization The x86 architecture offers four levels

More information

Autonomic resource management for the Xen Hypervisor

Autonomic resource management for the Xen Hypervisor Autonomic resource management for the Xen Hypervisor Íñigo Goiri and Jordi Guitart Universitat Politécnica de Catalunya Barcelona, Spain {igoiri,jguitart}@ac.upc.es Abstract Servers workload varies during

More information

Allocation of Resources Dynamically in Data Centre for Cloud Environment

Allocation of Resources Dynamically in Data Centre for Cloud Environment Allocation of Resources Dynamically in Data Centre for Cloud Environment Mr.Pramod 1, Mr. Kumar Swamy 2, Mr. Sunitha B. S 3 ¹Computer Science & Engineering, EPCET, VTU, INDIA ² Computer Science & Engineering,

More information

Xen Live Migration. Networks and Distributed Systems Seminar, 24 April 2006. Matúš Harvan Xen Live Migration 1

Xen Live Migration. Networks and Distributed Systems Seminar, 24 April 2006. Matúš Harvan Xen Live Migration 1 Xen Live Migration Matúš Harvan Networks and Distributed Systems Seminar, 24 April 2006 Matúš Harvan Xen Live Migration 1 Outline 1 Xen Overview 2 Live migration General Memory, Network, Storage Migration

More information

Satisfying Service Level Objectives in a Self-Managing Resource Pool

Satisfying Service Level Objectives in a Self-Managing Resource Pool Satisfying Service Level Objectives in a Self-Managing Resource Pool Daniel Gmach, Jerry Rolia, and Lucy Cherkasova Hewlett-Packard Laboratories Palo Alto, CA, USA firstname.lastname@hp.com Abstract We

More information

Technical Investigation of Computational Resource Interdependencies

Technical Investigation of Computational Resource Interdependencies Technical Investigation of Computational Resource Interdependencies By Lars-Eric Windhab Table of Contents 1. Introduction and Motivation... 2 2. Problem to be solved... 2 3. Discussion of design choices...

More information

Virtual Machine Monitors. Dr. Marc E. Fiuczynski Research Scholar Princeton University

Virtual Machine Monitors. Dr. Marc E. Fiuczynski Research Scholar Princeton University Virtual Machine Monitors Dr. Marc E. Fiuczynski Research Scholar Princeton University Introduction Have been around since 1960 s on mainframes used for multitasking Good example VM/370 Have resurfaced

More information

Memory Buddies: Exploiting Page Sharing for Smart Colocation in Virtualized Data Centers

Memory Buddies: Exploiting Page Sharing for Smart Colocation in Virtualized Data Centers Memory Buddies: Exploiting Page Sharing for Smart Colocation in Virtualized Data Centers Timothy Wood, Gabriel Tarasuk-Levin, Prashant Shenoy, Peter Desnoyers, Emmanuel Cecchet, Mark D. Corner Department

More information

Virtualization Technology using Virtual Machines for Cloud Computing

Virtualization Technology using Virtual Machines for Cloud Computing International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Virtualization Technology using Virtual Machines for Cloud Computing T. Kamalakar Raju 1, A. Lavanya 2, Dr. M. Rajanikanth 2 1,

More information

COS 318: Operating Systems. Virtual Machine Monitors

COS 318: Operating Systems. Virtual Machine Monitors COS 318: Operating Systems Virtual Machine Monitors Kai Li and Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Introduction u Have

More information

Maximizing SQL Server Virtualization Performance

Maximizing SQL Server Virtualization Performance Maximizing SQL Server Virtualization Performance Michael Otey Senior Technical Director Windows IT Pro SQL Server Pro 1 What this presentation covers Host configuration guidelines CPU, RAM, networking

More information

Resource Availability Based Performance Benchmarking of Virtual Machine Migrations

Resource Availability Based Performance Benchmarking of Virtual Machine Migrations Resource Availability Based Performance Benchmarking of Virtual Machine Migrations ABSTRACT Senthil Nathan, Purushottam Kulkarni and Umesh Bellur Department of Computer Science and Engineering Indian Institute

More information

SLAPv: A Service Level Agreement Enforcer for Virtual Networks

SLAPv: A Service Level Agreement Enforcer for Virtual Networks SLAPv: A Service Level Agreement Enforcer for Virtual Networks Hugo E. T. Carvalho, Natalia C. Fernandes, and Otto Carlos M. B. Duarte Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro Brazil

More information

vmanage: Loosely Coupled Platform and Virtualization Management in Data Centers

vmanage: Loosely Coupled Platform and Virtualization Management in Data Centers 7/1/9 vmanage: Loosely Coupled Platform and Virtualization Management in Data Centers Sanjay Kumar (Intel), Vanish Talwar (HP Labs), Vibhore Kumar (IBM Research), Partha Ranganathan (HP Labs), Karsten

More information

Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies

Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies Kurt Klemperer, Principal System Performance Engineer kklemperer@blackboard.com Agenda Session Length:

More information

Run-time Resource Management in SOA Virtualized Environments. Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang

Run-time Resource Management in SOA Virtualized Environments. Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang Run-time Resource Management in SOA Virtualized Environments Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang Amsterdam, August 25 2009 SOI Run-time Management 2 SOI=SOA + virtualization Goal:

More information

Use Cases for Docker in Enterprise Linux Environment CloudOpen North America, 2014 Linda Wang Sr. Software Engineering Manager Red Hat, Inc.

Use Cases for Docker in Enterprise Linux Environment CloudOpen North America, 2014 Linda Wang Sr. Software Engineering Manager Red Hat, Inc. Use Cases for Docker in Enterprise Linux Environment CloudOpen North America, 2014 Linda Wang Sr. Software Engineering Manager Red Hat, Inc. 1 2 Containerize! 3 Use Cases for Docker in the Enterprise Linux

More information

Introducing Oracle VM: Oracle s Virtualization Product Strategy

<Insert Picture Here> Introducing Oracle VM: Oracle s Virtualization Product Strategy Introducing Oracle VM: Oracle s Virtualization Product Strategy SAFE HARBOR STATEMENT The following is intended to outline our general product direction. It is intended for information

More information

Table of Contents. Server Virtualization Peer Review 01-03-2007 cameron 1-24-2007: modified, cameron

Table of Contents. Server Virtualization Peer Review 01-03-2007 cameron 1-24-2007: modified, cameron Table of Contents Objective...2 Definitions...2 Objective discussion...2 Comparison criteria...3 Criteria weights...4 Product scores...4 Criteria comparison discussion...5 References...7 Cost Estimate,

More information

Figure 1. The cloud scales: Amazon EC2 growth [2].

Figure 1. The cloud scales: Amazon EC2 growth [2]. - Chung-Cheng Li and Kuochen Wang Department of Computer Science National Chiao Tung University Hsinchu, Taiwan 300 shinji10343@hotmail.com, kwang@cs.nctu.edu.tw Abstract One of the most important issues

More information

Monitoring Databases on VMware

Monitoring Databases on VMware Monitoring Databases on VMware Ensure Optimum Performance with the Correct Metrics By Dean Richards, Manager, Sales Engineering Confio Software 4772 Walnut Street, Suite 100 Boulder, CO 80301 www.confio.com

More information

USING VIRTUAL MACHINE REPLICATION FOR DYNAMIC CONFIGURATION OF MULTI-TIER INTERNET SERVICES

USING VIRTUAL MACHINE REPLICATION FOR DYNAMIC CONFIGURATION OF MULTI-TIER INTERNET SERVICES USING VIRTUAL MACHINE REPLICATION FOR DYNAMIC CONFIGURATION OF MULTI-TIER INTERNET SERVICES Carlos Oliveira, Vinicius Petrucci, Orlando Loques Universidade Federal Fluminense Niterói, Brazil ABSTRACT In

More information

Affinity Aware VM Colocation Mechanism for Cloud

Affinity Aware VM Colocation Mechanism for Cloud Affinity Aware VM Colocation Mechanism for Cloud Nilesh Pachorkar 1* and Rajesh Ingle 2 Received: 24-December-2014; Revised: 12-January-2015; Accepted: 12-January-2015 2014 ACCENTS Abstract The most of

More information

Cloud Computing through Virtualization and HPC technologies

Cloud Computing through Virtualization and HPC technologies Cloud Computing through Virtualization and HPC technologies William Lu, Ph.D. 1 Agenda Cloud Computing & HPC A Case of HPC Implementation Application Performance in VM Summary 2 Cloud Computing & HPC HPC

More information

Dynamic memory Allocation using ballooning and virtualization in cloud computing

Dynamic memory Allocation using ballooning and virtualization in cloud computing IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. IV (Mar-Apr. 2014), PP 19-23 Dynamic memory Allocation using ballooning and virtualization

More information

Servervirualisierung mit Citrix XenServer

Servervirualisierung mit Citrix XenServer Servervirualisierung mit Citrix XenServer Paul Murray, Senior Systems Engineer, MSG EMEA Citrix Systems International GmbH paul.murray@eu.citrix.com Virtualization Wave is Just Beginning Only 6% of x86

More information

Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors

Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors Soltesz, et al (Princeton/Linux-VServer), Eurosys07 Context: Operating System Structure/Organization

More information

Data Centers and Cloud Computing

Data Centers and Cloud Computing Data Centers and Cloud Computing CS377 Guest Lecture Tian Guo 1 Data Centers and Cloud Computing Intro. to Data centers Virtualization Basics Intro. to Cloud Computing Case Study: Amazon EC2 2 Data Centers

More information

A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems

A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya Present by Leping Wang 1/25/2012 Outline Background

More information

LabStats 5 System Requirements

LabStats 5 System Requirements LabStats Tel: 877-299-6241 255 B St, Suite 201 Fax: 208-473-2989 Idaho Falls, ID 83402 LabStats 5 System Requirements Server Component Virtual Servers: There is a limit to the resources available to virtual

More information

Virtualization. Introduction to Virtualization Virtual Appliances Benefits to Virtualization Example Virtualization Products

Virtualization. Introduction to Virtualization Virtual Appliances Benefits to Virtualization Example Virtualization Products Virtualization Originally prepared by Greg Bosch; last modified April 2012 by B. Davison I. Introduction to Virtualization II. Virtual Appliances III. Benefits to Virtualization IV. Example Virtualization

More information

Towards an understanding of oversubscription in cloud

Towards an understanding of oversubscription in cloud IBM Research Towards an understanding of oversubscription in cloud Salman A. Baset, Long Wang, Chunqiang Tang sabaset@us.ibm.com IBM T. J. Watson Research Center Hawthorne, NY Outline Oversubscription

More information

Dynamic Load Balancing of Virtual Machines using QEMU-KVM

Dynamic Load Balancing of Virtual Machines using QEMU-KVM Dynamic Load Balancing of Virtual Machines using QEMU-KVM Akshay Chandak Krishnakant Jaju Technology, College of Engineering, Pune. Maharashtra, India. Akshay Kanfade Pushkar Lohiya Technology, College

More information

CloudScale: Elastic Resource Scaling for Multi-Tenant Cloud Systems

CloudScale: Elastic Resource Scaling for Multi-Tenant Cloud Systems CloudScale: Elastic Resource Scaling for Multi-Tenant Cloud Systems Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, Department of Computer Science North Carolina State University {zshen5,ssubbia2}@ncsu.edu,

More information

Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers

Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers Íñigo Goiri, J. Oriol Fitó, Ferran Julià, Ramón Nou, Josep Ll. Berral, Jordi Guitart and Jordi Torres

More information

Two-Level Cooperation in Autonomic Cloud Resource Management

Two-Level Cooperation in Autonomic Cloud Resource Management Two-Level Cooperation in Autonomic Cloud Resource Management Giang Son Tran, Laurent Broto, and Daniel Hagimont ENSEEIHT University of Toulouse, Toulouse, France Email: {giang.tran, laurent.broto, daniel.hagimont}@enseeiht.fr

More information

Best Practices for Optimizing Your Linux VPS and Cloud Server Infrastructure

Best Practices for Optimizing Your Linux VPS and Cloud Server Infrastructure Best Practices for Optimizing Your Linux VPS and Cloud Server Infrastructure Q1 2012 Maximizing Revenue per Server with Parallels Containers for Linux www.parallels.com Table of Contents Overview... 3

More information

A Novel Method for Resource Allocation in Cloud Computing Using Virtual Machines

A Novel Method for Resource Allocation in Cloud Computing Using Virtual Machines A Novel Method for Resource Allocation in Cloud Computing Using Virtual Machines Ch.Anusha M.Tech, Dr.K.Babu Rao, M.Tech, Ph.D Professor, MR. M.Srikanth Asst Professor & HOD, Abstract: Cloud computing

More information

BridgeWays Management Pack for VMware ESX

BridgeWays Management Pack for VMware ESX Bridgeways White Paper: Management Pack for VMware ESX BridgeWays Management Pack for VMware ESX Ensuring smooth virtual operations while maximizing your ROI. Published: July 2009 For the latest information,

More information

Elastic Load Balancing in Cloud Storage

Elastic Load Balancing in Cloud Storage Elastic Load Balancing in Cloud Storage Surabhi Jain, Deepak Sharma (Lecturer, Department of Computer Science, Lovely Professional University, Phagwara-144402) (Assistant Professor, Department of Computer

More information

Energy Constrained Resource Scheduling for Cloud Environment

Energy Constrained Resource Scheduling for Cloud Environment Energy Constrained Resource Scheduling for Cloud Environment 1 R.Selvi, 2 S.Russia, 3 V.K.Anitha 1 2 nd Year M.E.(Software Engineering), 2 Assistant Professor Department of IT KSR Institute for Engineering

More information

Effective Resource Allocation For Dynamic Workload In Virtual Machines Using Cloud Computing

Effective Resource Allocation For Dynamic Workload In Virtual Machines Using Cloud Computing Effective Resource Allocation For Dynamic Workload In Virtual Machines Using Cloud Computing J.Stalin, R.Kanniga Devi Abstract In cloud computing, the business class customers perform scale up and scale

More information

Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS) Infrastructure as a Service (IaaS) (ENCS 691K Chapter 4) Roch Glitho, PhD Associate Professor and Canada Research Chair My URL - http://users.encs.concordia.ca/~glitho/ References 1. R. Moreno et al.,

More information

Storage I/O Control: Proportional Allocation of Shared Storage Resources

Storage I/O Control: Proportional Allocation of Shared Storage Resources Storage I/O Control: Proportional Allocation of Shared Storage Resources Chethan Kumar Sr. Member of Technical Staff, R&D VMware, Inc. Outline The Problem Storage IO Control (SIOC) overview Technical Details

More information

Dynamic Resource management with VM layer and Resource prediction algorithms in Cloud Architecture

Dynamic Resource management with VM layer and Resource prediction algorithms in Cloud Architecture Dynamic Resource management with VM layer and Resource prediction algorithms in Cloud Architecture 1 Shaik Fayaz, 2 Dr.V.N.Srinivasu, 3 Tata Venkateswarlu #1 M.Tech (CSE) from P.N.C & Vijai Institute of

More information

XenMon: QoS Monitoring and Performance Profiling Tool

XenMon: QoS Monitoring and Performance Profiling Tool XenMon: QoS Monitoring and Performance Profiling Tool Performance Study: How Much CPU Needs to Be Allocated to Dom O for Efficient Support of Web Server Applications? Diwaker Gupta, Rob Gardner, Ludmila

More information

Virtualization of the MS Exchange Server Environment

Virtualization of the MS Exchange Server Environment MS Exchange Server Acceleration Maximizing Users in a Virtualized Environment with Flash-Powered Consolidation Allon Cohen, PhD OCZ Technology Group Introduction Microsoft (MS) Exchange Server is one of

More information

IOS110. Virtualization 5/27/2014 1

IOS110. Virtualization 5/27/2014 1 IOS110 Virtualization 5/27/2014 1 Agenda What is Virtualization? Types of Virtualization. Advantages and Disadvantages. Virtualization software Hyper V What is Virtualization? Virtualization Refers to

More information

Windows Server 2008 R2 Hyper-V Live Migration

Windows Server 2008 R2 Hyper-V Live Migration Windows Server 2008 R2 Hyper-V Live Migration Table of Contents Overview of Windows Server 2008 R2 Hyper-V Features... 3 Dynamic VM storage... 3 Enhanced Processor Support... 3 Enhanced Networking Support...

More information

A Batch Computing Service for the Spot Market. Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, Prashant Shenoy

A Batch Computing Service for the Spot Market. Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, Prashant Shenoy SpotOn: A Batch Computing Service for the Spot Market Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, Prashant Shenoy University of Massachusetts Amherst infrastructure cloud Cost vs. Availability

More information

OpenStack Neat: a framework for dynamic and energy-efficient consolidation of virtual machines in OpenStack clouds

OpenStack Neat: a framework for dynamic and energy-efficient consolidation of virtual machines in OpenStack clouds CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Computat.: Pract. Exper. (2014) Published online in Wiley Online Library (wileyonlinelibrary.com)..3314 OpenStack Neat: a framework for

More information

An Oracle White Paper August 2011. Oracle VM 3: Server Pool Deployment Planning Considerations for Scalability and Availability

An Oracle White Paper August 2011. Oracle VM 3: Server Pool Deployment Planning Considerations for Scalability and Availability An Oracle White Paper August 2011 Oracle VM 3: Server Pool Deployment Planning Considerations for Scalability and Availability Note This whitepaper discusses a number of considerations to be made when

More information

PARALLELS CLOUD SERVER

PARALLELS CLOUD SERVER PARALLELS CLOUD SERVER An Introduction to Operating System Virtualization and Parallels Cloud Server 1 Table of Contents Introduction... 3 Hardware Virtualization... 3 Operating System Virtualization...

More information

VIRTUALIZATION is widely deployed in large-scale

VIRTUALIZATION is widely deployed in large-scale SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 1 iaware: Making Live Migration of Virtual Machines Interference-Aware in the Cloud Fei Xu, Fangming Liu, Member, IEEE, Linghui Liu, Hai Jin, Senior Member,

More information

Mesos: A Platform for Fine- Grained Resource Sharing in Data Centers (II)

Mesos: A Platform for Fine- Grained Resource Sharing in Data Centers (II) UC BERKELEY Mesos: A Platform for Fine- Grained Resource Sharing in Data Centers (II) Anthony D. Joseph LASER Summer School September 2013 My Talks at LASER 2013 1. AMP Lab introduction 2. The Datacenter

More information

Windows Server 2008 R2 Hyper-V Live Migration

Windows Server 2008 R2 Hyper-V Live Migration Windows Server 2008 R2 Hyper-V Live Migration White Paper Published: August 09 This is a preliminary document and may be changed substantially prior to final commercial release of the software described

More information

Computing in High- Energy-Physics: How Virtualization meets the Grid

Computing in High- Energy-Physics: How Virtualization meets the Grid Computing in High- Energy-Physics: How Virtualization meets the Grid Yves Kemp Institut für Experimentelle Kernphysik Universität Karlsruhe Yves Kemp Barcelona, 10/23/2006 Outline: Problems encountered

More information

Energetic Resource Allocation Framework Using Virtualization in Cloud

Energetic Resource Allocation Framework Using Virtualization in Cloud Energetic Resource Allocation Framework Using Virtualization in Ms.K.Guna *1, Ms.P.Saranya M.E *2 1 (II M.E(CSE)) Student Department of Computer Science and Engineering, 2 Assistant Professor Department

More information

The Benefits of POWER7+ and PowerVM over Intel and an x86 Hypervisor

The Benefits of POWER7+ and PowerVM over Intel and an x86 Hypervisor The Benefits of POWER7+ and PowerVM over Intel and an x86 Hypervisor Howard Anglin rhbear@us.ibm.com IBM Competitive Project Office May 2013 Abstract...3 Virtualization and Why It Is Important...3 Resiliency

More information

On the Use of Fuzzy Modeling in Virtualized Data Center Management Jing Xu, Ming Zhao, José A. B. Fortes, Robert Carpenter*, Mazin Yousif*

On the Use of Fuzzy Modeling in Virtualized Data Center Management Jing Xu, Ming Zhao, José A. B. Fortes, Robert Carpenter*, Mazin Yousif* On the Use of Fuzzy Modeling in Virtualized Data Center Management Jing Xu, Ming Zhao, José A. B. Fortes, Robert Carpenter*, Mazin Yousif* Electrical and Computer Engineering, University of Florida *Intel

More information

Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida

Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida Power Management in Cloud Computing using Green Algorithm -Kushal Mehta COP 6087 University of Central Florida Motivation Global warming is the greatest environmental challenge today which is caused by

More information

Cloud Server. Parallels. An Introduction to Operating System Virtualization and Parallels Cloud Server. White Paper. www.parallels.

Cloud Server. Parallels. An Introduction to Operating System Virtualization and Parallels Cloud Server. White Paper. www.parallels. Parallels Cloud Server White Paper An Introduction to Operating System Virtualization and Parallels Cloud Server www.parallels.com Table of Contents Introduction... 3 Hardware Virtualization... 3 Operating

More information

TABLE OF CONTENTS. Page. ACKNOWLEDGMENTS... ii CHAPTER 1. INTRODUCTION... 1 2. BACKGROUND AND RELATED WORK... 5

TABLE OF CONTENTS. Page. ACKNOWLEDGMENTS... ii CHAPTER 1. INTRODUCTION... 1 2. BACKGROUND AND RELATED WORK... 5 IMPROVING DATA CENTER RESOURCE MANAGEMENT, DEPLOYMENT, AND AVAILABILITY WITH VIRTUALIZATION A Dissertation Presented by TIMOTHY WOOD Submitted to the Graduate School of the University of Massachusetts

More information

Using PlateSpin PowerConvert to Perform Windows-to-Virtual Conversions into Virtual Iron Servers

Using PlateSpin PowerConvert to Perform Windows-to-Virtual Conversions into Virtual Iron Servers Using PlateSpin PowerConvert to Perform Windows-to-Virtual Conversions into Virtual Iron Servers Introduction PlateSpin PowerConvert can be used to perform physical-to-virtual (P2V) conversions of Windows

More information

Dynamic Processor Resource Configuration in Virtualized Environments

Dynamic Processor Resource Configuration in Virtualized Environments Dynamic Processor Resource Configuration in Virtualized Environments Hai Jin, Li Deng, Song Wu, Xuanhua Shi s Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science

More information

Live Vertical Scaling

Live Vertical Scaling ProfitBRICKS IAAS Live Vertical Scaling Add more data center infrastructure resources on demand, without a reboot Reconfiguring during ongoing operation a world debut. Using ProfitBricks Live Vertical

More information

Virtualization. Dr. Yingwu Zhu

Virtualization. Dr. Yingwu Zhu Virtualization Dr. Yingwu Zhu What is virtualization? Virtualization allows one computer to do the job of multiple computers. Virtual environments let one computer host multiple operating systems at the

More information

Dynamic Virtual Machine Scheduling in Clouds for Architectural Shared Resources

Dynamic Virtual Machine Scheduling in Clouds for Architectural Shared Resources Dynamic Virtual Machine Scheduling in Clouds for Architectural Shared Resources JeongseobAhn,Changdae Kim, JaeungHan,Young-ri Choi,and JaehyukHuh KAIST UNIST {jeongseob, cdkim, juhan, and jhuh}@calab.kaist.ac.kr

More information

KVM: A Hypervisor for All Seasons. Avi Kivity avi@qumranet.com

KVM: A Hypervisor for All Seasons. Avi Kivity avi@qumranet.com KVM: A Hypervisor for All Seasons Avi Kivity avi@qumranet.com November 2007 Virtualization Simulation of computer system in software Components Processor: register state, instructions, exceptions Memory

More information

Server Consolidation with Migration Control for Virtualized Data Centers

Server Consolidation with Migration Control for Virtualized Data Centers *Manuscript Click here to view linked References Server Consolidation with Migration Control for Virtualized Data Centers Tiago C. Ferreto 1,MarcoA.S.Netto, Rodrigo N. Calheiros, and César A. F. De Rose

More information

Efficient Resource Management for Virtual Desktop Cloud Computing

Efficient Resource Management for Virtual Desktop Cloud Computing supercomputing manuscript No. (will be inserted by the editor) Efficient Resource Management for Virtual Desktop Cloud Computing Lien Deboosere Bert Vankeirsbilck Pieter Simoens Filip De Turck Bart Dhoedt

More information

Week Overview. Installing Linux Linux on your Desktop Virtualization Basic Linux system administration

Week Overview. Installing Linux Linux on your Desktop Virtualization Basic Linux system administration ULI101 Week 06b Week Overview Installing Linux Linux on your Desktop Virtualization Basic Linux system administration Installing Linux Standalone installation Linux is the only OS on the computer Any existing

More information

Best Practices for Monitoring Databases on VMware. Dean Richards Senior DBA, Confio Software

Best Practices for Monitoring Databases on VMware. Dean Richards Senior DBA, Confio Software Best Practices for Monitoring Databases on VMware Dean Richards Senior DBA, Confio Software 1 Who Am I? 20+ Years in Oracle & SQL Server DBA and Developer Worked for Oracle Consulting Specialize in Performance

More information

Monitoring and Alerting

Monitoring and Alerting Monitoring and Alerting All the things I've tried that didn't work, plus a few others. By Aaron S. Joyner Senior System Administrator Google, Inc. Blackbox vs Whitebox Blackbox: Requires no participation

More information

Migration of Virtual Machines for Better Performance in Cloud Computing Environment

Migration of Virtual Machines for Better Performance in Cloud Computing Environment Migration of Virtual Machines for Better Performance in Cloud Computing Environment J.Sreekanth 1, B.Santhosh Kumar 2 PG Scholar, Dept. of CSE, G Pulla Reddy Engineering College, Kurnool, Andhra Pradesh,

More information

PEPPERDATA IN MULTI-TENANT ENVIRONMENTS

PEPPERDATA IN MULTI-TENANT ENVIRONMENTS ..................................... PEPPERDATA IN MULTI-TENANT ENVIRONMENTS technical whitepaper June 2015 SUMMARY OF WHAT S WRITTEN IN THIS DOCUMENT If you are short on time and don t want to read the

More information

Oracle Hyperion Financial Management Virtualization Whitepaper

Oracle Hyperion Financial Management Virtualization Whitepaper Oracle Hyperion Financial Management Virtualization Whitepaper Oracle Hyperion Financial Management Virtualization Whitepaper TABLE OF CONTENTS Overview... 3 Benefits... 4 HFM Virtualization testing...

More information

Parallels Plesk Automation

Parallels Plesk Automation Parallels Plesk Automation Contents Compact Configuration: Linux Shared Hosting 3 Compact Configuration: Mixed Linux and Windows Shared Hosting 4 Medium Size Configuration: Mixed Linux and Windows Shared

More information

Cost Effective Automated Scaling of Web Applications for Multi Cloud Services

Cost Effective Automated Scaling of Web Applications for Multi Cloud Services Cost Effective Automated Scaling of Web Applications for Multi Cloud Services SANTHOSH.A 1, D.VINOTHA 2, BOOPATHY.P 3 1,2,3 Computer Science and Engineering PRIST University India Abstract - Resource allocation

More information

MS EXCHANGE SERVER ACCELERATION IN VMWARE ENVIRONMENTS WITH SANRAD VXL

MS EXCHANGE SERVER ACCELERATION IN VMWARE ENVIRONMENTS WITH SANRAD VXL MS EXCHANGE SERVER ACCELERATION IN VMWARE ENVIRONMENTS WITH SANRAD VXL Dr. Allon Cohen Eli Ben Namer info@sanrad.com 1 EXECUTIVE SUMMARY SANRAD VXL provides enterprise class acceleration for virtualized

More information

Windows Server Virtualization An Overview

Windows Server Virtualization An Overview Microsoft Corporation Published: May 2006 Abstract Today s business climate is more challenging than ever and businesses are under constant pressure to lower costs while improving overall operational efficiency.

More information

VIRTUALIZATION PERFORMANCE: VMWARE VSPHERE 5 VS. MICROSOFT HYPER- V R2 SP1

VIRTUALIZATION PERFORMANCE: VMWARE VSPHERE 5 VS. MICROSOFT HYPER- V R2 SP1 VIRTUALIZATION PERFORMANCE: VMWARE VSPHERE 5 VS. MICROSOFT HYPER- V R2 SP1 When you invest in servers to host your virtualized applications, you can maximize the performance these systems yield by fully

More information

BEST PRACTICES FOR OPTIMIZING YOUR LINUX VPS AND CLOUD SERVER INFRASTRUCTURE

BEST PRACTICES FOR OPTIMIZING YOUR LINUX VPS AND CLOUD SERVER INFRASTRUCTURE BEST PRACTICES FOR OPTIMIZING YOUR LINUX VPS AND CLOUD SERVER INFRASTRUCTURE Maximizing Revenue per Server with Parallels Containers for Linux Q1 2012 1 Table of Contents Overview... Error! Bookmark not

More information

Using VMware VMotion with Oracle Database and EMC CLARiiON Storage Systems

Using VMware VMotion with Oracle Database and EMC CLARiiON Storage Systems Using VMware VMotion with Oracle Database and EMC CLARiiON Storage Systems Applied Technology Abstract By migrating VMware virtual machines from one physical environment to another, VMware VMotion can

More information

Parallels VDI Solution

Parallels VDI Solution Parallels VDI Solution White Paper VDI SIZING A Competitive Comparison of VDI Solution Sizing between Parallels VDI versus VMware VDI www.parallels.com Parallels VDI Sizing. 29 Table of Contents Overview...

More information

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 12902

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 12902 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

KVM & Memory Management Updates

KVM & Memory Management Updates KVM & Memory Management Updates KVM Forum 2012 Rik van Riel Red Hat, Inc. KVM & Memory Management Updates EPT Accessed & Dirty Bits 1GB hugepages Balloon vs. Transparent Huge Pages Automatic NUMA Placement

More information

Avoiding Overload Using Virtual Machine in Cloud Data Centre

Avoiding Overload Using Virtual Machine in Cloud Data Centre Avoiding Overload Using Virtual Machine in Cloud Data Centre Ms.S.Indumathi 1, Mr. P. Ranjithkumar 2 M.E II year, Department of CSE, Sri Subramanya College of Engineering and Technology, Palani, Dindigul,

More information

Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi

Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi National Institute of Advanced Industrial Science and Technology (AIST), Japan VTDC2011, Jun. 8 th, 2011 1 Outline What is dynamic

More information

Agile Resource Management in a Virtualized Data Center

Agile Resource Management in a Virtualized Data Center Agile Resource Management in a Virtualized Data Center Wei Zhang 1, Hangwei Qian 2, Craig E. Wills 1, Michael Rabinovich 2 1 CS, Worcester Polytechnic Institute, Worcester, MA 169 2 EE&CS, Case Western

More information

Performance Models for Virtualized Applications

Performance Models for Virtualized Applications Performance Models for Virtualized Applications Fabrício Benevenuto 1, César Fernandes 1, Matheus Santos 1, Virgílio Almeida 1, Jussara Almeida 1, G.(John) Janakiraman 2, José Renato Santos 2 1 Computer

More information