Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction

Size: px
Start display at page:

Download "Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction"

Transcription

1 Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Jin Xu, Shinjae Yoo, Dantong Yu, Dong Huang, John Heiser, Paul Kalb

2 Solar Energy Abundant, clean, and secure renewable resource Intermittent nature of solar irradiance challenges the regulation and maintenance of grids Clouds cause fluctuations in the photovoltaic (PV) output 2

3 Motivation: Climatology on the East Coast 3

4 Motivation: Climatology on the East Coast Reliable 1-15 minute short term irradiance forecasting is essential for grid operators to control ramp events. 3

5 Short-term Forecasting Workflow Cloud Tracking Feature Engineering Prediction Image preprocessing Cloud cover classification Multi-layer cloud detection Segment identification Cloud tracking Data calibration Feature extraction Correlation analysis with irradiance Feature selection Linear & non-linear modeling Model and feature set evaluation and cross validation 8

6 Sky Imaging Based Prediction Short term ground-based sensor data collection High spatial and temporal resolution Able to capture local cloud movement TSI (Total Sky Imager) Pyranometer (irradiance sensor) TSI instrument Sample TSI image 4

7 Solar Irradiance Fluctuations TSI image sequence Ground irradiance 5

8 Limitations of Current Methods For Sky Image Processing Thin, high altitude clouds are difficult to detect Unable to differentiate between multiple cloud layers Block and pixel based tracking are noise prone Accurate forecasts are limited to 5 minutes 6

9 Novel Solar Irradiance Forecasting Framework Multi-layer cloud detection and tracking Cloud type classification Multi-layer detection Segment identification Numerical Weather Prediction (NWP) incorporation Extend the forecasting horizon to 15 minutes 7

10 Novel Cloud Tracking Pipeline 9

11 Novel Cloud Tracking Pipeline Original image 9

12 Novel Cloud Tracking Pipeline Image undistortion Shadowband dispatch 10

13 Novel Cloud Tracking Pipeline Cloud Cover 11

14 Novel Cloud Tracking Pipeline 12

15 Novel Cloud Tracking Pipeline 12

16 Novel Cloud Tracking Pipeline Cloud segmentation 13

17 Novel Cloud Tracking Pipeline Normalized Cross Correlation Algorithm 17

18 Novel Cloud Tracking Pipeline Example cloud segments at time t-1 and t and corresponding predicted motion vectors t-1 t 14

19 Method Comparison Segment based cloud tracking with multi-layer detection Block based tracking 15

20 Multi-layer Detection and Segment Identification 20

21 Feature Engineering: TSI Image Features 16

22 Feature Engineering: NWP Features Category 1 Rain 2 Light Rain 3 Overcast 4 Mostly Cloudy 5 Partly Cloudy 6 Scattered Cloud 7 Fog 8 Clear 9 Sunny 17

23 Full Feature Set TSI Feature Set circumsolar RBR, motion vector length/count/sum, cloud cover mean/variance, blue channel max/min, shadowband brightness. Weather Feature Set category, temperature, humidity, pressure, wind direction, and wind speed. 22

24 Forecast Models Persistent Model (PM) Linear Regression (LR) One TSI feature (LR_ RBR,GHI ) All features (LR_ all ) Support Vector Regression (SVR) Linear kernel (SVR lnr _all) Radial Basis Function kernel (SVR RBF _all) 18

25 Forecast Models Persistent Model (PM) Linear Regression (LR) with only one TSI feature (LR_RBR,GHI) with all features (LR_all) 23

26 Forecast Models Support Vector Regression (SVR) using linear kernel (SVR_lnr) using Radial Basis Function kernel (SVR_RBF) 24

27 1 to 15 Minute Forecasting Using Different Models 19

28 1 to 15 Minute Forecasting Using Different Feature Sets 20

29 1 to 15 Minute Forecasting Using Different Cloud Tracking methods 29

30 Example Forecasts on a Cloudy Day Forecasting of 1-min averaged GHI for 1, 5, 10 and 15 min ahead using persistent model and SVR-RBF, between 10:00 am and 14:00 pm on June 6th,

31 Summary Novel TSI image processing pipeline Differentiate low, thick clouds from high, thin clouds Tracking a complete cloud Significant improvement on short term (1-15 minute) solar irradiance forecasting model Incorporate TSI image features & NWP features Average of 21% improvement over baseline model 21

32 Existing GHI forecast methods Statistical based models Persistent model (PM), benchmark, which directly uses the present irradiance as the prediction. ARMA, ANN, etc., use historical GHI data to train models to predict future irradiances. Physics based models Numerical Weather Prediction (NWP), utilize meteorological observations and measurements. Cloud imagery based techniques (Deterministic) -- satellite based -- ground based (Total Sky Imager, Whole Sky Imager, etc.) 32

33 Full Feature Set 33

34 Linear Chain CRF G = (V; F;E) 34

35 1 to 5 Minute Forecasting Using Different Models 18

36 1 to 5 Minute Forecasting Using Different Feature Sets

37 MAE for different numbers of states of CRF and HMM

38

Development of a. Solar Generation Forecast System

Development of a. Solar Generation Forecast System ALBANY BARCELONA BANGALORE 16 December 2011 Development of a Multiple Look ahead Time Scale Solar Generation Forecast System John Zack Glenn Van Knowe Marie Schnitzer Jeff Freedman AWS Truepower, LLC Albany,

More information

Partnership to Improve Solar Power Forecasting

Partnership to Improve Solar Power Forecasting Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office

More information

The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service

The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in

More information

The APOLLO cloud product statistics Web service

The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in

More information

MACHINE LEARNING TECHNIQUES FOR SHORT TERM SOLAR FORECASTING

MACHINE LEARNING TECHNIQUES FOR SHORT TERM SOLAR FORECASTING SASEC2015 Third Southern African Solar Energy Conference 11 13 May 2015 Kruger National Park, South Africa MACHINE LEARNING TECHNIQUES FOR SHORT TERM SOLAR FORECASTING Lauret P.*, David M. and Tapachès

More information

Solar Variability and Forecasting

Solar Variability and Forecasting Solar Variability and Forecasting Jan Kleissl, Chi Chow, Matt Lave, Patrick Mathiesen, Anders Nottrott, Bryan Urquhart Mechanical & Environmental Engineering, UC San Diego http://solar.ucsd.edu Variability

More information

Solarstromprognosen für Übertragungsnetzbetreiber

Solarstromprognosen für Übertragungsnetzbetreiber Solarstromprognosen für Übertragungsnetzbetreiber Elke Lorenz, Jan Kühnert, Annette Hammer, Detlev Heienmann Universität Oldenburg 1 Outline grid integration of photovoltaic power (PV) in Germany overview

More information

SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY

SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY Wolfgang Traunmüller 1 * and Gerald Steinmaurer 2 1 BLUE SKY Wetteranalysen, 4800 Attnang-Puchheim,

More information

Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD

Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Radiation Reaching the Surface Incoming solar radiation can be reflected,

More information

The potential role of forecasting for integrating solar generation into the Australian National Electricity Market

The potential role of forecasting for integrating solar generation into the Australian National Electricity Market The potential role of forecasting for integrating solar generation into the Australian National Electricity Market Ben Elliston 1, Iain MacGill 1,2 1 School of Electrical Engineering and Telecommunications

More information

SOLAR FORECASTING AND GRID INTEGRATION

SOLAR FORECASTING AND GRID INTEGRATION Coauthors: Carlos Coimbra, Byron Washom * Juan Luis Bosch, Chi Chow, Mohammad Jamaly, Matt Lave, Ben Kurtz, Patrick Mathiesen, Andu Nguyen, Anders Nottrott, Bryan Urquhart, Israel Lopez Coto, Handa Yang,

More information

A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning.

A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. 31st Annual International Symposium on Forecasting Lourdes Ramírez Santigosa Martín

More information

VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA

VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA M.Derrien 1, H.Le Gléau 1, Jean-François Daloze 2, Martial Haeffelin 2 1 Météo-France / DP / Centre de Météorologie Spatiale. BP 50747.

More information

Cloud tracking with optical flow for short-term solar forecasting

Cloud tracking with optical flow for short-term solar forecasting Cloud tracking with optical flow for short-term solar forecasting Philip Wood-Bradley, José Zapata, John Pye Solar Thermal Group, Australian National University, Canberra, Australia Corresponding author:

More information

Meteorological Forecasting of DNI, clouds and aerosols

Meteorological Forecasting of DNI, clouds and aerosols Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, 2014-05-07 Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR) Overview What

More information

Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon

Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational

More information

Photovoltaic and Solar Forecasting: State of the Art

Photovoltaic and Solar Forecasting: State of the Art Photovoltaic and Solar Forecasting: State of the Art Forecast PV power Actual PV power Report IEA PVPS T14 01:2013 Photo credits cover page Upper left image: Environment Canada, Data courtesy of NOAA (February

More information

Statistical Learning for Short-Term Photovoltaic Power Predictions

Statistical Learning for Short-Term Photovoltaic Power Predictions Statistical Learning for Short-Term Photovoltaic Power Predictions Björn Wolff 1, Elke Lorenz 2, Oliver Kramer 1 1 Department of Computing Science 2 Institute of Physics, Energy and Semiconductor Research

More information

Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis

Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis Authors Name/s per 1st Affiliation (Author) Authors Name/s per 2nd Affiliation (Author) line 1 (of Affiliation): dept. name

More information

CLOUD COVER IMPACT ON PHOTOVOLTAIC POWER PRODUCTION IN SOUTH AFRICA

CLOUD COVER IMPACT ON PHOTOVOLTAIC POWER PRODUCTION IN SOUTH AFRICA CLOUD COVER IMPACT ON PHOTOVOLTAIC POWER PRODUCTION IN SOUTH AFRICA Marcel Suri 1, Tomas Cebecauer 1, Artur Skoczek 1, Ronald Marais 2, Crescent Mushwana 2, Josh Reinecke 3 and Riaan Meyer 4 1 GeoModel

More information

Power Output Analysis of Photovoltaic Systems in San Diego County Mohammad Jamaly, Juan L Bosch, Jan Kleissl

Power Output Analysis of Photovoltaic Systems in San Diego County Mohammad Jamaly, Juan L Bosch, Jan Kleissl 1 Power Output Analysis of Photovoltaic Systems in San Diego County Mohammad Jamaly, Juan L Bosch, Jan Kleissl Abstract Aggregate ramp rates of 86 distributed photovoltaic (PV) systems installed in Southern

More information

USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY

USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY Matthew J. Reno Sandia National Laboratories Georgia Institute of Technology 777 Atlantic Drive NW Atlanta, GA 3332-25, USA matthew.reno@gatech.edu

More information

The impact of window size on AMV

The impact of window size on AMV The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target

More information

REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES

REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,

More information

FORECASTING SOLAR POWER INTERMITTENCY USING GROUND-BASED CLOUD IMAGING

FORECASTING SOLAR POWER INTERMITTENCY USING GROUND-BASED CLOUD IMAGING FORECASTING SOLAR POWER INTERMITTENCY USING GROUND-BASED CLOUD IMAGING Vijai Thottathil Jayadevan Jeffrey J. Rodriguez Department of Electrical and Computer Engineering University of Arizona Tucson, AZ

More information

Overview of BNL s Solar Energy Research Plans. March 2011

Overview of BNL s Solar Energy Research Plans. March 2011 Overview of BNL s Solar Energy Research Plans March 2011 Why Solar Energy Research at BNL? BNL s capabilities can advance solar energy In the Northeast World class facilities History of successful research

More information

Solar Input Data for PV Energy Modeling

Solar Input Data for PV Energy Modeling June 2012 Solar Input Data for PV Energy Modeling Marie Schnitzer, Christopher Thuman, Peter Johnson Albany New York, USA Barcelona Spain Bangalore India Company Snapshot Established in 1983; nearly 30

More information

Satellite-Based Software Tools for Optimizing Utility Planning, Simulation and Forecasting

Satellite-Based Software Tools for Optimizing Utility Planning, Simulation and Forecasting Satellite-Based Software Tools for Optimizing Utility Planning, Simulation and Forecasting Tom Hoff, President, Research & Consulting ISES Webinar February 23, 2015 Copyright 2015 Clean Power Research,

More information

Research and Development: Advancing Solar Energy in California

Research and Development: Advancing Solar Energy in California Research and Development: Advancing Solar Energy in California Laurie ten Hope Deputy Director Energy Research and Development Division California Energy Commission 2014 UC Solar Research Symposium San

More information

Review of solar irradiance forecasting methods and a proposition for small-scale insular grids

Review of solar irradiance forecasting methods and a proposition for small-scale insular grids Review of solar irradiance forecasting methods and a proposition for small-scale insular grids Hadja Maïmouna Diagne, Mathieu David, Philippe Lauret, John Boland, Nicolas Schmutz To cite this version:

More information

Forecasting Solar Power with Adaptive Models A Pilot Study

Forecasting Solar Power with Adaptive Models A Pilot Study Forecasting Solar Power with Adaptive Models A Pilot Study Dr. James W. Hall 1. Introduction Expanding the use of renewable energy sources, primarily wind and solar, has become a US national priority.

More information

PREDICTION OF PHOTOVOLTAIC SYSTEMS PRODUCTION USING WEATHER FORECASTS

PREDICTION OF PHOTOVOLTAIC SYSTEMS PRODUCTION USING WEATHER FORECASTS PREDICTION OF PHOTOVOLTAIC SYSTEMS PRODUCTION USING WEATHER FORECASTS Jure Vetršek* 1 and prof. Sašo Medved 1 1University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Sustainable Technologies

More information

Power Prediction Analysis using Artificial Neural Network in MS Excel

Power Prediction Analysis using Artificial Neural Network in MS Excel Power Prediction Analysis using Artificial Neural Network in MS Excel NURHASHINMAH MAHAMAD, MUHAMAD KAMAL B. MOHAMMED AMIN Electronic System Engineering Department Malaysia Japan International Institute

More information

Simulated PV Power Plant Variability: Impact of Utility-imposed Ramp Limitations in Puerto Rico

Simulated PV Power Plant Variability: Impact of Utility-imposed Ramp Limitations in Puerto Rico Simulated PV Power Plant Variability: Impact of Utility-imposed Ramp Limitations in Puerto Rico Matthew Lave 1, Jan Kleissl 2, Abraham Ellis 3, Felipe Mejia 2 1 Sandia National Laboratories, Livermore,

More information

Distributed Solar Prediction with Wind Velocity

Distributed Solar Prediction with Wind Velocity Distributed Solar Prediction with Wind Velocity Justin Domke, Nick Engerer, Aditya Menon, Christfried Webers National ICT Australia and the Australian National University Abstract The growing uptake of

More information

Cloud Mask Product: Product Guide

Cloud Mask Product: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/801027 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 21 August 2015 http://www.eumetsat.int WBS : EUMETSAT

More information

VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR

VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR Andrew Goldstein Yale University 68 High Street New Haven, CT 06511 andrew.goldstein@yale.edu Alexander Thornton Shawn Kerrigan Locus Energy 657 Mission St.

More information

NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada

NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada 1. INTRODUCTION Short-term methods of precipitation nowcasting range from the simple use of regional numerical forecasts

More information

Forecasting of Solar Radiation

Forecasting of Solar Radiation Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University, Institute of Physics, Energy and Semiconductor Research Laboratory, Energy Meteorology Group 26111 Oldenburg,

More information

User Perspectives on Project Feasibility Data

User Perspectives on Project Feasibility Data User Perspectives on Project Feasibility Data Marcel Šúri Tomáš Cebecauer GeoModel Solar s.r.o., Bratislava, Slovakia marcel.suri@geomodel.eu http://geomodelsolar.eu http://solargis.info Solar Resources

More information

The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation

The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation Energies 2015, 8, 9594-9619; doi:10.3390/en8099594 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term

More information

SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations

SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?

More information

Solar and PV forecasting in Canada

Solar and PV forecasting in Canada Solar and PV forecasting in Canada Sophie Pelland, CanmetENERGY IESO Wind Power Standing Committee meeting Toronto, September 23, 2010 Presentation Plan Introduction How are PV forecasts generated? Solar

More information

Vaisala 3TIER Services Global Solar Dataset / Methodology and Validation

Vaisala 3TIER Services Global Solar Dataset / Methodology and Validation ENERGY Vaisala 3TIER Services Global Solar Dataset / Methodology and Validation Global Horizontal Irradiance 70 Introduction Solar energy production is directly correlated to the amount of radiation received

More information

Predicting Solar Generation from Weather Forecasts Using Machine Learning

Predicting Solar Generation from Weather Forecasts Using Machine Learning Predicting Solar Generation from Weather Forecasts Using Machine Learning Navin Sharma, Pranshu Sharma, David Irwin, and Prashant Shenoy Department of Computer Science University of Massachusetts Amherst

More information

UNIVERSITY OF CALGARY. Forecasting Photo-Voltaic Solar Power in Electricity Systems. Yue Zhang A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

UNIVERSITY OF CALGARY. Forecasting Photo-Voltaic Solar Power in Electricity Systems. Yue Zhang A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES UNIVERSITY OF CALGARY Forecasting Photo-Voltaic Solar Power in Electricity Systems by Yue Zhang A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

More information

EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS

EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS Author Marie Schnitzer Director of Solar Services Published for AWS Truewind October 2009 Republished for AWS Truepower: AWS Truepower, LLC

More information

Comprehensive Forecasting System for Variable Renewable Energy

Comprehensive Forecasting System for Variable Renewable Energy Branko Kosović Sue Ellen Haupt, Gerry Wiener, Luca Delle Monache, Yubao Liu, Marcia Politovich, Jenny Sun, John Williams*, Daniel Adriaansen, Stefano Alessandrini, Susan Dettling, and Seth Linden (NCAR,

More information

IBM Big Green Innovations Environmental R&D and Services

IBM Big Green Innovations Environmental R&D and Services IBM Big Green Innovations Environmental R&D and Services Smart Weather Modelling Local Area Precision Forecasting for Weather-Sensitive Business Operations (e.g. Smart Grids) Lloyd A. Treinish Project

More information

NC STATE UNIVERSITY Exploratory Analysis of Massive Data for Distribution Fault Diagnosis in Smart Grids

NC STATE UNIVERSITY Exploratory Analysis of Massive Data for Distribution Fault Diagnosis in Smart Grids Exploratory Analysis of Massive Data for Distribution Fault Diagnosis in Smart Grids Yixin Cai, Mo-Yuen Chow Electrical and Computer Engineering, North Carolina State University July 2009 Outline Introduction

More information

INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr.

INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. Meisenbach M. Hable G. Winkler P. Meier Technology, Laboratory

More information

CALIFORNIA RENEWABLE ENERGY FORECASTING, RESOURCE DATA, AND MAPPING

CALIFORNIA RENEWABLE ENERGY FORECASTING, RESOURCE DATA, AND MAPPING Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT CALIFORNIA RENEWABLE ENERGY FORECASTING, RESOURCE DATA, AND MAPPING Prepared for: Prepared by: California Energy Commission Regents of

More information

Use of Artificial Neural Network in Data Mining For Weather Forecasting

Use of Artificial Neural Network in Data Mining For Weather Forecasting Use of Artificial Neural Network in Data Mining For Weather Forecasting Gaurav J. Sawale #, Dr. Sunil R. Gupta * # Department Computer Science & Engineering, P.R.M.I.T& R, Badnera. 1 gaurav.sawale@yahoo.co.in

More information

2012. American Solar Energy Society Proc. ASES Annual Conference, Raleigh, NC.

2012. American Solar Energy Society Proc. ASES Annual Conference, Raleigh, NC. 2012. American Solar Energy Society Proc. ASES Annual Conference, Raleigh, NC. PREDICTING SHORT-TERM VARIABILITY OF HIGH-PENETRATION PV Thomas E. Hoff Clean Power Research Napa, CA 94558 tomhoff@cleanpower.com

More information

Data Analytic-Based Adaptive Solar Energy Forecasting Framework 1

Data Analytic-Based Adaptive Solar Energy Forecasting Framework 1 > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Data Analytic-Based Adaptive Solar Energy Forecasting Framework 1 Y. S. Manjili 2, Student Member, IEEE, R. E.

More information

Smart control and Big Data in PV

Smart control and Big Data in PV Copernicus Institute of Sustainable Development Smart control and Big Data in PV Wilfried van Sark Sunday 2015 18 November 2015 1/36 Contents Big data PV developments Example projects with Big Data Advanced

More information

Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D

Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications

More information

AUTOMATION OF ENERGY DEMAND FORECASTING. Sanzad Siddique, B.S.

AUTOMATION OF ENERGY DEMAND FORECASTING. Sanzad Siddique, B.S. AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree

More information

Public Service Co. of New Mexico (PNM) - Smoothing and Peak Shifting. DOE Peer Review Steve Willard, P.E. September 26, 2012

Public Service Co. of New Mexico (PNM) - Smoothing and Peak Shifting. DOE Peer Review Steve Willard, P.E. September 26, 2012 Public Service Co. of New Mexico (PNM) - PV Plus Storage for Simultaneous Voltage Smoothing and Peak Shifting DOE Peer Review Steve Willard, P.E. September 26, 2012 Project Goals Develop an even more Beneficial

More information

Improving Accuracy of Solar Forecasting February 14, 2013

Improving Accuracy of Solar Forecasting February 14, 2013 Improving Accuracy of Solar Forecasting February 14, 2013 Solar Resource Forecasting Objectives: Improve accuracy of solar resource forecasts Enable widespread use of solar forecasts in power system operations

More information

A Novel Method for Predicting the Power Output of Distributed Renewable Energy Resources

A Novel Method for Predicting the Power Output of Distributed Renewable Energy Resources A Novel Method for Predicting the Power Output of Distributed Renewable Energy Resources Aris-Athanasios Panagopoulos1 Joint work with Georgios Chalkiadakis2 and Eftichios Koutroulis2 ( Predicting the

More information

P1.70 NIGHTTIME RETRIEVAL OF CLOUD MICROPHYSICAL PROPERTIES FOR GOES-R

P1.70 NIGHTTIME RETRIEVAL OF CLOUD MICROPHYSICAL PROPERTIES FOR GOES-R P1.70 NIGHTTIME RETRIEVAL OF CLOUD MICROPHYSICAL PROPERTIES FOR GOES-R Patrick W. Heck * Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison Madison, Wisconsin P.

More information

Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract

Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating

More information

SOLAR IRRADIATION FORECASTING: STATE-OF-THE-ART AND PROPOSITION FOR FUTURE DEVELOPMENTS FOR SMALL-SCALE INSULAR GRIDS

SOLAR IRRADIATION FORECASTING: STATE-OF-THE-ART AND PROPOSITION FOR FUTURE DEVELOPMENTS FOR SMALL-SCALE INSULAR GRIDS SOLAR IRRADIATION FORECASTING: STATE-OF-THE-ART AND PROPOSITION FOR FUTURE DEVELOPMENTS FOR SMALL-SCALE INSULAR GRIDS Hadja Maïmouna Diagne 1,2 1 Réuniwatt, 14, rue de la Guadeloupe 97490 Sainte-Clotilde

More information

IRS Level 2 Processing Concept Status

IRS Level 2 Processing Concept Status IRS Level 2 Processing Concept Status Stephen Tjemkes, Jochen Grandell and Xavier Calbet 6th MTG Mission Team Meeting 17 18 June 2008, Estec, Noordwijk Page 1 Content Introduction Level 2 Processing Concept

More information

Assessment report for global and direct irradiance forecasts

Assessment report for global and direct irradiance forecasts MACC-II Deliverable D_123.1 Assessment report for global and direct irradiance forecasts Date: 12/2013 Lead Beneficiary: DLR (#11) Nature: R Dissemination level: PP Grant agreement n 283576 Work-package

More information

STEADYSUN THEnergy white paper. Energy Generation Forecasting in Solar-Diesel-Hybrid Applications

STEADYSUN THEnergy white paper. Energy Generation Forecasting in Solar-Diesel-Hybrid Applications STEADYSUN THEnergy white paper Energy Generation Forecasting in Solar-Diesel-Hybrid Applications April 2016 Content 1 Introduction... 3 2 Weather forecasting for solar-diesel hybrid systems... 4 2.1 The

More information

The Wind Integration National Dataset (WIND) toolkit

The Wind Integration National Dataset (WIND) toolkit The Wind Integration National Dataset (WIND) toolkit EWEA Wind Power Forecasting Workshop, Rotterdam December 3, 2013 Caroline Draxl NREL/PR-5000-60977 NREL is a national laboratory of the U.S. Department

More information

SOLAR RADIATION FORECAST USING NEURAL NETWORKS FOR THE PREDICTION OF GRID CONNECTED PV PLANTS ENERGY PRODUCTION (DSP PROJECT)

SOLAR RADIATION FORECAST USING NEURAL NETWORKS FOR THE PREDICTION OF GRID CONNECTED PV PLANTS ENERGY PRODUCTION (DSP PROJECT) SOLAR RADIATION FORECAST USING NEURAL NETWORKS FOR THE PREDICTION OF GRID CONNECTED PV PLANTS ENERGY PRODUCTION (DSP PROJECT) C. Cornaro* #, F. Bucci*, M. Pierro*, F. Del Frate, S. Peronaci, A. Taravat

More information

Empirical study of the temporal variation of a tropical surface temperature on hourly time integration

Empirical study of the temporal variation of a tropical surface temperature on hourly time integration Global Advanced Research Journal of Physical and Applied Sciences Vol. 4 (1) pp. 051-056, September, 2015 Available online http://www.garj.org/garjpas/index.htm Copyright 2015 Global Advanced Research

More information

VALIDATION OF THE SUNY SATELLITE MODEL IN A METEOSAT ENVIRONMENT

VALIDATION OF THE SUNY SATELLITE MODEL IN A METEOSAT ENVIRONMENT VALIDATION OF THE SUNY SATELLITE MODEL IN A METEOSAT ENVIRONMENT Richard Perez ASRC, 251 Fuller Rd Albany, NY, 12203 Perez@asrc.cestm.albany,edu Jim Schlemmer ASRC Jim@asrc.cestm.albany,edu Shannon Cowlin

More information

Predicting daily incoming solar energy from weather data

Predicting daily incoming solar energy from weather data Predicting daily incoming solar energy from weather data ROMAIN JUBAN, PATRICK QUACH Stanford University - CS229 Machine Learning December 12, 2013 Being able to accurately predict the solar power hitting

More information

IEA SHC TASK 46 SOLAR RESOURCE ASSESSMENT AND FORECASTING

IEA SHC TASK 46 SOLAR RESOURCE ASSESSMENT AND FORECASTING Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK Bundesamt für Energie BFE IEA SHC TASK 46 SOLAR RESOURCE ASSESSMENT AND FORECASTING Annual Report 2012 Author and Co-Authors

More information

Report field campaign spring 2008 climatology team

Report field campaign spring 2008 climatology team Report field campaign spring 2008 climatology team (May 12 th June 1 st 2008) Participants on the spring 2008 field campaign: Roman Finkelnburg, TU Berlin Marco Möller, RWTH Aachen University Dieter Scherer,

More information

Forecasting Solar Power Generated by Grid Connected PV Systems Using Ensembles of Neural Networks

Forecasting Solar Power Generated by Grid Connected PV Systems Using Ensembles of Neural Networks Forecasting Solar Power Generated by Grid Connected PV Systems Using Ensembles of Neural Networks Mashud Rana Australian Energy Research Institute University of New South Wales NSW, Australia md.rana@unsw.edu.au

More information

COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU

COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU Image Processing Group, Landcare Research New Zealand P.O. Box 38491, Wellington

More information

How can I forecast tomorrow s weather?

How can I forecast tomorrow s weather? How can I forecast tomorrow s weather? A laboratory experiment from the Little Shop of Physics at Colorado State University CMMAP Reach for the sky. Overview While there are considerable difficulties in

More information

Geographic smoothing of solar PV: Results from Gujarat. AMS 2016 Kelly Klima, Jay Apt

Geographic smoothing of solar PV: Results from Gujarat. AMS 2016 Kelly Klima, Jay Apt Geographic smoothing of solar PV: Results from Gujarat AMS 2016 Kelly Klima, Jay Apt 1 Many forms of renewable energy exist. Some are variable, requiring smoothing. Wind Solar Biomass Geothermal Wave Hydropower

More information

The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates

The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington

More information

Influence of Solar Radiation Models in the Calibration of Building Simulation Models

Influence of Solar Radiation Models in the Calibration of Building Simulation Models Influence of Solar Radiation Models in the Calibration of Building Simulation Models J.K. Copper, A.B. Sproul 1 1 School of Photovoltaics and Renewable Energy Engineering, University of New South Wales,

More information

California Renewable Energy Forecasting, Resource Data and Mapping

California Renewable Energy Forecasting, Resource Data and Mapping Final Report California Renewable Energy Forecasting, Resource Data and Mapping Appendix A CURRENT STATE OF THE ART IN SOLAR FORECASTING Regents of the University of California Basic Ordering Agreement

More information

Rain prediction from meteoradar images

Rain prediction from meteoradar images 2015 http://excel.fit.vutbr.cz Rain prediction from meteoradar images Michael Vlček t + 1 t + 2... t - 2 t - 1 t t - 3... input layer hidden layers output layer Abstract This paper presents a software

More information

Predicting the Solar Resource and Power Load

Predicting the Solar Resource and Power Load 1 Predicting the Solar Resource and Power Load David Sehloff, Celso Torres Supervisor: Alex Cassidy, Dr. Arye Nehorai Department of Electrical and Systems Engineering Washington University in St. Louis

More information

SOLAR IRRADIANCE FORECASTING BASED ON LONG-WAVE ATMOSPHERIC RADIATION

SOLAR IRRADIANCE FORECASTING BASED ON LONG-WAVE ATMOSPHERIC RADIATION Technical Sciences 18(1), 2015, 27 36 SOLAR IRRADIANCE FORECASTING BASED ON LONG-WAVE ATMOSPHERIC RADIATION Michał Piątek, Jędrzej Trajer, Dariusz Czekalski Faculty of Production Engineering SGGW in Warsaw

More information

Modeling of System of Systems via Data Analytics Case for Big Data in SoS 1

Modeling of System of Systems via Data Analytics Case for Big Data in SoS 1 Modeling of System of Systems via Data Analytics Case for Big Data in SoS 1 Barnabas K. Tannahill Aerospace Electronics and Information Technology Division Southwest Research Institute San Antonio, TX,

More information

Short-term Machine-learning-based Forecasting of Distributed Solar Energy Production

Short-term Machine-learning-based Forecasting of Distributed Solar Energy Production Short-term Machine-learning-based Forecasting of Distributed Solar Energy Production Dr Stephen Gould Fellow, Research School of Computer Science Australian National University (ANU) and Senior Researcher,

More information

Short-term solar energy forecasting for network stability

Short-term solar energy forecasting for network stability Short-term solar energy forecasting for network stability Dependable Systems and Software Saarland University Germany What is this talk about? Photovoltaic energy production is an important part of the

More information

Use of numerical weather forecast predictions in soil moisture modelling

Use of numerical weather forecast predictions in soil moisture modelling Use of numerical weather forecast predictions in soil moisture modelling Ari Venäläinen Finnish Meteorological Institute Meteorological research ari.venalainen@fmi.fi OBJECTIVE The weather forecast models

More information

Solar Energy Resource. Samuel Luna de Abreu Fernando Ramos Martins

Solar Energy Resource. Samuel Luna de Abreu Fernando Ramos Martins Solar Energy Resource Assessment in Brazil Samuel Luna de Abreu Fernando Ramos Martins Summary Solar Radiation Mapping of Brazil brief review measurements - available and future ground data first mapping

More information

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,

More information

Synoptic assessment of AMV errors

Synoptic assessment of AMV errors NWP SAF Satellite Application Facility for Numerical Weather Prediction Visiting Scientist mission report Document NWPSAF-MO-VS-038 Version 1.0 4 June 2009 Synoptic assessment of AMV errors Renato Galante

More information

Advancing Satellite-based Solar Power Forecasting through Integration of Infrared Channels for Automatic Detection of Coastal Marine Inversion Layer

Advancing Satellite-based Solar Power Forecasting through Integration of Infrared Channels for Automatic Detection of Coastal Marine Inversion Layer Advancing Satellite-based Solar Power Forecasting through Integration of Infrared Channels for Automatic Detection of Coastal Marine Inversion Layer 2 nd International Workshop on Integration of Solar

More information

Solar Radiation Measurement. Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011

Solar Radiation Measurement. Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011 Solar Radiation Measurement Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011 Why Do We Need Data on Solar Energy? Global Climate System Climate Energy Balance Solar Exposure and Irradiance

More information

Meteorological and weather forecast data-based prediction of electrical power delivery of a photovoltaic panel in a stochastic framework

Meteorological and weather forecast data-based prediction of electrical power delivery of a photovoltaic panel in a stochastic framework Meteorological and weather forecast data-based prediction of electrical power delivery of a photovoltaic panel in a stochastic framework Mario Vašak, Marko Gulin, Josip Čeović, Dražen Nikolić, Tomislav

More information

Big Data Analytic Paradigms -From PCA to Deep Learning

Big Data Analytic Paradigms -From PCA to Deep Learning The Intersection of Robust Intelligence and Trust in Autonomous Systems: Papers from the AAAI Spring Symposium Big Data Analytic Paradigms -From PCA to Deep Learning Barnabas K. Tannahill Aerospace Electronics

More information

Digital image processing

Digital image processing 746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common

More information

The Centre for Australian Weather and Climate Research. A partnership between CSIRO and the Bureau of Meteorology

The Centre for Australian Weather and Climate Research. A partnership between CSIRO and the Bureau of Meteorology The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Testing and diagnosing the ability of the Bureau of Meteorology s Numerical Weather Prediction

More information

Best practices for RGB compositing of multi-spectral imagery

Best practices for RGB compositing of multi-spectral imagery Best practices for RGB compositing of multi-spectral imagery User Service Division, EUMETSAT Introduction Until recently imagers on geostationary satellites were limited to 2-3 spectral channels, i.e.

More information

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR INSTRUMENT AND METHODS OF OBSERVATION OPAG-UPPER AIR EXPERT TEAM ON REMOTE SENSING UPPER-AIR TECHNOLOGY AND TECHNIQUES First Session Geneva, Switzerland,

More information

RPG MWR PRO TN03 2012 09 Page 1 / 12 www.radiometer physics.de Radiometer Physics GmbH +49 2225 99981 0

RPG MWR PRO TN03 2012 09 Page 1 / 12 www.radiometer physics.de Radiometer Physics GmbH +49 2225 99981 0 Applications Tropospheric profiling of temperature, humidity and liquid water High resolution boundary layer temperature profiles, better resolution than balloons Input for weather and climate models (data

More information