How To Compare 3 Year Changes In Corneal Thickness After Photorefractive Keratectomy Or Laser In Situ Keratomileusis

Size: px
Start display at page:

Download "How To Compare 3 Year Changes In Corneal Thickness After Photorefractive Keratectomy Or Laser In Situ Keratomileusis"

Transcription

1 Three-Year Changes in Epithelial and Stromal Thickness after PRK or LASIK for High Myopia Anders Ivarsen, Walther Fledelius, and Jesper Ø. Hjortdal From the Department of Ophthalmology, Århus University Hospital, Århus, Denmark. Supported by the Danish Medical Research Council, Aarhus University Research Foundation, The Institute for Experimental Clinical Research at Århus University, and The Danish Eye Health Society. Submitted for publication September 10, 2008; revised November 6, 2008; accepted March 13, Disclosure: A. Ivarsen, None; W. Fledelius, None; J.Ø. Hjortdal, None The publication costs of this article were defrayed in part by page charge payment. This article must therefore be marked advertisement in accordance with 18 U.S.C solely to indicate this fact. Corresponding author: Anders Ivarsen, Department of Ophthalmology, Århus University Hospital, DK-8000 Århus C, Denmark; PURPOSE. To compare 3-year changes in corneal sublayer thickness after photorefractive keratectomy (PRK) or laser in situ keratomileusis (LASIK). METHODS. Forty-six patients with spheroequivalent refraction of 6.0 to 8.0 diopters (D) were randomly assigned to PRK or LASIK. One eye from each patient was included in the study. Examinations included manifest refraction and confocal microscopy through focusing (CMTF) and were performed preoperatively and postoperatively at 1 week and at 1, 3, 6, 12, and 36 months. From CMTF scans, the thicknesses of the central cornea (CT), epithelium (ET), stroma (ST), LASIK flap (FT), and residual stromal bed (BT) were calculated. RESULTS. After LASIK, spheroequivalent refraction averaged 0.76 D by 1 week and 1.19 D by 1 month, with no subsequent significant change. ET increased m within 1 week and remained constant thereafter. ST increased m within 1 year because of increased BT. One week after PRK, refraction averaged 0.23 D and stabilized at 1.42 D by 6 months. By 1 week, ET was reduced by m, reached preoperative thickness by 6 months, and increased further m by 3 years. ST increased m during 1 year, correlating with the postoperative refractive regression. After both procedures, changes in CT also correlated with refractive changes. No other correlations were identified. CONCLUSIONS. PRK and LASIK induce a persistent increase in ET that stabilizes 1 week after LASIK and 1 year after PRK. Stromal regrowth is most pronounced after PRK. After LASIK, regrowth is restricted to the residual stromal bed. Postoperative refractive changes correlate with changes in ST (PRK) and CT (PRK and LASIK) but not with changes in ET. (Invest Ophthalmol Vis Sci. 2009;50: ) DOI: /iovs Laser in situ keratomileusis (LASIK) and photorefractive keratectomy (PRK) remain popular surgical procedures for the correction of myopia. Several studies have demonstrated loss of the initial refractive effect after surgery, 1 5 and corneal wound repair is believed to be a contributing factor in the development of this postoperative refractive regression. 6,7 PRK has been reported to induce more pronounced wound healing than LASIK and has a higher tendency for change in refraction and development of corneal haze. 4,5 A gradual increase in corneal thickness after PRK has been shown in several studies, 8 10 and changes in stromal thickness have been suggested to be responsible for the postoperative refractive instability. 6 Changes in epithelial thickness, however, have also been implicated as a potential cause for myopic regression after PRK. 11,12 In contrast to PRK, changes in the sublayer thickness after LASIK are more unclear, though several reports have shown a persistent increase in epithelial thickness. 8,13,14 In the present study, patients with high myopia were randomly assigned to PRK or LASIK and followed for 3 years with in vivo confocal microscopy to evaluate and compare long-term changes in corneal sublayer thickness. MATERIALS AND METHODS Patients Forty-six patients with spherical equivalent refraction from 6.0 to 8.0 diopters (D) were randomly assigned to PRK or LASIK. All patients had stable myopia for at least 2 years, astigmatism less than 1.5 D, and monocular best spectacle-corrected visual acuity (BSCVA) of at least 0.10 (logmar units). Patients who were pregnant or who had systemic disease or a history of previous ocular disease or surgery were excluded from the study. The study protocol adhered to the Declaration of Helsinki and was approved by the ethics committee of Århus, Denmark. Informed written consent was obtained from all patients. Randomization to PRK or LASIK was performed with random numbers, and only one eye from each patient was included in the study. Twenty-five subjects were randomly assigned to LASIK and 21 to PRK. Retreatment was not allowed within the first year after surgery. Surgery All surgical procedures were performed under topical anesthesia with oxybuprocaine 0.8% (3 drops administered at 5-minute intervals). Two drops of pilocarpine 2% were applied before surgery to facilitate centration of the suction ring. All operations were performed by the same surgeon. In PRK, the epithelium was gently removed in a central 8-mm zone after application of 96% alcohol for 1 to 2 seconds. Excimer laser treatment was performed, and one drop of cyclopentholate 1%, one drop of diclofenac 0.1%, and chloramphenicol ointment were administered. Postoperative treatment consisted of chloramphenicol eye drops (0.5%) three times a day for 1 week and prednisolone eye drops (0.5%) three times a day, gradually tapered over 3 months. In LASIK procedures, a superiorly hinged 9-mm corneal flap was cut with a microkeratome (Supratome; Schwind, Kleinostheim, Germany) with a 130- m cutting head. Laser treatment was performed, and the flap was carefully repositioned. A bandage contact lens (Focus Night and Day; Bausch & Lomb, Rochester, NY) was inserted, and cyclopentholate, diclofenac, and chloramphenicol eye drops (one drop each) were administered. The bandage contact lens was removed 1 day after surgery, and chloramphenicol eye drops were prescribed three times a day for 1 week. Excimer laser photoablation was performed with a flying spot excimer laser (MEL-70 G-scan; Meditec-Aesclepion, Jena, Germany). All treatments were performed in a 6-mm optical zone, and identical nomograms were used for PRK and LASIK surgery. Astigmatism of less Investigative Ophthalmology & Visual Science, May 2009, Vol. 50, No. 5 Copyright Association for Research in Vision and Ophthalmology 2061

2 2062 Ivarsen et al. IOVS, May 2009, Vol. 50, No. 5 than 0.75 D was not specifically treated but was included as part of the spherical correction. Astigmatism from 1.0 to 1.5 D was treated with an attempted astigmatic correction of 1.0 D. Examinations All subjects were examined before surgery and at 1 week and 1, 3, 6, 12, and 36 months after surgery. Examinations included determination of best spectacle refraction and in vivo confocal microscopy. A tandem scanning confocal microscope (Tandem Scanning Corporation, Reston, VA) was used to perform confocal microscopy through focusing (CMTF) for corneal sublayer pachymetry, as previously reported. 15,16 CMTF is a highly precise technique for measurement of corneal sublayer thickness and has an SD of only 2.8 m for stromal thickness measurements in sedated animals. 16 In human subjects, however, precision may be degraded by movement, as previously suggested by McLaren et al. 17 Repeated measurements facilitate the identification of movement-related artifacts. Thus, in the present study, 10 to 20 twoway scans (in and out through the entire cornea) were performed at the corneal apex, followed by careful review for signs of z-axis movement. Subsequent analysis of CMTF scans was performed with custommade software, 16 and thickness measurements were calibrated using polymethylmethacrylate contact lenses with well-defined thickness, as described in a previous study. 16 One patient randomly assigned to PRK was lost to follow-up after 1 month and was excluded from all analyses. During the first year, follow-up was nearly complete apart from follow-up on one LASIK eye at 3 months, three LASIK and two PRK eyes at 6 months, and one PRK eye at 12 months. After 1 year, reoperation was performed in four LASIK eyes and three PRK eyes because of residual myopia, and these patients were excluded from subsequent examinations. By 3 years, 15 LASIK and 14 PRK eyes were available for follow-up. CMTF Measurement Analysis CMTF scans were analyzed by identifying in-focus images of corneal structures (epithelium, subepithelial nerve plexus, most anterior keratocyte layer, LASIK interface, and endothelium). The z-axis positions of these images were then used to calculate corneal sublayer thickness (Fig. 1). Briefly, total corneal thickness was defined as the distance from the epithelial surface to the endothelium. Epithelial thickness was defined as the distance from the epithelial surface to the subepithelial nerve layer or, after PRK, to the intensity peak located at the photoablated stromal surface. Stromal thickness was defined as the difference between total corneal and epithelial thickness. In LASIK-treated corneas, total corneal thickness was further subdivided into flap and residual stromal bed thickness by the LASIK interface that was easily identified by the presence of brightly reflecting particles. 18 Only scans from the photoablation center, defined as the region of minimal stromal thickness, were used for subsequent analyses. Statistical Analysis Corneal thickness measurements before surgery and at 1 week, 1 year, and 3 years were compared using two-tailed paired t-tests with adjustment for multiple comparisons using the Bonferroni technique. Normal distribution was confirmed with the D Agostino- Pearson test. Spherical equivalent refraction at 1 year and 3 years was compared with refraction at 1 week with two-tailed paired t-tests. Changes in refraction from 1 week to 1 or 3 years were correlated to changes in corneal total and sublayer thickness with Pearson correlation coefficient. In all analyses, P 0.05 was considered statistically significant. RESULTS Patients randomly assigned to PRK or LASIK were comparable with respect to all preoperative parameters, including age, best spectacle-corrected visual acuity, spheroequivalent refraction, FIGURE 1. CMTF light intensity profile 3 months after LASIK. Peaks correlate closely with well-defined morphologic features, facilitating the determination of corneal sublayer thickness. keratometry, intraocular pressure, and stromal and epithelial thickness. Preoperative data are summarized in Table 1. Laser In Situ Keratomileusis One week after LASIK, spherical equivalent refraction averaged D. By 1 month, refraction had dropped to D; no further significant change occurred during the first year (Fig. 2). Still, a gradual but insignificant loss of refractive effect was noted from 1 year to 3 years, with refraction averaging D. During the first week, LASIK caused an increase in epithelial thickness of m from the preoperative value of m (paired t-test, P 0.001). At all subsequent time points, epithelial thickness remained increased, with no significant change from 1 week (Fig. 3; Table 2). One week after excimer laser treatment, stromal thickness was reduced to m, which was similar to and correlated with the planned photoablation depth of m (P 0.01; r 0.48, Pearson correlation). Stromal thickness then increased by m, from m at 1 week to m at 1 year after surgery (P 0.001; paired t-test). No significant change occurred between 1 year and 3 years (Fig. 4; Table 2). Flap thickness averaged m 1 week after surgery, with no significant change during the 3-year follow-up (Fig. 5). In contrast, the thickness of the residual stromal bed gradually increased from m by 1 week to m by 3 years (P 0.002; paired t-test; Fig. 5). Changes in corneal sublayer thickness gave rise to an initial reduction in total corneal thickness from m before surgery to m by 1 week, followed by a gradual increase to m by 3 years (P 0.001; paired t-test; Fig. 6). The increase in total corneal thickness from 1 week to 3 years was weakly correlated to the observed change in spheroequivalent refraction (P 0.04; r 0.54, Pearson correlation). No other correlations were identified between change in refraction and changes in corneal sublayer thickness at any time point.

3 IOVS, May 2009, Vol. 50, No. 5 Long-term Changes in Corneal Sublayer Thickness after PRK or LASIK 2063 TABLE 1. Preoperative Characteristics of Patients PRK (n 20) LASIK (n 25) Age (years) 33 8 (range, 23 to 49) 30 7 (range, 21 to 46) BSCVA (logmar units) (range, 0.10 to 0.05) (range, 0.10 to 0.05) Spheroequivalent refraction (D) Keratometry K1 (mm) Keratometry K2 (mm) IOP (mm Hg) Stromal thickness ( m) Epithelial thickness ( m) Photorefractive Keratectomy Spherical equivalent refraction averaged D 1 week after PRK. By 1 year, the average refraction was D, demonstrating a significant loss of refractive effect during the first 12 months (P 0.001, paired t-test; Fig. 2). From 1 year to 3 years, no change in postoperative refraction occurred. In one eye, an initial overcorrection of 2.5 D was observed that was followed by the development of haze and marked regression of the refractive effect. One week after PRK, epithelial thickness averaged m, which was m less than the preoperative value. Epithelial thickness then gradually increased to m by 1 year and m by 3 years (P 0.001; paired t-test), giving a net increase of m over the preoperative thickness (P 0.001; paired t-test; Fig. 3). Thus, changes in epithelial thickness after PRK were more gradual than after LASIK (Table 2). From 1 year to 3 years after surgery, no significant differences were observed between PRK and LASIK. Excimer laser treatment caused a reduction in stromal thickness of m 1 week after PRK, which correlated with the expected photoablation depth of m (P 0.002; r 0.66, Pearson correlation). Stromal thickness then increased by m (P 0.001, paired t-test) from m at 1 week to m at 1 year after PRK. No significant changes were observed from 1 year to 3 years after surgery (Fig. 4). The initial reduction in stromal thickness by 1 week was significantly greater after PRK than after LASIK (Table 2), even though the expected photoablation depth was similar. Subsequent stromal regrowth from 1 week to 1 year after surgery was also significantly greater after PRK than after LASIK (Table 2), but from 1 year to 3 years the change in stromal thickness was similar after both surgical modalities. Total corneal thickness was reduced from m before PRK to m 1 week after excimer laser treatment (Fig. 6). Corneal thickness then gradually increased to m by 1 year (P 0.001; paired t-test), with no significant changes from 1 year to 3 years. The initial reduction and subsequent increase in total corneal thickness was significantly greater after PRK than after LASIK (Table 2). However, changes in total corneal thickness from 1 year to 3 years after surgery were not significantly different between the two procedures. Changes in refraction from 1 week to 1 year after PRK correlated with the increase in total corneal (P 0.002; r 0.68, Pearson correlation; Fig. 7) and stromal thickness (P 0.001; r 0.73, Pearson correlation), indicating that refractive changes were caused, at least in part, by changes in corneal thickness. No other correlations between corneal sublayer thickness and refractive change were identified after PRK. DISCUSSION In the present study, PRK and LASIK both induced increases in epithelial thickness of approximately 15% to 20% that persisted after surgery. In LASIK, the epithelial changes occurred within 1 week and remained unchanged through 3 years (Fig. 3, Table 2). In PRK, per-operative epithelial debridement caused an initial decrease in epithelial thickness, followed by a gradual epithelial thickening over the next 12 months. Thus, PRK and LASIK induced different initial epithelial responses to surgery, though the end point thickness was similar for the two surgical FIGURE 2. Change in average spherical equivalent refraction after PRK or LASIK. FIGURE 3. Change in epithelial thickness after PRK or LASIK.

4 2064 Ivarsen et al. IOVS, May 2009, Vol. 50, No. 5 TABLE 2. Change in Total Corneal, Epithelial, and Stromal Thickness after LASIK or PRK Before to 1 Week 1 Week to 1 Year 1 Year to 3 Years Epithelial thickness ( m) LASIK * * PRK Stromal thickness ( m) LASIK * * PRK Total corneal thickness ( m) LASIK * * PRK * Significant (P 0.05) difference between the two surgical modalities. modalities. In one previous study with CMTF, no changes in epithelial thickness were found 1 year after PRK 6 ; still, other studies have reported an increase in epithelial thickness after PRK 8,11,12 and LASIK. 8,13,14,19 Case reports have demonstrated epithelial hyperplasia with an increased number of cell layers after PRK, 11 whereas the nature of the epithelial changes after LASIK are less clear. It has been suggested that epithelial hyperplasia after refractive surgery may contribute to the loss of the postoperative refractive effect. 11,12,20,21 In the present study, there was no correlation between change in epithelial thickness and change in refraction after PRK or LASIK. This lack of correlation may be attributed to the relatively few patients in each treatment group. After LASIK, however, epithelial thickness had already stabilized by 1 week, whereas the major refractive change was noted between 1 week and 1 month after surgery. This suggested that epithelial changes were not the main cause for refractive instability after LASIK. With respect to PRK, the time course of changes in epithelial thickness and refraction was similar, but, as noted, no correlation between the two parameters could be identified. PRK and LASIK both induced stromal regrowth during the first year after surgery (Fig. 4); however, wound repair after PRK gave rise to significantly more stromal tissue deposition than did LASIK (Table 2), and the increase in stromal thickness correlated with the postoperative loss of refractive effect (Fig. 7). PRK has previously been reported to induce a more aggressive wound-healing response than LASIK and to entail more myopic regression and more haze development. 4,5 Studies have also demonstrated significant amounts of stromal tissue deposition after PRK. 6,8 In contrast, stromal changes after LASIK remain controversial, with one study indicating a minor (insignificant) increase over time, 19 one reporting stability, 8 and one even indicating a decrease in total corneal and stromal thickness. 13 However, the present randomized study is the first to allow a direct comparison of corneal sublayer thickness between LASIK and PRK in human eyes and shows that LASIK causes less stromal tissue deposition than PRK for identical myopic corrections, supporting well-established clinical observations of differences in wound repair (haze development and myopic regression). 4,5,22 Mechanisms leading to more aggressive wound repair after PRK remain unclear. However, in previous studies of rabbit eyes, we demonstrated that the integrity of the epithelial-stromal barrier at the basement membrane level appeared to be of major importance for the gravity of the subsequent stromal wound repair. 23,24 Cell culture studies have supported this observation, 25 as have clinical observations of other surgical approaches that destroy the epithelialstromal barrier. Those approaches include laser subepithelial keratomileusis (LASEK), in which the epithelial sheet is supposedly kept intact but in which haze and myopic regression also may be seen. 26 Interestingly, the stromal regrowth that was observed after LASIK in the present study was found to be localized entirely to the residual stromal bed, whereas flap thickness remained constant through the 3-year follow-up (Fig. 5). This contrasts with our previous observations in rabbit eyes in which LASIK caused stromal regrowth in both flap and residual stroma. 27 The present observation is important in patients who are considered for LASIK retreatment because the thickness of the residual stromal bed is a major safety parameter for the amount of refractive correction that can be applied. 28,29 In contrast to FIGURE 4. Change in stromal thickness after PRK or LASIK. FIGURE 5. Change in flap and residual stromal bed thickness after myopic LASIK.

5 IOVS, May 2009, Vol. 50, No. 5 Long-term Changes in Corneal Sublayer Thickness after PRK or LASIK 2065 FIGURE 6. Change in total corneal thickness after PRK or LASIK. FIGURE 7. Change in refraction from 1 week to 1 year after PRK or LASIK as a function of the increase in total corneal thickness. PRK, changes in stromal thickness after LASIK could not be correlated with changes in postoperative refraction, possibly because of the relatively few patients in both treatment groups. Still, it should be noted that determination of changes in central thickness alone does not allow comprehensive evaluation of the relationship between stromal tissue deposition and refraction. Both PRK and LASIK showed very good correlation between initial changes in stromal thickness and expected photoablation depth. More stromal tissue was removed by PRK than by LASIK (Table 2), even though the nomogram used for the excimer laser photoablation was identical for the two procedures. The reason for the observed difference in the photoablation depth remains unclear, but may be due to differences in stromal hydration at the time of surgery, 30 either because of a longer stromal exposure during epithelial debridement in PRK or because of local variation in stromal hydration with depth. 31 In accordance with the observed difference in the amount of ablated stromal tissue, spheroequivalent refraction by 1 week averaged 0.23 D for PRK and 0.76 D for LASIK. On average, 1 D refractive change required stromal ablation of approximately 12 m during LASIK and 13 m during PRK, in accordance with the expected value fora6mm ablation. 32 Interestingly, this observation suggested that the very large difference between PRK and LASIK in central epithelial thickness by 1 week (Fig. 3; Table 2) did not have any major impact on the refractive result. Once again, this indicates that evaluating thickness changes in only the center of the cornea may be insufficient to estimate postoperative refractive changes. 33 In conclusion, the present study of patients with myopia randomly assigned to PRK or LASIK firmly demonstrates that the two surgical procedures induce different changes in corneal sublayer thickness. Epithelial and stromal wound repair occurs after both PRK and LASIK, but the time course is longer and the amount of tissue deposition is greater after PRK. Still, after 1 year, corneas treated with PRK or LASIK appear to be stable and to have undergone no further significant changes in corneal sublayer thickness. Initial changes in stromal thickness (after PRK) and total corneal thickness (after PRK or LASIK) appear to contribute to postoperative refractive regression. In contrast, the increase in epithelial thickness seems to have no refractive impact. In the present study, all thickness measurements were obtained only in the center of the cornea. To better evaluate the relation between wound repair and postoperative refractive changes, topographic variations in corneal sublayer thickness over time should be determined. Unfortunately, this is not realistic with in vivo confocal microscopy, but it is hoped that future technical development will allow such investigations. References 1. Alio JL, Muftuoglu O, Ortiz D, et al. Ten-year follow-up of photorefractive keratectomy for myopia of more than 6 diopters. Am J Ophthalmol. 2008;145: Kato N, Toda I, Hori-Komai Y, Sakai C, Tsubota K. Five-year outcome of LASIK for myopia. Ophthalmology. 2008;115: , e Rajan MS, O Brart D, Jaycock P, Marshall J. Effects of ablation diameter on long-term refractive stability and corneal transparency after photorefractive keratectomy. Ophthalmology. 2006;113: Hersh PS, Brint SF, Maloney RK, et al. Photorefractive keratectomy versus laser in situ keratomileusis for moderate to high myopia: a randomized prospective study. Ophthalmology. 1998;105: El-Maghraby A, Salah T, Waring GO 3rd, Klyce S, Ibrahim O. Randomized bilateral comparison of excimer laser in situ keratomileusis and photorefractive keratectomy for 2.50 to 8.00 diopters of myopia. Ophthalmology. 1999;106: Møller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV. Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study. Ophthalmology. 2000;107: Netto MV, Mohan RR, Ambrosio R Jr, Hutcheon AE, Zieske JD, Wilson SE. Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea. 2005;24: Patel SV, Erie JC, McLaren JW, Bourne WM. Confocal microscopy changes in epithelial and stromal thickness up to 7 years after LASIK and photorefractive keratectomy for myopia. J Refract Surg. 2007;23: Chayet AS, Assil KK, Montes M, Espinosa-Lagana M, Castellanos A, Tsioulias G. Regression and its mechanisms after laser in situ keratomileusis in moderate and high myopia. Ophthalmology. 1998;105: Hjortdal JØ, Møller-Pedersen T, Ivarsen A, Ehlers N. Corneal power, thickness, and stiffness: results of a prospective randomized controlled trial of PRK and LASIK for myopia. J Cataract Refract Surg. 2005;31: Lohmann CP, Reischl U, Marshall J. Regression and epithelial hyperplasia after myopic photorefractive keratectomy in a human cornea. J Cataract Refract Surg. 1999;25: Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nystrom H. Role of epithelial hyperplasia in regression following photorefractive keratectomy. Br J Ophthalmol. 1996;80:

6 2066 Ivarsen et al. IOVS, May 2009, Vol. 50, No Moilanen JA, Holopainen JM, Vesaluoma MH, Tervo TM. Corneal recovery after LASIK for high myopia: a 2-year prospective confocal microscopic study. Br J Ophthalmol. 2008;92: Spadea L, Fasciani R, Necozione S, Balestrazzi E. Role of the corneal epithelium in refractive changes following laser in situ keratomileusis for high myopia. J Refract Surg. 2000;16: Li HF, Petroll WM, Moller-Pedersen T, Maurer JK, Cavanagh HD, Jester JV. Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF). Curr Eye Res. 1997;16: Ivarsen A, Stultiens BA, Møller-Pedersen T. Validation of confocal microscopy through focusing for corneal sublayer pachymetry. Cornea. 2002;21: McLaren JW, Nau CB, Eric JC, Bourne WM. Corneal thickness measurement by confocal microscopy, ultrasound, and scanning slit methods. Am J Ophthalmol. 2004;137: Ivarsen A, Thøgersen J, Keiding SR, Hjortdal JØ, Møller-Pedersen T. Plastic particles at the LASIK interface. Ophthalmology. 2004;111: Erie JC, Patel SV, McLaren JW, et al. Effect of myopic laser in situ keratomileusis on epithelial and stromal thickness: a confocal microscopy study. Ophthalmology. 2002;109: Dierick HG, Van Mellaert CE, Missotten L. Histology of rabbit corneas after 10-diopter photorefractive keratectomy for hyperopia. J Refract Surg. 1999;15: Dierick HG, Missotten L. Is the corneal contour influenced by a tension in the superficial epithelial cells? A new hypothesis. Refract Corneal Surg. 1992;8: Shortt AJ, Allan BD. Photorefractive keratectomy (PRK) versus laser-assisted in-situ keratomileusis (LASIK) for myopia. Cochrane Database Syst Rev. 2006;CD Ivarsen A, Laurberg T, Møller-Pedersen T. Characterisation of corneal fibrotic wound repair at the LASIK flap margin. Br J Ophthalmol. 2003;87: Ivarsen A, Laurberg T, Møller-Pedersen T. Role of keratocyte loss on corneal wound repair after LASIK. Invest Ophthalmol Vis Sci. 2004;45: Stramer BM, Zieske JD, Jung JC, Austin JS, Fini ME. Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Invest Ophthalmol Vis Sci. 2003;44: Hashemi H, Fotouhi A, Foudazi H, Sadeghi N, Payvar S. Prospective, randomized, paired comparison of laser epithelial keratomileusis and photorefractive keratectomy for myopia less than 6.50 diopters. J Refract Surg. 2004;20: Ivarsen A, Møller-Pedersen T. LASIK induces minimal regrowth and no haze development in rabbit corneas. Curr Eye Res. 2005; 30: Seiler T, Koufala K, Richter G. Iatrogenic keratectasia after laser in situ keratomileusis. J Refract Surg. 1998;14: Randleman JB, Woodward M, Lynn MJ, Stulting RD. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology. 2008;115: Kim WS, Jo JM. Corneal hydration affects ablation during laser in situ keratomileusis surgery. Cornea. 2001;20: Bauer NJ, Wicksted JP, Jongsma FH, March WF, Hendrikse F, Motamedi M. Noninvasive assessment of the hydration gradient across the cornea using confocal Raman spectroscopy. Invest Ophthalmol Vis Sci. 1998;39: Munnerlyn CR, Koons SJ, Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg. 1988;14: Reinstein DZ, Silverman RH, Raevsky T, et al. Arc-scanning very high-frequency digital ultrasound for 3D pachymetric mapping of the corneal epithelium and stroma in laser in situ keratomileusis. J Refract Surg. 2000;16:

For approximately two decades photorefractive keratectomy. Seven-Year Changes in Corneal Power and Aberrations after PRK or LASIK.

For approximately two decades photorefractive keratectomy. Seven-Year Changes in Corneal Power and Aberrations after PRK or LASIK. Cornea Seven-Year Changes in Corneal Power and Aberrations after PRK or LASIK Anders Ivarsen and Jesper Hjortdal PURPOSE. To examine long-term changes in corneal power and aberrations in myopic patients

More information

Retreatment by Lifting the Original Laser in Situ Keratomileusis Flap after Eleven Years

Retreatment by Lifting the Original Laser in Situ Keratomileusis Flap after Eleven Years Retreatment by Lifting the Original Laser in Situ Keratomileusis Flap after Eleven Years Hassan Hashemi, MD 1,2 Mehrdad Mohammadpour, MD 3 Abstract Purpose: To describe a case of successful laser in situ

More information

Changes in central corneal thickness and refractive error after thin-flap laser in situ keratomileusis in Chinese eyes

Changes in central corneal thickness and refractive error after thin-flap laser in situ keratomileusis in Chinese eyes Zhao et al. BMC Ophthalmology (2015) 15:86 DOI 10.1186/s12886-015-0083-2 RESEARCH ARTICLE Open Access Changes in central corneal thickness and refractive error after thin-flap laser in situ keratomileusis

More information

Factors Affecting Long-term Myopic Regression after Laser In Situ Keratomileusis and Laser-assisted Subepithelial Keratectomy for Moderate Myopia

Factors Affecting Long-term Myopic Regression after Laser In Situ Keratomileusis and Laser-assisted Subepithelial Keratectomy for Moderate Myopia pissn: 111-8942 eissn: 292-9382 Korean J Ophthalmol 216;3(2):92-1 http://dx.doi.org/1.3341/kjo.216.3.2.92 Original Article Factors Affecting Long-term Myopic Regression after Laser In Situ Keratomileusis

More information

Confocal Microscopy of Corneal Stroma and Endothelium After LASIK and PRK

Confocal Microscopy of Corneal Stroma and Endothelium After LASIK and PRK Confocal Microscopy of Corneal Stroma and Endothelium After LASIK and PRK Javad Amoozadeh, MD; Soheil Aliakbari, MD; Amir-Houshang Behesht-Nejad, MD; Mohammad-Amin Seyedian, MD; Bijan Rezvan, DDS; Hassan

More information

Photorefractive keratectomy (PRK) and laser in situ keratomileusis

Photorefractive keratectomy (PRK) and laser in situ keratomileusis Role of Keratocyte Loss on Corneal Wound Repair after LASIK Anders Ivarsen, Tinne Laurberg, and Torben Møller-Pedersen PURPOSE. To investigate whether an initial keratocyte loss intensifies central corneal

More information

Overview of Refractive Surgery

Overview of Refractive Surgery Overview of Refractive Surgery Michael N. Wiggins, MD Assistant Professor, College of Health Related Professions and College of Medicine, Department of Ophthalmology Jones Eye Institute University of Arkansas

More information

Case Reports Post-LASIK ectasia treated with intrastromal corneal ring segments and corneal crosslinking

Case Reports Post-LASIK ectasia treated with intrastromal corneal ring segments and corneal crosslinking Case Reports Post-LASIK ectasia treated with intrastromal corneal ring segments and corneal crosslinking Kay Lam, MD, Dan B. Rootman, MSc, Alejandro Lichtinger, and David S. Rootman, MD, FRCSC Author affiliations:

More information

Corneal Healing after Uncomplicated LASIK and Its Relationship to Refractive Changes: A Six-Month Prospective Confocal Study

Corneal Healing after Uncomplicated LASIK and Its Relationship to Refractive Changes: A Six-Month Prospective Confocal Study Corneal Healing after Uncomplicated LASIK and Its Relationship to Refractive Changes: A Six-Month Prospective Confocal Study Avni Murat Avunduk, Carl Joseph Senft, Sherif Emerah, Emily D. Varnell, and

More information

Laser in situ keratomileusis (LASIK) has been considered to

Laser in situ keratomileusis (LASIK) has been considered to Noncontact Measurements of Central Corneal Epithelial and Flap Thickness after Laser In Situ Keratomileusis Jianhua Wang, 1 Joseph Thomas, 2 Ian Cox, 3 and Andrew Rollins 4 From the 1 School of Optometry,

More information

Comparison of Residual Stromal Bed Thickness and Flap Thickness at LASIK and Post-LASIK Enhancement in Femtosecond Laser-Created Flaps

Comparison of Residual Stromal Bed Thickness and Flap Thickness at LASIK and Post-LASIK Enhancement in Femtosecond Laser-Created Flaps Comparison of Residual Stromal Bed Thickness and Flap Thickness at LASIK and Post-LASIK Enhancement in Femtosecond Laser-Created Flaps Lingo Y. Lai, MD William G. Zeh, MD Clark L. Springs, MD The authors

More information

The concept of a proactive intervention involving in situ

The concept of a proactive intervention involving in situ CLINICAL SCIENCE Epithelial Remodeling After Femtosecond Laser-assisted High Myopic LASIK: Comparison of Stand-alone With LASIK Combined With Prophylactic High-fluence Cross-linking Anastasios J. Kanellopoulos,

More information

Anterior Elevation Maps as the Screening Test for the Ablation Power of Previous Myopic Refractive Surgery

Anterior Elevation Maps as the Screening Test for the Ablation Power of Previous Myopic Refractive Surgery Anterior Elevation Maps as the Screening Test for the Ablation Power of Previous Myopic Refractive Surgery Soo Yong Jeong, MD, Hee-Seung Chin, MD, PhD, Jung Hyub Oh, MD, PhD Department of Ophthalmology,

More information

Comparison of the corneal response to laser in situ keratomileusis with flap creation using the FS15 and FS30 femtosecond lasers

Comparison of the corneal response to laser in situ keratomileusis with flap creation using the FS15 and FS30 femtosecond lasers ARTICLE Comparison of the corneal response to laser in situ keratomileusis with flap creation using the FS15 and FS30 femtosecond lasers Clinical and confocal microscopy findings Michael Y. Hu, James P.

More information

PHOTOREFRACTIVE KERATECTOMY (PRK) HAS BECOME

PHOTOREFRACTIVE KERATECTOMY (PRK) HAS BECOME Comparison of Corneal Nerve Regeneration and Sensitivity Between LASIK and Laser Epithelial Keratomileusis (LASEK) SEUNG JAE LEE, MD, JIN KUK KIM, MD, KYUNG YUL SEO, MD, EUNG KWEON KIM, MD, PHD, AND HYUNG

More information

FIRST EXPERIENCE WITH THE ZEISS FEMTOSECOND SYSTEM IN CONJUNC- TION WITH THE MEL 80 IN THE US

FIRST EXPERIENCE WITH THE ZEISS FEMTOSECOND SYSTEM IN CONJUNC- TION WITH THE MEL 80 IN THE US FIRST EXPERIENCE WITH THE ZEISS FEMTOSECOND SYSTEM IN CONJUNC- TION WITH THE MEL 80 IN THE US JON DISHLER, MD DENVER, COLORADO, USA INTRODUCTION AND STUDY OBJECTIVES This article summarizes the first US

More information

Conductive keratoplasty (CK) utilizes radiofrequency energy. Original Article

Conductive keratoplasty (CK) utilizes radiofrequency energy. Original Article Original Article Comparing the Rate of Regression after Conductive Keratoplasty with or without Prior Laser-Assisted in situ Keratomileusis or Photorefractive Keratectomy Majid Moshirfar, Erik Anderson

More information

Current excimer photoablations correct spherical myopic

Current excimer photoablations correct spherical myopic Analysis of Customized Corneal Ablations: Theoretical Limitations of Increasing Negative Asphericity Damien Gatinel, 1 Jacques Malet, 2 Thanh Hoang-Xuan, 1 and Dimitri T. Azar 1, From the 1 Ophthalmology

More information

LASIK SURGERY OUTCOMES, VOLUME AND RESOURCES

LASIK SURGERY OUTCOMES, VOLUME AND RESOURCES MOH Information Paper: 2006/17 LASIK SURGERY OUTCOMES, VOLUME AND RESOURCES By Dr. Ganga Ganesan 1 I INTRODUCTION LASIK stands for Laser-Assisted In Situ Keratomileusis and is a surgical procedure that

More information

TABLE OF CONTENTS: LASER EYE SURGERY CONSENT FORM

TABLE OF CONTENTS: LASER EYE SURGERY CONSENT FORM 1 BoydVision TABLE OF CONTENTS: LASER EYE SURGERY CONSENT FORM Risks and Side Effects... 2 Risks Specific to PRK... 3 Risks Specific to LASIK... 4 Patient Statement of Consent... 5 Consent for Laser Eye

More information

Correction of Myopic Astigmatism With Small Incision Lenticule Extraction

Correction of Myopic Astigmatism With Small Incision Lenticule Extraction ORIGINAL ARTICLE Correction of Myopic Astigmatism With Small Incision Lenticule Extraction Anders Ivarsen, MD, PhD; Jesper Hjortdal, MD, DMSc ABSTRACT PURPOSE: To evaluate the outcome after small incision

More information

The future of laser refractive surgery is exciting

The future of laser refractive surgery is exciting The Cornea is Not a Piece of Plastic Cynthia Roberts, PhD Editorial The future of laser refractive surgery is exciting with the potential for ever-improved postoperative visual performance. In the past,

More information

LASIK SURGERY IN AL- NASSIRYA CITY A CLINICOSTATISTICAL STUDY

LASIK SURGERY IN AL- NASSIRYA CITY A CLINICOSTATISTICAL STUDY Thi-Qar Medical Journal (TQMJ): Vol(4) No(4):1(14-21) SUMMARY: LASIK SURGERY IN AL- NASSIRYA CITY A CLINICOSTATISTICAL STUDY Dr. Ali Jawad AL- Gidis (M.B.Ch.B., D.O., F.I.C.O.)* Background: LASIK which

More information

The cornea is richly innervated by nerve fibers of the ophthalmic. Reinnervation in the Cornea after LASIK

The cornea is richly innervated by nerve fibers of the ophthalmic. Reinnervation in the Cornea after LASIK Reinnervation in the Cornea after LASIK Bong Hwan Lee, 1 Jay W. McLaren, 1 Jay C. Erie, 1 David O. Hodge, 2 and William M. Bourne 1 PURPOSE. Nerve fibers in the cornea are disrupted by photorefractive

More information

LONG-TERM CORNEAL KERATOCTYE DEFICITS AFTER PHOTOREFRACTIVE KERATECTOMY AND LASER IN SITU KERATOMILEUSIS

LONG-TERM CORNEAL KERATOCTYE DEFICITS AFTER PHOTOREFRACTIVE KERATECTOMY AND LASER IN SITU KERATOMILEUSIS LONG-TERM CORNEAL KERATOCTYE DEFICITS AFTER PHOTOREFRACTIVE KERATECTOMY AND LASER IN SITU KERATOMILEUSIS BY Jay C. Erie MD,* Jay W. McLaren PhD, David O. Hodge MS, AND William M. Bourne MD ABSTRACT Purpose:

More information

Alain Saad, MD, Alice Grise-Dulac, MD, Damien Gatinel, MD, PhD

Alain Saad, MD, Alice Grise-Dulac, MD, Damien Gatinel, MD, PhD CASE REPORT Bilateral loss in the quality of vision associated with anterior corneal protrusion after hyperopic LASIK followed by intrastromal femtolaser-assisted incisions Alain Saad, MD, Alice Grise-Dulac,

More information

Anterior Lamellar Keratoplasty With a Microkeratome: A Method for Managing Complications After Refractive Surgery

Anterior Lamellar Keratoplasty With a Microkeratome: A Method for Managing Complications After Refractive Surgery Anterior Lamellar Keratoplasty With a Microkeratome: A Method for Managing Complications After Refractive Surgery Farhad Hafezi, MD; Michael Mrochen, PhD; Franz Fankhauser II, MD; Theo Seiler, MD, PhD

More information

Clinical Study Corneal Epithelial Remodeling after LASIK Measured by Fourier-Domain Optical Coherence Tomography

Clinical Study Corneal Epithelial Remodeling after LASIK Measured by Fourier-Domain Optical Coherence Tomography Ophthalmology Volume 2015, Article ID 860313, 5 pages http://dx.doi.org/10.1155/2015/860313 Clinical Study Corneal Epithelial Remodeling after LASIK Measured by Fourier-Domain Optical Coherence omography

More information

Refractive Surgery. Common Refractive Errors

Refractive Surgery. Common Refractive Errors Refractive Surgery Over the last 25 years developments in medical technology and Refractive Surgery allow almost all need for glasses and contact lenses to be eliminated. Currently there are a number of

More information

One of the exciting new research areas in laser

One of the exciting new research areas in laser Future Challenges to Aberration-free Ablative Procedures Cynthia Roberts, PhD One of the exciting new research areas in laser refractive surgery is the development of sophisticated devices to measure the

More information

Comparison of Two Procedures: Photorefractive Keratectomy Versus Laser In Situ Keratomileusis for Low to Moderate Myopia

Comparison of Two Procedures: Photorefractive Keratectomy Versus Laser In Situ Keratomileusis for Low to Moderate Myopia Comparison of Two Procedures: Photorefractive Keratectomy Versus Laser In Situ Keratomileusis for Low to Moderate Myopia Jae Bum Lee, Jae Sung Kim, Chul-Myong Choe, Gong Je Seong and Eung Kweon Kim Institute

More information

Evidence for Superior Efficacy and Safety of LASIK over Photorefractive Keratectomy for Correction of Myopia

Evidence for Superior Efficacy and Safety of LASIK over Photorefractive Keratectomy for Correction of Myopia Evidence for Superior Efficacy and Safety of LASIK over Photorefractive Keratectomy for Correction of Myopia Alex J. Shortt, MSc, MRCOphth, Catey Bunce, DSc, Bruce D. S. Allan, MD, FRCOphth Purpose: To

More information

Corneal ectasia induced by laser in situ keratomileusis. Ioannis G. Pallikaris, MD, PhD, George D. Kymionis, MD, PhD, Nikolaos I.

Corneal ectasia induced by laser in situ keratomileusis. Ioannis G. Pallikaris, MD, PhD, George D. Kymionis, MD, PhD, Nikolaos I. Corneal ectasia induced by laser in situ keratomileusis Ioannis G. Pallikaris, D, PhD, George D. Kymionis, D, PhD, Nikolaos I. Astyrakakis, OD ABSTRACT Purpose: To identify factors that can lead to corneal

More information

Wavefront technology has been used in our

Wavefront technology has been used in our Wavefront Customized Ablations With the WASCA Asclepion Workstation Sophia I. Panagopoulou, BSc; Ioannis G. Pallikaris, MD ABSTRACT PURPOSE: WASCA (Wavefront Aberration Supported Cornea Ablation) is a

More information

SUB-PROTOCOL Title: Healthcare Performance Measurement & Reporting for LASIK surgery services provided by OPTIMAX Malaysia

SUB-PROTOCOL Title: Healthcare Performance Measurement & Reporting for LASIK surgery services provided by OPTIMAX Malaysia Page 1 of 11 MAIN PROTOCOL Reporting System (HPMRS). Developing healthcare performance measurement and reporting system for purposes of accountability, quality improvement and population health Protocol

More information

Treatment of Myopia and Myopic Astigmatism by Customized Laser In Situ Keratomileusis Based on Corneal Topography

Treatment of Myopia and Myopic Astigmatism by Customized Laser In Situ Keratomileusis Based on Corneal Topography Treatment of Myopia and Myopic Astigmatism by Customized Laser In Situ Keratomileusis Based on Corneal Topography Michael C. Knorz, MD, 1 Thomas Neuhann, MD 2 Objective: To evaluate the predictability,

More information

Corneal flap thickness with the Moria M2 single-use head 90 microkeratome

Corneal flap thickness with the Moria M2 single-use head 90 microkeratome Corneal flap thickness with the Moria M2 single-use head microkeratome Anne Huhtala, 1,2 Juhani Pietila, 1,2 Petri Ma kinen, 1,2 Sakari Suominen, 1,2 Matti Seppa nen 1,2 and Hannu Uusitalo 2,3 1 Mehila

More information

Sub-Bowman keratomileusis (SBK) is a type of LASIK

Sub-Bowman keratomileusis (SBK) is a type of LASIK Cornea Confocal Comparison of Corneal Nerve Regeneration and Keratocyte Reaction between FS-LASIK, OUP-SBK, and Conventional LASIK Fengju Zhang,*,1 Shijing Deng, 2 Ning Guo, 1 Mengmeng Wang, 1 and Xuguang

More information

Long-term stability of the posterior cornea after laser in situ keratomileusis

Long-term stability of the posterior cornea after laser in situ keratomileusis ARTICLE Long-term stability of the posterior cornea after laser in situ keratomileusis Joseph B. Ciolino, MD, Stephen S. Khachikian, MD, Michael J. Cortese, OD, Michael W. Belin, MD PURPOSE: To study long-term

More information

VISX Wavefront-Guided LASIK for Correction of Myopic Astigmatism, Hyperopic Astigmatism and Mixed Astigmatism (CustomVue LASIK Laser Treatment)

VISX Wavefront-Guided LASIK for Correction of Myopic Astigmatism, Hyperopic Astigmatism and Mixed Astigmatism (CustomVue LASIK Laser Treatment) CustomVue Advantage Patient Information Sheet VISX Wavefront-Guided LASIK for Correction of Myopic Astigmatism, Hyperopic Astigmatism and Mixed Astigmatism (CustomVue LASIK Laser Treatment) Statements

More information

refractive surgery a closer look

refractive surgery a closer look 2011-2012 refractive surgery a closer look How the eye works Light rays enter the eye through the clear cornea, pupil and lens. These light rays are focused directly onto the retina, the light-sensitive

More information

Refractive Surgery. Evolution of Refractive Error Correction

Refractive Surgery. Evolution of Refractive Error Correction Refractive Surgery Techniques that correct for refractive error in the eye have undergone dramatic evolution. The cornea is the easiest place to place a correction, so most techniques have focused on modifying

More information

Lasik Xtra Clinical Data Overview. MA-00354 Rev A

Lasik Xtra Clinical Data Overview. MA-00354 Rev A Lasik Xtra Clinical Data Overview Table of Contents What is Lasik Xtra? Who is Lasik Xtra being performed on? How is Lasik Xtra performed? What data to support Lasik Xtra? What is Lasik Xtra? Performed

More information

Our Commitment To You

Our Commitment To You SYSTEM SUPPORT Quality-crafted, the system boasts dependability with high efficiency and low gas usage. We provide responsive service and maintenance contract options, supported by our nationwide direct

More information

The Evolution of the Optical Zone in Corneal Refractive Surgery. Bruce Drum, Ph.D.

The Evolution of the Optical Zone in Corneal Refractive Surgery. Bruce Drum, Ph.D. The Evolution of the Optical Zone in Corneal Refractive Surgery. Bruce Drum, Ph.D. FDA, Division of Ophthalmic and ENT Devices, Rockville, MD Disclaimer This presentation represents the professional opinion

More information

Assessment of Contrast Sensitivity and Aberrations After Photorefractive Keratectomy in Patients with Myopia Greater than 5 Diopters

Assessment of Contrast Sensitivity and Aberrations After Photorefractive Keratectomy in Patients with Myopia Greater than 5 Diopters ORIGINAL REPORT Assessment of Contrast Sensitivity and Aberrations After Photorefractive Keratectomy in Patients with Myopia Greater than 5 Diopters Alireza Fahim 1, Bijan Rezvan 1, and Hassan Hashemi

More information

The pinnacle of refractive performance.

The pinnacle of refractive performance. Introducing! The pinnacle of refractive performance. REFRACTIVE SURGERY sets a new standard in LASIK outcomes More than 98% of patients would choose it again. 1 It even outperformed glasses and contacts

More information

Diego Fernando Suárez Sierra, MD Fellow Cornea and Refractive Surgery Fellow Lens and Ocular Surface Vejarano Laser Vision Center

Diego Fernando Suárez Sierra, MD Fellow Cornea and Refractive Surgery Fellow Lens and Ocular Surface Vejarano Laser Vision Center Corneal crosslinking with riboflavin and ultraviolet light before or after subepithelial keratectomy laser-assisted (LASEK) in patients with thin corneas. Diego Fernando Suárez Sierra, MD Fellow Cornea

More information

Management of Unpredictable Post-PRK Corneal Ectasia with Intacs Implantation

Management of Unpredictable Post-PRK Corneal Ectasia with Intacs Implantation Management of Unpredictable Post-PRK Corneal Ectasia with Intacs Implantation Mohammad Naser Hashemian, MD 1 Mahdi AliZadeh, MD 2 Hassan Hashemi, MD 1,3 Firoozeh Rahimi, MD 4 Abstract Purpose: To present

More information

LASIK, Epi LASIK and PRK Past present and future

LASIK, Epi LASIK and PRK Past present and future LASIK, Epi LASIK and PRK Past present and future Ioannis G. Pallikaris MD, PhD Institute of Vision and Optics University of Crete Medical School Heraklion Crete Greece Photorefractive Keratectomy Kerr-Muir

More information

Evolution of Refractive Surgery 2003

Evolution of Refractive Surgery 2003 Evolution of Refractive Surgery 2003 Daniel S. Durrie, MD Overland Park, Kansas USA Surgical Options 1. corneal curvature 2. change the lens 3. add a lens Evolution of Refractive Surgery Evolution of Refractive

More information

Topographically-guided Laser In Situ Keratomileusis to Treat Corneal Irregularities

Topographically-guided Laser In Situ Keratomileusis to Treat Corneal Irregularities Topographically-guided Laser In Situ Keratomileusis to Treat Corneal Irregularities Michael C. Knorz, MD, Bettina Jendritza, MD Objective: To evaluate the predictability and safety of topographically guided

More information

Dr. Booth received his medical degree from the University of California: San Diego and his bachelor of science from Stanford University.

Dr. Booth received his medical degree from the University of California: San Diego and his bachelor of science from Stanford University. We've developed this handbook to help our patients become better informed about the entire process of laser vision correction. We hope you find it helpful and informative. Dr. Booth received his medical

More information

Complications of Combined Topography-Guided Photorefractive Keratectomy and Corneal Collagen Crosslinking in Keratoconus

Complications of Combined Topography-Guided Photorefractive Keratectomy and Corneal Collagen Crosslinking in Keratoconus Complications of Combined Topography-Guided Photorefractive Keratectomy and Corneal Collagen Crosslinking in Keratoconus Michelle Cho, M.D. 1 Anastasios John Kanellopoulos, M.D 1,2 New York University

More information

REFRACTIVE ERROR AND SURGERIES IN THE UNITED STATES

REFRACTIVE ERROR AND SURGERIES IN THE UNITED STATES Introduction REFRACTIVE ERROR AND SURGERIES IN THE UNITED STATES 150 million wear eyeglasses or contact lenses 2.3 million refractive surgeries performed between 1995 and 2001 Introduction REFRACTIVE SURGERY:

More information

Keratorefractive Surgery for Post-Cataract Refractive Surprise. Moataz El Sawy

Keratorefractive Surgery for Post-Cataract Refractive Surprise. Moataz El Sawy Keratorefractive Surgery for Post-Cataract Refractive Surprise Moataz El Sawy Departmentof Ophthalmology, Faculty of Medicine,MenoufiyaUniversity, Egypt mfelsawy@yahoo.co.uk Abstract: Purpose: To evaluate

More information

Enhancement outcomes after photorefractive keratectomy and laser in situ keratomileusis using topographically guided excimer laser photoablation

Enhancement outcomes after photorefractive keratectomy and laser in situ keratomileusis using topographically guided excimer laser photoablation J CATARACT REFRACT SURG - VOL 31, DECEMBER 2005 Enhancement outcomes after photorefractive keratectomy and laser in situ keratomileusis using topographically guided excimer laser photoablation Leopoldo

More information

Case Report Laser Vision Correction on Patients with Sick Optic Nerve: A Case Report

Case Report Laser Vision Correction on Patients with Sick Optic Nerve: A Case Report Case Reports in Ophthalmological Medicine Volume 2011, Article ID 796463, 4 pages doi:10.1155/2011/796463 Case Report Laser Vision Correction on Patients with Sick Optic Nerve: A Case Report Ming Chen

More information

Long-Term Outcomes of Flap Amputation After LASIK

Long-Term Outcomes of Flap Amputation After LASIK Long-Term Outcomes of Flap Amputation After LASIK Priyanka Chhadva BS, Florence Cabot MD, Anat Galor MD, Sonia H. Yoo MD Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami

More information

Consent for LASIK (Laser In Situ Keratomileusis) Retreatment

Consent for LASIK (Laser In Situ Keratomileusis) Retreatment Consent for LASIK (Laser In Situ Keratomileusis) Retreatment Please read the following consent form very carefully. Please initial at the bottom of each page where indicated. Do not sign this form unless

More information

The ophthalmic division of the trigeminal nerve innervates. Corneal Reinnervation after LASIK: Prospective 3-Year Longitudinal Study

The ophthalmic division of the trigeminal nerve innervates. Corneal Reinnervation after LASIK: Prospective 3-Year Longitudinal Study Corneal Reinnervation after LASIK: Prospective 3-Year Longitudinal Study Martha P. Calvillo, 1 Jay W. McLaren, 1 David O. Hodge, 2 and William M. Bourne 1 PURPOSE. To measure the return of innervation

More information

Excimer Laser Eye Surgery

Excimer Laser Eye Surgery Excimer Laser Eye Surgery This booklet contains general information that is not specific to you. If you have any questions after reading this, ask your own physician or health care worker. They know you

More information

PATIENT CONSENT FOR LASER IN-SITU KERATOMILEUSIS (LASIK)

PATIENT CONSENT FOR LASER IN-SITU KERATOMILEUSIS (LASIK) INTRODUCTION: You have been diagnosed with myopia (nearsightedness) or hyperopia (farsightedness) with or without astigmatism, or astigmatism alone. Myopia is a result of light entering the eye and focusing

More information

Key Words: Aberration, LASEK, LASIK, Posterior corneal surface, Wavefront-guided ablation

Key Words: Aberration, LASEK, LASIK, Posterior corneal surface, Wavefront-guided ablation Department of Ophthalmology, Seoul National University College of Medicine 1, Seoul, Korea Seoul Artificial Eye Center, Seoul National University Hospital Clinical Research Institute 2, Seoul, Korea Department

More information

KERATOCONUS IS A BILATERAL, ASYMMETRIC, CHRONIC,

KERATOCONUS IS A BILATERAL, ASYMMETRIC, CHRONIC, Comparison of and Intacs for Keratoconus and Post-LASIK Ectasia MUNISH SHARMA, MD, AND BRIAN S. BOXER WACHLER, MD PURPOSE: To evaluate the efficacy of single-segment Intacs and compare with double-segment

More information

LASER EPITHELIAL KERATOMILEUSIS (LASEK) FOR MYOPIA IN PATIENTS WITH THIN CORNEA

LASER EPITHELIAL KERATOMILEUSIS (LASEK) FOR MYOPIA IN PATIENTS WITH THIN CORNEA Arch Iranian Med 2004; 7 (2): 98 103 Original Article LASER EPITHELIAL KERATOMILEUSIS (LASEK) FOR MYOPIA IN PATIENTS WITH THIN CORNEA Hassan Hashemi MD *,**, Akbar Fotouhi MD MPH PhD ***, Navid Sadeghi

More information

To date, several million patients have been treated worldwide. So why not discover the benefits The Eye Hospital can bring to your life.

To date, several million patients have been treated worldwide. So why not discover the benefits The Eye Hospital can bring to your life. L a s e r E y e S u r g e r y I N F O R M A T I O N 1 Welcome Imagine the freedom of being able to do away with glasses and contact lenses. You too, may be suitable for laser eye surgery, freeing you from

More information

Financial Disclosure. LASIK Flap Parameters IntraLase Microkeratome 6/9/2008. Femtosecond LASIK Flaps: What Could We Customize Yesterday?

Financial Disclosure. LASIK Flap Parameters IntraLase Microkeratome 6/9/2008. Femtosecond LASIK Flaps: What Could We Customize Yesterday? Financial Disclosure Arturo Chayet, MD Tijuana, BC Mexico Perry S. Binder, MS, MD San Diego CA USA I have the following financial interests or relationships to disclose: AMO/IntraLase Corporation - C Acufocus

More information

Curtin G. Kelley, M.D. Director of Vision Correction Surgery Arena Eye Surgeons Associate Clinical Professor of Ophthalmology The Ohio State

Curtin G. Kelley, M.D. Director of Vision Correction Surgery Arena Eye Surgeons Associate Clinical Professor of Ophthalmology The Ohio State Curtin G. Kelley, M.D. Director of Vision Correction Surgery Arena Eye Surgeons Associate Clinical Professor of Ophthalmology The Ohio State University Columbus, Ohio Refractive Errors Myopia (nearsightedness)

More information

LASIK To Improve Visual Acuity in Adult Neglected Refractive Amblyopic Eyes: Is It Worth?

LASIK To Improve Visual Acuity in Adult Neglected Refractive Amblyopic Eyes: Is It Worth? JKAU: Med. Sci., Vol. 18 No. 4, pp: 29-36 (2011 A.D. / 1432 A.H.) DOI: 10.4197/Med. 18-4.3 LASIK To Improve Visual Acuity in Adult Neglected Refractive Amblyopic Eyes: Is It Worth? Ali M. El-Ghatit, MD,

More information

Thin-flap (sub-bowman keratomileusis) versus thick-flap laser in situ keratomileusis for moderate to high myopia: Case-control analysis

Thin-flap (sub-bowman keratomileusis) versus thick-flap laser in situ keratomileusis for moderate to high myopia: Case-control analysis ARTICLE Thin-flap (sub-bowman keratomileusis) versus thick-flap laser in situ keratomileusis for moderate to high myopia: Case-control analysis Dimitri T. Azar, MD, Ramon C. Ghanem, MD, Jose de la Cruz,

More information

Laser in Situ Keratomileusis versus Laser Assisted Subepithelial Keratectomy for the Correction of Low to Moderate Myopia and Astigmatism

Laser in Situ Keratomileusis versus Laser Assisted Subepithelial Keratectomy for the Correction of Low to Moderate Myopia and Astigmatism Laser in Situ Keratomileusis versus Laser Assisted Subepithelial Keratectomy for the Correction of Low to Moderate Myopia and Astigmatism Seyed Javad Hashemian, MD 1 Hossein Aghaei, MD 2 Alireza Foroutan,

More information

Information and consent for patients preparing for refractive surgery LASIK Laser Eye Center Kubati

Information and consent for patients preparing for refractive surgery LASIK Laser Eye Center Kubati 1. General information Not long ago, the WHO - World Health Organization has described ametropy (medical term for diopter) as a category of disability creating a solution to the needs of many with ametropy

More information

How To See With An Cl

How To See With An Cl Deciding on the vision correction procedure that s right for you is an important one. The table below provides a general comparison of the major differences between Visian ICL, LASIK and PRK. It is NOT

More information

LASIK: Clinical Results and Their Relationship to Patient Satisfaction

LASIK: Clinical Results and Their Relationship to Patient Satisfaction LASIK: Clinical Results and Their Relationship to Patient Satisfaction Lien Thieu Tat A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Applied Vision

More information

How To Implant A Keraring

How To Implant A Keraring Corneal Remodeling Using the Keraring A variety of thicknesses, arc lengths, and optical zone sizes allows tailoring of the procedure to the individual patient. BY DOMINIQUE PIETRINI, MD; AND TONY GUEDJ

More information

SCHWIND CAM Perfect Planning wide range of applications

SCHWIND CAM Perfect Planning wide range of applications SCHWIND CAM Perfect Planning wide range of applications ORK-CAM PresbyMAX PALK-CAM PTK-CAM 2 SCHWIND CAM the system solution The latest version of the modular SCHWIND CAM represents an even more efficient

More information

INTRACOR. An excerpt from the presentations by Dr Luis Ruiz and Dr Mike Holzer and the Round Table discussion moderated by Dr Wing-Kwong Chan in the

INTRACOR. An excerpt from the presentations by Dr Luis Ruiz and Dr Mike Holzer and the Round Table discussion moderated by Dr Wing-Kwong Chan in the INTRACOR An excerpt from the presentations by Dr Luis Ruiz and Dr Mike Holzer and the Round Table discussion moderated by Dr Wing-Kwong Chan in the 1 Dr Luis Ruiz Presbyopia treatment with INTRACOR Luis

More information

One-Year Clinical Results after Epi-LASIK for Myopia

One-Year Clinical Results after Epi-LASIK for Myopia One-Year Clinical Results after Epi-LASIK for Myopia Vikentia J. Katsanevaki, MD, PhD, 1,2 Maria I. Kalyvianaki, MD, 1,2 Dimitra S. Kavroulaki, MD, 1 Ioannis G. Pallikaris, MD, PhD 1,2 Purpose: To evaluate

More information

Laser Vision Correction

Laser Vision Correction The Austin Diagnostic Clinic Ophthalmology Department Laser Vision Correction Frequently Asked Questions Laser Vision Correction Frequently Asked Questions What is Laser Vision Correction? Laser vision

More information

Post LASIK Ectasia. Examination: Gina M. Rogers, MD and Kenneth M. Goins, MD

Post LASIK Ectasia. Examination: Gina M. Rogers, MD and Kenneth M. Goins, MD Post LASIK Ectasia Gina M. Rogers, MD and Kenneth M. Goins, MD October 6, 2012 Chief Complaint: Decreasing vision after laser- assisted in- situ keratomileusis (LASIK) History of Present Illness: This

More information

Straylight values 1 month after laser in situ keratomileusis and photorefractive keratectomy

Straylight values 1 month after laser in situ keratomileusis and photorefractive keratectomy ARTICLE Straylight values 1 month after laser in situ keratomileusis and photorefractive keratectomy Jeroen J.G. Beerthuizen, MD, FEBOphth, Luuk Franssen, MSc, Monika Landesz, MD, PhD, Thomas J.T.P. van

More information

Early results at 1 and 3 months after Trans-PRK with AMARIS. a no-touch, one-step treatment

Early results at 1 and 3 months after Trans-PRK with AMARIS. a no-touch, one-step treatment Early results at 1 and 3 months after Trans-PRK with AMARIS a no-touch, one-step treatment Trans-PRK advantages - No-Touch treatment in one step (much faster than in the past with 2 steps) - Significantly

More information

The Efficacy of Multi-Zone Cross-Cylinder Method for Astigmatism Correction

The Efficacy of Multi-Zone Cross-Cylinder Method for Astigmatism Correction Korean J Ophthalmol Vol. 18:29-34, 2004 The Efficacy of Multi-Zone Cross-Cylinder Method for Astigmatism Correction Seong Joo Shin, MD, Hae Young Lee, MD Department of Ophthalmology, Seoul Adventist Hospital,

More information

MicroScan. Excimer laser system for all types of vision corrections OPTOSYSTEMS LTD.

MicroScan. Excimer laser system for all types of vision corrections OPTOSYSTEMS LTD. MicroScan Excimer laser system for all types of vision corrections OPTOSYSTEMS LTD. МicroScan is a new generation excimer laser system for all types of vision corrections: myopia, hypermetropia, astigmatism.

More information

Surgical Advances in Keratoconus. Keratoconus. Innovations in Ophthalmology. New Surgical Advances. Diagnosis of Keratoconus. Scheimpflug imaging

Surgical Advances in Keratoconus. Keratoconus. Innovations in Ophthalmology. New Surgical Advances. Diagnosis of Keratoconus. Scheimpflug imaging Surgical Advances in Keratoconus Keratoconus Ectatic disorder 1 in 1,000 individuals Starts in adolescence & early adulthood Uncertain cause 20% require corneal transplant Innovations in Ophthalmology

More information

Wavefront-guided Custom Ablation for Myopia Using the NIDEK NAVEX Laser System

Wavefront-guided Custom Ablation for Myopia Using the NIDEK NAVEX Laser System Wavefront-guided Custom Ablation for Myopia Using the NIDEK NAVEX Laser System Jan Venter, MD ABSTRACT PURPOSE: To determine the predictability, effi cacy, safety, and stability of LASIK using custom ablation

More information

Comparison Combined LASIK Procedure for Ametropic Presbyopes and Planned Dual Interface for Post-LASIK Presbyopes Using Small Aperture Corneal Inlay

Comparison Combined LASIK Procedure for Ametropic Presbyopes and Planned Dual Interface for Post-LASIK Presbyopes Using Small Aperture Corneal Inlay Comparison Combined LASIK Procedure for Ametropic Presbyopes and Planned Dual Interface for Post-LASIK Presbyopes Using Small Aperture Corneal Inlay Minoru Tomita, MD, PhD 1,2 1) Shinagawa LASIK, Tokyo,

More information

Comparison of Epi-LASIK and Off-Flap Epi-LASIK for the Treatment of Low and Moderate Myopia

Comparison of Epi-LASIK and Off-Flap Epi-LASIK for the Treatment of Low and Moderate Myopia Comparison of Epi-LASIK and Off-Flap Epi-LASIK for the Treatment of Low and Moderate Myopia Maria I. Kalyvianaki, MD, PhD, 1,2 George D. Kymionis, MD, PhD, 1,2 George A. Kounis, PhD, 1 Sophia I. Panagopoulou,

More information

Tamer O. Gamaly, FRCS; Alaa El Danasoury, MD, FRCS; Akef El Maghraby, MD

Tamer O. Gamaly, FRCS; Alaa El Danasoury, MD, FRCS; Akef El Maghraby, MD A Prospective, Randomized, Contralateral Eye Comparison of Epithelial Laser in situ Keratomileusis and Photorefractive Keratectomy in Eyes Prone to Haze Tamer O. Gamaly, FRCS; Alaa El Danasoury, MD, FRCS;

More information

Advanced personalized nomogram for myopic laser surgery: First 100 eyes

Advanced personalized nomogram for myopic laser surgery: First 100 eyes ARTICLE Advanced personalized nomogram for myopic laser surgery: First 1 eyes Ruth Lapid-Gortzak, MD, Jan Willem van der Linden, BOpt, Ivanka J.E. van der Meulen, MD, Carla P. Nieuwendaal, MD PURPOSE:

More information

Comparison of the Short-Term Clinical Results of Epi-LASIK and Photorefractive Keratectomy with Mitomycin-C for Moderate to High Myopia

Comparison of the Short-Term Clinical Results of Epi-LASIK and Photorefractive Keratectomy with Mitomycin-C for Moderate to High Myopia Comparison of the Short-Term Clinical Results of Epi-LASIK and Photorefractive Keratectomy with Mitomycin-C for Moderate to High Myopia Hassan Hashemi, MD 1 Hamid Foudazi, MD 1 Mohammad Miraftab, MD 1

More information

Accelerated Refractive Performance

Accelerated Refractive Performance Accelerated Refractive Performance Get There at the Speed of WaveLight Designed to accommodate your refractive technology goals now and into the future, the WaveLight Workstation is a faster way to get

More information

Central Islands After LASIK Detected by Corneal Topography

Central Islands After LASIK Detected by Corneal Topography Korean J Ophthalmol Vol. 15:8-14, 2001 Central Islands After LASIK Detected by Corneal Topography Jin Seok Lee, MD, Choun-Ki Joo, MD Department of Ophthalmology, Kangnam St. Mary s Hospital, College of

More information

Intraoperative Management of Partial Flap during LASIK

Intraoperative Management of Partial Flap during LASIK Intraoperative Management of Partial Flap during LASIK A Small Case Series Report Vikentia J. Katsanevaki, MD, PhD, Nikolaos S. Tsiklis, MD, Nikolaos I. Astyrakakis, OD, Ioannis G. Pallikaris, MD, PhD

More information

Early Postoperative Pain and Visual Outcomes Following Epipolis-Laser In Situ Keratomileusis and Photorefractive Keratectomy

Early Postoperative Pain and Visual Outcomes Following Epipolis-Laser In Situ Keratomileusis and Photorefractive Keratectomy pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2010;24(3):143-147 DOI: 10.3341/kjo.2010.24.3.143 Original Article Early Postoperative Pain and Visual Outcomes Following Epipolis-Laser In Situ Keratomileusis

More information

With the rapid evolution of refractive surgery and. Original Article

With the rapid evolution of refractive surgery and. Original Article 215 Original Article The Efficacy, Predictability, and Safety of Epi-Lasik for The Correction of Myopia Faisal M. Tobaigy, MD; Leonard Ang, MD, Phd; Dimitri T. Azar, MD Abstract Purpose. To report the

More information

Short-term Corneal Endothelial Changes after Laser-assisted Subepithelial Keratectomy

Short-term Corneal Endothelial Changes after Laser-assisted Subepithelial Keratectomy The Journal of International Medical Research 2010; 1484 1490 [first published online as 38(4) 9] Short-term Corneal Endothelial Changes after Laser-assisted Subepithelial Keratectomy J ZHOU, S LU, J DAI,

More information

Clinical Study A Clinical and Confocal Microscopic Comparison of Transepithelial PRK and LASEK for Myopia

Clinical Study A Clinical and Confocal Microscopic Comparison of Transepithelial PRK and LASEK for Myopia Ophthalmology, Article ID 784185, 5 pages http://dx.doi.org/10.1155/2014/784185 Clinical Study A Clinical and Confocal Microscopic Comparison of Transepithelial PRK and LASEK for Myopia Safak Korkmaz,

More information

Flap striae after LASIK can be treated successfully

Flap striae after LASIK can be treated successfully Flap striae after LASIK can be treated successfully Following a few key rules leads to positive outcomes, surgeons say. by Insun Lee, Miten Vasa, and Emil W. Chynn, MD Special to OCULAR SURGERY NEWS LASIK

More information