UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS DEPARTAMENTO DE INGENIERÍA RURAL TESIS DOCTORAL:

Size: px
Start display at page:

Download "UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS DEPARTAMENTO DE INGENIERÍA RURAL TESIS DOCTORAL:"

Transcription

1 UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS DEPARTAMENTO DE INGENIERÍA RURAL TESIS DOCTORAL: Respuesta de la vegetación a variaciones climáticas en praderas y sistemas adehesados Mediterráneos: Metodología de análisis utilizando datos hiperespectrales y multiespectrales Doctorando: MONICA GARCÍA GARCÍA (Ingeniera Agrónoma) Directora: ANA IGLESIAS PICAZO (Doctora Ingeniera Agrónoma) Co-Dírectora: SUSAN L. USTIN (Doctora en Botánica) Tutora: MARGARITA RUIZ ALTISENT (Doctora Ingeniera Agrónoma) Madrid, Septiembre 2003

2 UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS DEPARTAMENTO DE INGENIERÍA RURAL DOCTORAL THESIS: Vegetation Reponses To Climatic Variability in a Mediterranean Grassland And Savannah. Methodologies of Analysis Using Hyperspectral and Multispectral Data Ph.D. Candidate: MONICA GARCÍA GARCÍA (Agricultural Engineer) Director: ANA IGLESIAS PICAZO (Doctor in Agricultural Engineering) Co-Director: SUSAN L. USTIN (Doctor in Botany) Advisor: MARGARITA RUIZ ALTISENT (Doctor in Agricultural Engineering) Madrid, September 2003

3 A mis padres Jesús y Pilar, A mi hermana Natalia,

4 AGRADECIMIENTOS Esta tesis no hubiera sido posible sin la colaboración estrecha de las tres personas que me han dirigido, cada una de ellas con un papel irremplazable. Quiero agradecer, a la Dra. Ana Iglesias, investigadora del Departamento de Economía y Ciencias Sociales Agrarias, de la E.T.S.LA su labor de dirección, proporcionándome una visión global de la tesis, y animándome siempre. He aprendido mucho de su conocimiento del clima y la vegetación, así como de su actitud abierta, entusiasmo y capacidad para relacionar distintos temas. A Dña Margarita Ruiz Altisent, Catedática del Departamento de Ingeniería Rural, de la E.T.S.LA, por su saber hacer, apoyo y amistad durante estos años, y por ofrecerme la oportunidad de trabajar en el Laboratorio de Propiedades Físicas. Realmente admiro su lucidez en investigación y aprecio mucho su confianza. A Susan Ustin, profesora del Departamento de Land, Air and Water Resovirces de la Universidad de California, Davis, por el equilibrio entre dirección y libertad en el trabajo, su interés, optimismo y amistad, así como por considerar al alumno como un todo con sus circunstancias. La oportunidad de formar parte del laboratorio CSTARS ha sido estupenda y su apoyo tanto en Davis como en Madrid ha sido tremendo. A Keir Keightley, y a Víctor Gil por su ayuda en el preprocesado de las imágenes AVIRIS, a George Scheer, Luis Ruiz y Constantino Valero por el apoyo informático y de uso de equipos del laboratorio. A esta tesis han contribuido muchas personas de una manera o de otra: con sugerencias después de leer los capítulos, discusiones, con los datos o las referencias: Prof. Ted Hsiao, Prof. Richard Plant, Prof. Alicia Palacios, Prof. Pilar Barreiro, Dr. David Riaño, Antonio Trabucco, Prof.. Lourdes Lleó, Dr. Pablo Zarco-Tejada, Prof. Stephan Jacquemoud, Dr. Femando Valladares, Dra. M* José Mariscal, Mike Whiting, Dr. Lin Li, Quiím Hart, y Dr. Pablo Rosso. Muchísimas gracias a mis compañeros del Laboratorio de Propiedades Físicas de productos agrícolas de la E.T.S.LA, por su amistad, y por su ajmda desde el análisis de datos, programas, discusiones, y papeleos: Belén Diezma, José Bermejo, Natalia Hernández, María Marín, Pablo Gutiérrez, Adolfo Moya, Guillermo, lan Homer y Coral Ortiz. A Rigo Pérez de Alejo por su ayuda con el código IDL. A mis compañeros del CSTARS de la Universidad de California, Davis por su ayuda en distintos momentos de la tesis: Shawn Kefauver, Severíne Tumois, y Muy Lai,. Muchas gracias a todos los miembros del Departamento de Ingeniería Rural, especialmente a José Luis García, Profesor titular de la E.T.S..LA y a Jaime Ortiz Cañavate, catedrático de la E.T.S. de Ingenieros Agrónomos, por su apoyo y actitud abierta hacia nuevas líneas de investigación. A la Fundación "Barrie de la Maza" por proporcionarme una beca para estudiar dos años en Estados Unidos, así como al programa NASA EOS program grant No. NAS

5 ACKNOWLEDGEMENTS I want to thank the three persons that made possible this thesis: my director Dra. Ana Iglesias Picazo, my co-director: Professor Susan Ustin and my advisor: Professor Margarita Ruiz Altisent, for always believing in me, and for co-operating together to get this thesis completed. I am grateíul to Dra. Ana Iglesias, researcher at the Agricultural School In Madrid, for her direction, helping me to not get lost and giving me a global view of things. She really cheered me up to complete this, and I have leamt so much from her knowledge of climate and vegetation, her open attitude and visión to link topics, and her enthusiasm at work. To Professor Margarita Ruiz Altisent, catedratic of the Rural Engineering Department, for her unconditional support when doing the thesis and in the past years, for giving me the opportunity to work in the Laboratory of Physical Properties. I admire her clear view at research and really appreciate her confidence. To Professor Susan Ustin, from the University of California, Davis, for the balance between guidance and freedom that she offers at work, for her interest, optimism and friendship, and for considering the student together with her circumstances. Also, the opportimity of taking part of the CSTARS lab has been unvaluable for me. Thanks to Keir Keightley, and Víctor Gil for their help in preprocessing AVIRIS images, and George Scheer, Luis Ruiz and Dr. Constantino Valero for computer and equipment support. This thesis is the result of the input of many people that had contributed in one way or another to make it better with suggestions añer reading chapters, discussions, or giving a hand with the data or references: Prof. Ted Hsiao, Prof. Richard Plant, Dra. Alicia Palacios, Prof. Pilar Barreiro, Dr. David Riaño, Antonio Trabucco, Dra. Lourdes Lleó, Dr. Pablo Zarco-Tejada, Prof. Stephan Jacquemoud, Dr. Femando Valladares, Dra. M^ José Mariscal, Mike Whiting, Dr. Lin Li, Quinn Hart, and Dr. Pablo Rosso. Thanks to all my colleagues of the Physical Properties Laboratory in Madrid for theirfriendship,and for helping with anything from data, programs, discussions, and paperwork, especially Belén Diezma, José Bermejo, Natalia Hernández, María Marín, Pablo Gutiérrez, Adolfo Moya, Guillermo, lan Homer and Coral Ortiz. Especial thanks to Rigo Pérez de Alejo for helping with the IDL code. Thanks to my colleagues from the CSTARS lab for their support at different moments when pursuing the thesis, especially: Shawn Kefauver, Severine Tumois, and Muy Lai. I am very grateful to all the members of the Department of Rural Engineering of the Polj^echnique University in Madrid, especially José Luis García, Professor at the E.T.S..I.A and Jaime Ortiz Cañavate, catedratic of the E.T.S.I.A, for supporting me with the thesis and for their open attitude towards new research áreas in the department. To Foundation "Barrie de la Maza" from Spain for providing fínancial support for pursuing gradúate studies in the USA during two years, and to NASA EOS program grant No. NAS

6 TABLE OF CONTENTS RESUMEN DE LA TESIS 1 CHAPTER1. INTRODUCTION 6 1. JUSTMCATIONOF THE RESEARCH 7 2. OBJETIVOS 9 3. OBJECTIVES ESTRUCTURA DE LA TESIS Y COMPONENTES THESIS STRUCTURE AND COMPONENTS 12 CHAPTER 2. BACKGROUND CLMATE The Climate System El Niño-Southem Oscillation (ENSO) ENSO and global seasonal climate ENSO effects on US climate Climate pattems in California Climate forecast VEGETATION Vegetationresponsesto weatherevents Grassland vegetation in California Vegetation responses to water availability in Mediterranean ecosystems Plant adaptations to cope with rainfall variability Water relations and plant phenology Impacts of rainfall variability on vegetation productivity REMOTE SENSING FOR VEGETATION MONITORE^G Imagingspectrometry:theAVIRIS sensor Spectral, radiometric and spatial calibration of the AVIRIS sensor Linear Spectral Unmixing: Theoretical basis Endmember Selection Strengths and weaknesses of linear unmixing 49 CHAPTER 3. THE STUDY SITE THE CENTRAL COAST OF CALIFORNIA THE STUDY SITE: JASFERRIDGE Phenology and productivity of the vegetation types in Jasper Ridge 59

7 2.2. Water relations of JasperRidgespecies Remote sensing at Jasper Ridge Biological Preserve 63 CHAPTER4 64 RELATIONS BETWEEN ENSO (EL NIÑO SOUTHERN OSCILLATION) EVENTS WITH INTERANUAL CLIMATIC VARIABILITY AND PRIMARY PRODUCTIVITYIN CALIFORNIA INTRODUCTION OBJECTIVE STUDY REGIÓN AND SITE DATA 67 4.LClimate AVHRR NDYI biweekly composites Land use and land cover (LULC) Natural pasture data METHODS Climatic and oceanic anomalies Small scale analysis of precipitation anomalies: JRBP NDVI temporal series RESULTS AND DISCUSSION Land use and land cover preprocessing General climate description atthe site Climate and sea surface temperature anomalies NDVI temporal series analysis Error analysis Implications for pasture production and prediction CONCLUSIONS 96 CHAPTER5 97 DETECTION OF INTERANNUAL VEGETATION RESPONSES TO CLIMATIC VARIABILITY USING AVIRIS DATA INTRODUCTION OBJECTIVES JASPER RIDGE STUDY SITE AVmiS DATA METHODS MAGE PREPROCESSING Reflectance retrieval and atmospheric calibration

8 6.2. Georeferencing IMAGE ANALYSIS: SPECTRAL MIXTURE MODEL Endmember Selection Error analysis RESULTS AND DISCUSSION Endmember selection Error analysis Unmixing with four endmembers in grassland áreas Differences in mean unmixed fractions Change detection using unmixed fractions CONCLUSIONS 120 CHAPTER6 122 MULTITEMPORAL ANALYSIS OF HYPERSPECTRAL IMAGES (AVIRIS): SEASONAL AND INTERANNUAL SPECTRAL EVOLUTION AND RELATION WITH ENVIRONMENTAL FACTORS IN JASPER RIDGE INTRODUCTION AM) OBJECTIVE DATA METHODS Image preprocessing Cross-calibration of AVIRIS images Georeferencing Narrowband Índices NormalizedDifferenceVegetation Index (ND VI): Simple Ratio Water Index (SRWI) Photochemical Reflectance Index (PRI) Linear Unmixing modeling of AVIRIS images Analysis of possible sources of error in the mixing model Impact of sensor noise and atmospheric absorption Impact of illumination differences and atmospheric effects Impact of variation in the pixel components RESULTS AND DISCUSSION Image preprocessing Cross-calibration of AVIRIS images Narrow band Índices Normalized Difference Vegetation hdex (NDVI) Simple Ratio Water Index (SRWT) 142 m

9 Ménica García García Photochemical Reflectance Index (PRI) Discussion Linear UnmixingModelingofAVIRIS images Analysis of mean fractions Error analysis Analysis of possible sources of error in the mixing model Impact of AVIRIS noise and atmospheric effects Impact of illumination differences and atmospheric effects Impact of variation in the pixel components Discussion CONCLUSIONS 160 CHAPTER7 162 COMPARISON OF VEGETATION STRUCTURE PATTERNS DETECTED WITH REMOTE SENSING: IMPLICATIONS FOR OPTIMUM SPATIAL RESOLUTION INTRODUCTION DATAUSED SPECTRAL VARIABLES USED Gxeen vegetation fractions Normalized Difference Vegetation Index (NDVI) TMImagepreprocessing METHODS Experimental Semivariogram analysis Experimental Semivariogram at Large scale Semivariogram at Small Scale: Degradation of spatial resolution RESULTS Analysis of the spatial coeffícient of variation Experimental semivariograms at Large-Scale Experimental semivariogram atsmall-scale Degradation of spatial resolution DISCUSSION CONCLUSIONS 184 CHAPTER 8: GENERAL CONCLUSIONS Relationship between climatic variability and Net Primary Productivity at large scale Potential of Mixing Models in detecting changes on Net Primary Productivity 187 IV

10 8.3. Multitemporal analyses of hyperspectral data (AVIRIS). Interannual and seasonal evolution ofthe spectral variables Vegetation structure pattems identifíed by remóte sensing. Optimum spatial resolution. 189 CHAPTER 9: CONCLUSIONES GENERALES Relación entre la variabilidad climática y la productividad primaria a gran escala Potencial de los modelos de mezcla para detectar cambios en la productividad primarial Análisis multitemporal de las imágenes hiperespectrales (AVIRIS): evolución estacional e interanual de variables espectrales Comparación de patrones de la estructura vegetal detectados por teledetección: implicaciones para la resolución espacial óptima 194 FURTHER RESEARCH 196 REFERENCES 199

11 LIST OF TABLES Table 2.1.Biomass and productivity of some Mediterranean- type ecosystems. Adapted from Rambal (2001) 30 Table 2.2. Nominal AVIRIS Data Characteristics. (Source Green et al., 1998) 44 Table 3.1 Vegetation cover and green leaf área of Jasper Ridge species. Habit: A (Annual), E (Evergreen), DD (Drought deciduous), WD (Winter deciduous). Green leaf área (%) was measured in May -June 1991 at selected sites within the grassland reported as total aboveground plant área Gamón et al., Mean cover (%) in plots were the species occurred within a 311 transect at the chaparral site (Ackerly et al., 2001) 61 Table 4.1. Vegetation types considered in the analysis at the two scales: Central Coast and Jasper Ridge Biological Preserve (JRBP) 69 Table 4.2. Statistics on the área of vegetation polygons from the Large Scale LULC vegetation map used in the Santa Cruz Mountains Coast Range área. The área and number of polygons in the deciduous forest class is very low compared to the other types 70 Table 4.3. Statistics in the área of vegetation polygons from the Small Scale vegetation map used at JRBP 70 Table 4.4. ENSO events by year (grouped by three months) for the years with NDVI -AVHRR data. Source: NOAA. CPC/NCEP (Climate Prediction Center/National Centers for Environmental Protection). Cold periods are designated as C, and warm periods as W, the (-) sign indicates weak events, and the (+) strong events. No sign indicates modérate events 73 Table 4.5. Categorization of years based on winter SST anomalies (greater than mean + standard deviation) from December of the previous year and January of the current year measured at the NIN04 región 78 Table 4.6. Percentile (%) corresponding to precipitation anomalies in El Niño years with respect to the total precipitation distribution ( ). Precipitation anomalies valúes are calculated every three months between January and June 80 Table 4.7. Probability associated with T-test for the monthly precipitation anomalies in JRBP for El Niño and Neutral years. Categorization of years included modérate and strong SST anomalies in October, November and December of the previous year 80 Table 4.8. Probability associated with T-test for the accumulated 3 and 6 months precipitation anomalies in JRBP for El Niño and Neufral years. Categorization of years included modérate and strong SST anomalies in October, November and December of the previous year 81 Table 4.9 Probability associated with T-test for the monthly precipitation anomalies in JRBP for La Niña and Neutral years. Categorization of years included modérate and strong SST anomalies in October, November and December of the previous year 82 Table obability associated with T-test for the accumulated 3 and 6 months precipitation anomalies in JRBP for La Niña and Neutral years. Categorization of years included modérate and strong SST anomalies in October, November and December of the previous year 82 Table 6.1. AVIRIS image dates used in the analysis 124 Table 6.2. Precipitation ranking in Jasper Ridge between scenes. 5 is the highest and 1 is the lowest. In parenthesis are the precipitation levéis in mm 125 vi

12 Table 6.3. Table with data from georeferencing: number of points for polynomic warp and errors. 126 Table 6.4 table with nr of bands/scene used in the spectral mixture analysis 129 Table 7.1. Original spectral data used in the thesis. hi parenthesis is the original variable used as input in the thesis 166 Table 7.2. Analysis performed with each image and variable used (in parenthesis) 168 vil

13 LIST OF FIGURES Figura l.l.(a). Estructura y componentes de la tesis 11 Figure l.l.(b). Structure and thesis components 12 Figure 2.1. Figure of ENSO cycle. Sea surface temperature and tropical rainfall in the equatorial Pacifíc Ocean during normal. El Niño, and La Niña conditions. The sea-surface temperature is shaded: blue-cold and orange-warm. Dark arrows indicate the direction of air movement in the atmosphere: upward arrows are associated with clouds and rainfall and downward-pointing arrows are associated with a general lack of rainfall. (Reproduced form NOAA, Climate Prediction Center) 16 Figure 2.2. El Niño/La Niña cycle influence of world climate (teleconnections at the world scale). Colors represent the extent of impacts: red (warm), brown (dry), green (wet), light blue (cool), dark blue (cool and wet), light green (warm and wet), orange (dry an cool), yellow (dry and warm). SourceNOAA 19 Figure 2.3. a. Precipitation probabilities for March-May associated with El Niño in North America. Source: Intemational Research Institute for Climate Prediction, (IRI) 21 Figure 2.3. b. Temperature probabilities for March-May associated with El Niño in North America. Source: Intemational Research Institute for Climate Prediction, (IRI) 22 Figure 2.3. c. Precipitation probabilities for March-May associated with La Niña in North America. Source: Intemational Research Institute for Climate Prediction, (IRI) 23 Figure 2.3. d. Temperature probabilities for March-May associated with La Niña in North America. Source: Intemational Research Institute for Climate Prediction, (IRI) 24 Figure 2.4. ENSO impacts on Califomia rainfall by climate división. (Source: NOAA) 26 Figure 2.5. Land Use in USA (Source of data: USGS) 29 Figure 2.6. The electromagnetic spectrum and atmospheric windows 37 Figure 2.7. Spectral features of vegetation and dominant factors controlling leaf reflectance 39 Figure 2.8. The AVIRIS (Airborae Visible Infrared Imaging Spectrometer) concept. (Source: NASA/JPL) 45 Figure 2.9. The AVIRIS sensor (Source: NASA/JPL) 45 Figure 3.1. Location of the área of analysis and study site. Includes part of the Central Coast drainage and partof San Joaquín E)rainage 54 Figure 3.2. Non- federal Land Use in Califomia, Source: USDA, National Resources Conservation Service. Natural Resources Inventory Figure 3.3. Agricultural Land Use in Califomia. Census of agriculture Figure 3.4. Área of crop harvested in Califomia in 1964,1982 and Sources: U.S Burean of the Census. Census of Agriculture 1964, USDA ( NASS) Census of Agriculture. 56 Figure 3.5. Vegetation map from Japer Ridge Biological Preserve. Source: Jasper Ridge Biological Preserve. UniversityofStanford (USA) 59 VIH

14 Ménica García García Figare 4.1. Polygons of vegetation classes at the study site from LULC (USGS) añer buffering by 1 km or 0.5 km in deciduous vegetation. Polygons with área less 2 km2 were eliminated. The location of Jasper Ridge is indicated with an AVIRIS image 67 Figure 4.2. (a) Temperature and Precipitation in Jasper Ridge ( ). Source of data: Jasper Ridge Biological Preserve and NASA/GISS. (b) Temperature and Precipitation in Palo Alto ( ). Soiirce of data: Western Regional Climate Center of the Desert Research Institute 76 Figure 4.3. (a) Annual temperature and precipitation in Jasper Ridge ( ); (b) Monthly time series of precipitation in Jasper Ridge ( ). Source of data: Jasper Ridge Biological Preserve and NASA/GISS 76 Figure 4.4. Annual and seasonal precipitation at JRBP for Seasonal valúes are calculated between June of the previous year till July of that year 77 Figure 4.5. Mean monthly precipitation in JRBP for El Niño, La Niña and Neutral years. Error bars represent one standard deviation 78 Figure 4.6. precipitation anomalies in JRBP after removing diy season data, and SST anomalies for the same months from NIN03.4 región 79 Figure 4.7. Monthly precipitation anomalies in JRBP versas warm SST anomalies with a 3 month lag (NIN03.4). When SST anomalies are greater or equal than 1.5, rainfall anomalies are also positive in 70 % of the cases and the mean valué of these anomalies is Figure 4.8. Differences in mean precipitation anomalies differences between El Niño and Neutral years considering weak, modérate and strong El Niño events from CPC/NCEP classifícation for October to November of the previous year. Leñ panel shows mean differences are shown for April (p=0.13) and right panel for March-May (p=0.11). Number of Niño years=l 1, Number of neutral years=8 81 Figure 4.9. NDVI valúes at the study site for March 1996, April 1997, April 1998, June 1997 and October 1995, atthe same dates of AVIRIS images acquisition at JRBP 83 Figure Temporal NDVI series derived from mean AVHRR data within selected vegetation types between and rainfall. (a) Deciduous forest; (b) Evergreen forest; (c) Mixed forest; (d) Herbaceous rangeland; (e) Mixed rangeland; (f) Shrub and brush rangeland; and (g) Non-forested wetland 85 Figure Integral of NDVI over the year calculated as the sum of NDVI valúes within the year for (a) forest vegetation, and (b) herbaceous and shrub land vegetation 86 Figure Seasonality index calculated as the difference between the extreme NDVI valúes within the year for (a) forest vegetation, and (b) herbaceous and shrub land vegetation 87 Figure Relationship between time series of mean NDVI and annual rainfall (Climatic división 4) considering time lags between O and 11.5 for and calculated for 5 variables of accumulated precipitation: Half month (acc 0.5), 2 months(acc2), 3 months (acc3), 6 months (acc6), and 8 months (acc8) 91 Figure Correlation coeffícient (R) between time series of mean NDVI at herbaceous rangeland sites and precipitation at Climatic División 4. Different time lags between O and 11.5 months are shown in the x for 5 variables of accumulated precipitation: Half month (acc 0.5), 2 months(acc2), 3 months (acc3), 6 months (acc6), and 8 months (acc8) 92 Figure Yield of wild hay in tons/ha at the state level, seasonal precipitation data (mm) between June of one year and July of the next year (División 4), and NDVI integral results for the vegetation type herbaceous rangeland. El Niño years are marked with solid arrows, strong IX

15 events are indicated by red arrows, and modérate events with black arrows. La Niña events are marked with open arrows. A strong event is shown with a red open arrow and a modérate event with a black empty arrow).source: USDA (ÑASS) 95 Figure 5.1 True color composite in RGB from May, AVIRIS reflectance image of Jasper Ridge Biológica! Preserve, which is delineated by white Une 102 Figure 5.2. True color composite in RGB from April 29,1998 AVIRIS reflectance image in Jasper Ridge Biological Preserve which by delineated white line 103 Figxure 5.3. Flow chart of the analysis of hyperspectral images used in the thesis 104 Figure 5.4. Pixel Purity index figure from 1998 April image showing puré pixels of water (shadow) in red, vegetation in green, soil (yellow), crop dark blue in the bands: 1200 nm (90), 1210 nm (94) and 1620 nm (135) 110 Figure 5.5. Set of endmembers used for unmixing. Green vegetation and dry grass were selected automatically based on Pixel Purity Index (PPI), soil by visual inspection and shade by minimum albedo levéis in the image, corresponding to alake 111 Figure 5.6. Unmixing results using three endmembers: soil (red), green vegetation (green) and shade (blue) in spring at Jasper Ridge. Áreas with higher proportion of red correspond to the grasslands 112 Figure 5.7. Comparison of residuals across spectral bands between observed AVIRIS reflectance and modeled with unmixing in 1996 and 1998 for different vegetation types. Grasses present higher residuals as a consequence of senescence 114 Figure 5.8. Residuals between observed and predicted reflectance suggesting non-linear scattering effects due to increasing canopy levéis in high transmitting foliage and background effects from soil and litter in the grasses 116 Figtire 5.9. Differences in residuals between grasslands and chaparral áreas showing non-modeled reflectance from dry grass and litter at the red-edge and in the SWIR regions 117 Figure Differences between mean unmixing fractions in 1996 and 1998 calculated for each vegetation community. Error bars represent one standard deviation for the fraction distribution within each vegetation polygon and year 119 Figure Signifícant changes in green vegetation (GV), dry grass and soil fractions between 1996 and Black áreas correspond to decreases and gray áreas to increases in the wet year (1998) relative to the dry year (1996) 120 Figure 6.1. Laboratory spectra from Jasper Ridge selected for simulating linear mixtures within the pixel. Wavelenght has been resampled to AVIRIS specfral resolution 130 Figure 6.2.AVIRIS Signal-to -Noise ratios in 1987,1994, and 2000 (Green et al, 1999) 132 Figure 6.3. RMSE of reflectance (%) at pseudoinvariant features after performing Empirical Line cross calibration with reference reflectance (April 1997). Results correspond to 1995 October, 1996 March, 1997 June, and 1998 April 133 Figure 6.4. RMSE of Reflectance at pseudoinvariant features after and before performing Empirical line cross calibration (a) October 1995 and (b) June Figure 6.5. Mean reflectance differences between reference and apparent reflectance at some of the sites used in the cross-calibratio for June 1997 scene. Below each graph of mean differences, spectra corresponding to mean+ standard deviation of thepixels at the site are shown ( orange reference reflectance (apr97) and green empirical line calibration (ecljun97)) 136

16 Figiire 6.6. Mean differences between reference and apparent reflectance at some of the sites used in the cross-calibration of October 1995 scene. Below each graph of mean differences, spectra corresponding to mean+ standard deviation of the pixels at the site are shown ( orange reference reflectance (apr97) and green empirical Une calibration (ecloct97) 138 Figure 6.7. Standard deviation of reflectance between 5 AVIRIS scenes at the concrete pseudoinvariant site añer cross-calibration 139 Figure 6.8. Maps of NDVI (Normalized difference vegetation index) in (a) March 1996; (b) April 1997; (c) April 1998; (d) October 1995; and (e) June Figure 6.9. Maps of SRWI (Simple Ratio Water Index) in (a) March 1996; (b) April 1997; (c) April 1998; (d) October 1995; and (e) June Figure PRI (Photochemical Reflectance index) mean (red) and range (blue) of valúes within each vegetation type and date (scene) 144 Figure Relationships between NDVI and SRWI for evergreen forest at different dates. In the fourth panel, regresión lines corresponding to the previous data are shown together 145 Figure Library endmembers used in multitemporal spectral mixture analysis from Jasper Ridge spectral library 146 Figure Color composites of unmixing with 3 library endmembers in Jasper Ridge and Palo Alto área. Soil (red), green vegetation (green) and shade (blue). (a) March 1996; (b) April 1997; (c) April 1998; (d) June 1997; and (e) October Figxjre Fractions (%) of spectral mixture analysis using 3 endmembers (tarweed grass, soil butano grassland and shade) on the reflectance data per vegetation type and date, (a) serpentine grassland (b) non-serpentine grassland (c) chaparral (d) open scrubland (e) riparian forest (f) open woodland (g) evergreen forest (h) acquatic vegetation. Error bars represent one standard deviation within each vegetation community 150 Figure Root mean square error (RMSE) of linear spectral unmixing sliced by error levéis (%). (a) March 1996; (b) April 1997; (c) April 1998; (d) June 1997; and (e) October Figure RMSE (Root mean square error) using 3 endmembers (tarweed grass, soil butano grassland and shade) on the reflectance data per vegetation type and date, (a) serpentine grassland (b) non-serpentine grassland (c) chaparral (d) open scrubland (e)riparian (f) open woodland (g) evergreen (h) acquatic vegetation. Error bars represent one standard deviation within each vegetation community 152 Figure Linear mixtures soil and vegetation between O and 100 % spectral library spectra (a) puré spectra mixtures (b) SNR from 1998 degraded spectra mixtures (c) SNR from 1995 degraded spectra mixtures 153 Figure Effects on unmixing resdts of sensor noise corresponding to 1995 and 1997 with increasing fraction of true (simulated) green vegetatio from %. (a) bias in green vegetationfiractions (b) RMSE and shade fraction 154 Figure Effects on unmixing results of variability related to differences between scenes related to illumination, and atmospheric differences with increasing fraction of true (simulated) green vegetatin from 0-100% 155 Figure Impacts on estimated green vegetation fraction when introducing different components from the endmembers at the píxel level. Combinations of two specfra were performed between O % to 100 %. Positive bias indícate overestimations and negative biass underestimations XI

17 Mónica García Garda Figure Impacts on estimated green vegetation fraction when introducing different components from the endmembers at the pixel level.. Combinations of two spectra were performed between O % to 100 %. (a) shade fractions (b) RMSE 158 Figure Relationship between RMSE caused by changes in the spectral components of the pixel and bias in estimation of green vegetation fractions (difference between simulated and predicted fractions (a) underestimations and (b) overestimations 159 Figure 7.1. Flow chart of the analysis in this Chapter 169 Figure 7.2. Location of monitoring sites within IRBP to assess the effect of degrading resolution. 172 Figure 7.3. Comparison of the evolution of the spatial Coefficient of variation for NDVI and NDVI time series in the Coastal Range extent calculated for (a) Deciduous forest; (b) Evergreen forest; (c) Mixed forest; (d) Herbaceous rangeland; (e) Mixed rangeland; (f) Shrub and brush rangeland; and (g) Non-forested wetland 176 Figure 7.5. Experimental semivariograms calculated with AVIRIS and TM images in Jasper Ridge duríng different times of the growing season in different years 181 Figure 7.6. Impact of decreasing resolution on change detection between 1996 and 1998 in spring at the selected sites 182 Figure 7.7. Variation in green vegetation fractions when degrading resolution at the grasslands sites (a) spring 1998 (b) spring 1996 (c) relation for the grasslands samples between resolution and % change in green vegetation detected 182 Xll

18 Ménica García García RESUMEN DE LA TESIS

19 Esta, tesis está, formada ^tor. 9 capítulos. EL Capítulo 1 présenla una introducción dondélsejustífica. la necesidad-de conocer la productimdad.de los pastos naturales y su dependencia de la precipitfición y se- plantean, los objed-vos. d _la íesis EIL zonas Mediterráneas,- la. Yariahüídad climática, especialmente la precipitación es el principal factor limitante para el crecimiento vegetal. lin_ seguimiento, de. la prodikajvidad-.primaria e. las, praderas Mediterráneas^ y una-megor comprensión de sus respuestas a distintas escalas de las variaciones climáticas es importante para realizar-un uso más rarínnal de las mismas y predecir -SIL estabilidad.a.larga plazo. Los datos hiperespectrales tienen el potencial de detectar respuestas no detectadas por sensores de banda ancha y pueden ser usados para escalar a sensores de mapeo global de resolución más grosera. El Capítulo 2 continúa con los antecedentes y revisión bibliográfica sobre el clima, la vegetación, j-s\ uso de-jateledetección. parad seguimiento de-la vegetación, haciendo énfasis en la vegetación de zonas Mediterráneas sujeta a recurrentes periodos de sequía. En. el Capitulo 3 se describe la zona de- Studio. Esta zona. se. encuentra localizada -en el Maciza Costero en las Montañas de Santa Cruz, en Cahfomia (USA) con distintos tipos de vegetación Mediterránea^donde,seihan..iealizadQ los análisis a_gran^escala y comprende, d^ 184 x 280 Km. Incluida en ella, se encuentra la Reserva Biológica de Jasper Ridge (JRBP) con 482 ha, pertenecientaaja-imyersidad-delstanfnrd, donde se han realizado Jos, análisis.a escala localy con datos-hiperespectrales. En la zona de estudio los tipos de vegetación que coexisten y el rango de variadóii ambiental, existente, son representaírvos de los que, se_ encuentran en- otras zonas Mediterráneas, pudiendo servir por tanto de estudio piloto para extrapolar los resultados a otras zonas donde el sensor AVIRIS (Airbome Visible-Infrared Imaging Spectrometer) no se encuentra operativo, como por ejemplo en España. ios capítulos -dd 4.al 7 contienen xada uno un manuscrito jdescribiendo una investigación relacionada con los objetivos planteados en formato de artículo pubhcable. En el Capítulo 4 se pretende predecir la productividad primaria de las praderas naturales en la zona delesíudí0 ea función, de. las variaciones climáticas. Los, patrones, da tiempo están influidos por episodios periódicos que ocurren a escalas mayores de tiempo que las variaciones interanuales y estacionales. -Dichos patrones -periqdi os_de. dima,. como pol-ejemplo d. que ocurre, durante EL Niño, (una de las fases de ENSO-El Niño-Southem Oscillation) influyen en la precipitación de regiones dictantes del origen de. dichos.eventos,-como Caü&mia_o la. cuenca. Mediterránea, Así,- aunque las conexiones entre ENSO y la circulación global en California se han descrito (Schonher

20 Mónica García Garda y Nicholsnn, 1989X ^sus impaclos_sohre_el clima iio-están.-claros,-y varios estudios han alcanzadn - conclusiones distintas. Hasta que pimío las anomalías ^n la precipitación en la zona-de jesíudio se pueden, relacionar con, los. eventos ENSO es d primer objetiva de este, capítulo. EL águiente^es estudiar la relación entre estas anomalías y la producción de pastos. Para estimar la producción primaria-de_ la.-vegetación se han utilizado, datos- qiiincenales d _ND.YI (Normahzed DifFerence Vegetation Index) del sensor AVHRR entre 1994 a 1998 comparándolos con datos agregados de prndnrdón d^ hsnn natural an Talifomia Tos e^sntos-ensqvienen caracterizados en-fímciórudela temperatura superficial del mar (SST) en las regiones NIÑO del Pacífico. Los análisis realizados revelan- que_la propagación de los eventos. ENSQ en_el clima d^la-zona no sieniprelqcurre.de lamisma forma. Sin embargo, en general, los años de "El Niño" en la Costa Central de Caüfomia se asocian con eventos, húmedos,-qua sel_desencadenan tres meses antes en el Pacífico, mientras, que los años de "La Niña" muestran patrones menos consistentes. Conforme a los datos disponibles, se observa como en los años.de EUSüño ia-y im.ligero inr.rf;mfintn m la pmdnr.c.ión de Hiomasa y retrasos en el ciclo fenológico, presentando una mayor respuesta la vegetación en los años secos. Las series,.-quincenales de -NDVI de AVHRR son. apropiadas para el análisis de. -tendencias fenológicas a esta escala, siendo la integral ^nual -un -método válido para estimar la productividad anual de las praderas. Xapirecipi tación-puede-llegar a e?íplicar. un.j50 % de la varianza temporal del^ NDVI medio en cada comunidad vegetal. Este porcentaje depende del desfase temporal utilizado. EL Capítulo 5. (García, and Ustin,-2Í)01) consiste-en una aplicación específica, orientada, a la_. evaluación del potencial de los modelos lineales de mezcla en la detección de las respuestas de la vegetación a las-variaciones Lunáticas en primavera^utilizando-datos dd sensor AYIRIS (AicbomC- Visible-Infrared Imaging Spectrometer). La zona de estudio comprende 482 ha de pradera Mediterránea natural.eajasper Ridge.BíologicaL P-reserveL(IISA).-Se-compararon los resultados dedos imágenes AVIRIS adquiridas en primavera de un año húmedo y otro medio respecto a la precipitación. - Los, resultados, riel modelo linp^il dfi mezcla muestran que las diferencias medias, en. las fracciones de mezcla para los tipos de vegetación no eran significativamente distintas entre fechas debido a. la alta, variabilidad- espacial a teavés del. pai^^e- Sin. embaigov diferencias significativas entre comiuiidades vegetales fueron encontradas entre años sobre la base del píxel, subrayando la. importancia de-análisis acecíneos de-la. locaüzación. Esto signüca cpe. una. cobertura multitemporal de imágenes hiperespectrales es clave para comprender la dinámica de la vegetación. En el Capítulo 6 se amplían los objetivos del capítulo 5, realizando un análisis multitemporal, y evaluando el uso del modelo de mezcla con los mismos parámetros en todas las imágenes y píxeles

Enfermedad de las Manchas Blancas (EMB) White Spot Disease (WSD) Actualización del diagnóstico ambiental Octubre 2010. Perspectivas al 2011

Enfermedad de las Manchas Blancas (EMB) White Spot Disease (WSD) Actualización del diagnóstico ambiental Octubre 2010. Perspectivas al 2011 C I A D Enfermedad de las Manchas Blancas (EMB) White Spot Disease (WSD) Actualización del diagnóstico ambiental Octubre 2010 Perspectivas al 2011 Climate Diagnostic Bulletin http://www.cpc.noaa.gov/products/cdb/index.shtml

More information

An approach on the climate effects due to biomass burning aerosols

An approach on the climate effects due to biomass burning aerosols ÓPTICA PURA Y APLICADA Vol. 37, núm. 3-2004 An approach on the climate effects due to biomass burning aerosols Un método sobre los efectos climáticos de los aerosoles por quema de biomasa Martín José Montero-Martínez

More information

Sales Management Main Features

Sales Management Main Features Sales Management Main Features Optional Subject (4 th Businesss Administration) Second Semester 4,5 ECTS Language: English Professor: Noelia Sánchez Casado e-mail: noelia.sanchez@upct.es Objectives Description

More information

Adapting the Spencer model for diffuse solar radiation in Badajoz (Spain)

Adapting the Spencer model for diffuse solar radiation in Badajoz (Spain) ÓPTICA PURA Y APLICADA. www.sedoptica.es Sección Especial: 37 th AMASOM / Special Section: 37 th AMASOM Radiation and Atmospheric Components Adapting the Spencer model for diffuse solar radiation in Badajoz

More information

Dyna ISSN: 0012-7353 dyna@unalmed.edu.co Universidad Nacional de Colombia Colombia

Dyna ISSN: 0012-7353 dyna@unalmed.edu.co Universidad Nacional de Colombia Colombia Dyna ISSN: 0012-7353 dyna@unalmed.edu.co Universidad Nacional de Colombia Colombia POSADA, ENRIQUE Rational energy use and waste minimization goals based on the use of production data Dyna, vol. 75, núm.

More information

Adaptive fusion of ETM+ Landsat imagery in the Fourier domain

Adaptive fusion of ETM+ Landsat imagery in the Fourier domain Revista de Teledetección. 2003. 20: 59-63. Adaptive fusion of ETM+ Landsat imagery in the Fourier domain M. Lillo-Saavedra, C. Gonzalo, A. Arquero y E. Martinez Correo electrónico: maillo@udec.cl Facultad

More information

LEARNING MASTERS. Explore the Northeast

LEARNING MASTERS. Explore the Northeast LEARNING MASTERS Explore the Northeast Explore the Northeast BUILD BACKGROUND Reading Expeditions: Language, Literacy & Vocabulary Five Regions Map Use the information on page 4 of Explore the Northeast

More information

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University

More information

PROCEDIMIENTOPARALAGENERACIÓNDEMODELOS3DPARAMÉTRICOSA PARTIRDEMALLASOBTENIDASPORRELEVAMIENTOCONLÁSERESCÁNER

PROCEDIMIENTOPARALAGENERACIÓNDEMODELOS3DPARAMÉTRICOSA PARTIRDEMALLASOBTENIDASPORRELEVAMIENTOCONLÁSERESCÁNER PROCEDIMIENTOPARALAGENERACIÓNDEMODELOS3DPARAMÉTRICOSA PARTIRDEMALLASOBTENIDASPORRELEVAMIENTOCONLÁSERESCÁNER Lopresti,LauraA.;Lara, Marianela;Gavino,Sergio;Fuertes,LauraL.;Defranco,GabrielH. UnidaddeInvestigación,DesaroloyTransferencia-GrupodeIngenieríaGráficaAplicada

More information

Guidelines for Designing Web Maps - An Academic Experience

Guidelines for Designing Web Maps - An Academic Experience Guidelines for Designing Web Maps - An Academic Experience Luz Angela ROCHA SALAMANCA, Colombia Key words: web map, map production, GIS on line, visualization, web cartography SUMMARY Nowadays Internet

More information

Ultraviolet index estimated in Badajoz (Spain) using a multiband radiometer

Ultraviolet index estimated in Badajoz (Spain) using a multiband radiometer ÓPTICA PURA Y APLICADA. www.sedoptica.es Sección Especial: 37 th AMASOM / Special Section: 37 th AMASOM Radiation and Atmospheric Components Ultraviolet index estimated in Badajoz (Spain) using a multiband

More information

Entry to Year 7 - Information for Parents

Entry to Year 7 - Information for Parents Entry to Year 7 - Information for Parents Key Names: Mrs Elizabeth Batchelor - Head of the Secondary School Mr Darren Roth - Head of Key Stage Three Miss Karen Britcliffe - Head of Pastoral Care Groupings

More information

LINIO COLOMBIA. Starting-Up & Leading E-Commerce. www.linio.com.co. Luca Ranaldi, CEO. Pedro Freire, VP Marketing and Business Development

LINIO COLOMBIA. Starting-Up & Leading E-Commerce. www.linio.com.co. Luca Ranaldi, CEO. Pedro Freire, VP Marketing and Business Development LINIO COLOMBIA Starting-Up & Leading E-Commerce Luca Ranaldi, CEO Pedro Freire, VP Marketing and Business Development 22 de Agosto 2013 www.linio.com.co QUÉ ES LINIO? Linio es la tienda online #1 en Colombia

More information

Selecting the appropriate band combination for an RGB image using Landsat imagery

Selecting the appropriate band combination for an RGB image using Landsat imagery Selecting the appropriate band combination for an RGB image using Landsat imagery Ned Horning Version: 1.0 Creation Date: 2004-01-01 Revision Date: 2004-01-01 License: This document is licensed under a

More information

ICT education and motivating elderly people

ICT education and motivating elderly people Ariadna; cultura, educación y tecnología. Vol. I, núm. 1, jul. 2013 htpp://ariadna.uji.es 3 RD International Conference on Elderly and New Technologies pp. 88-92 DOI: http://dx.doi.org/10.6035/ariadna.2013.1.15

More information

Versión precedente* Lista productos disponibles** Disponible desde el June 1, 2013

Versión precedente* Lista productos disponibles** Disponible desde el June 1, 2013 Versión precedente* Lista productos disponibles** Disponible desde el June 1, 2013 Las solicitudes de licencias de versión anterior sólo están disponibles para los productos enumerados en este documento.

More information

Glaciologic remote sensing activities at LABTEL

Glaciologic remote sensing activities at LABTEL Glaciologic remote sensing activities at LABTEL Bram Leo Willems Laboratorio de Teledetección-LABTEL Facultad de Ciencias Físicas Universidad Nacional Mayor de San Marcos Lima-Perú Laboratorio de Teledetección

More information

Home vol.3 - Bathrooms - Scenes & Shapes

Home vol.3 - Bathrooms - Scenes & Shapes Baños-1 Bathrooms-1 modelos 3D para usuarios Strata 3D models for Strata users Manual de referencia Reference manual Escenas y shapes listos para usar con alto nivel de detalle Scenes & Shapes ready to

More information

3.3 Normalised Difference Vegetation Index (NDVI) 3.3.1 NDVI: A non-technical overview

3.3 Normalised Difference Vegetation Index (NDVI) 3.3.1 NDVI: A non-technical overview Page 1 of 6 3.3 Normalised Difference Vegetation Index (NDVI) 3.3.1 NDVI: A non-technical overview The Normalised Difference Vegetation Index (NDVI) gives a measure of the vegetative cover on the land

More information

Enrollment Forms Packet (EFP)

Enrollment Forms Packet (EFP) Enrollment Forms Packet (EFP) Please review the information below. Based on your student(s) grade and applicable circumstances, you are required to submit documentation in order to complete this step in

More information

Spanish Grammar II. Tierra Encantada Charter School. Contact Number: (505) 983-3337

Spanish Grammar II. Tierra Encantada Charter School. Contact Number: (505) 983-3337 Spanish Grammar II Tierra Encantada Charter School Mr. Arruga Contact Number: (505) 983-3337 Course Description/Objectives / Descripcion del curso / Objetivos: La asignatura de Gramatica espanola pretende

More information

MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA

MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA Li-Yu Chang and Chi-Farn Chen Center for Space and Remote Sensing Research, National Central University, No. 300, Zhongda Rd., Zhongli

More information

INFORMATIONAL NOTICE

INFORMATIONAL NOTICE Rod R. Blagojevich, Governor Barry S. Maram, Director 201 South Grand Avenue East Telephone: (217) 782-3303 Springfield, Illinois 62763-0002 TTY: (800) 526-5812 DATE: March 4, 2008 INFORMATIONAL NOTICE

More information

INTELIGENCIA DE NEGOCIO CON SQL SERVER

INTELIGENCIA DE NEGOCIO CON SQL SERVER INTELIGENCIA DE NEGOCIO CON SQL SERVER Este curso de Microsoft e-learning está orientado a preparar a los alumnos en el desarrollo de soluciones de Business Intelligence con SQL Server. El curso consta

More information

Management effectiveness evaluation: for the CBD and for better parks Principles for MEE Methodologies

Management effectiveness evaluation: for the CBD and for better parks Principles for MEE Methodologies Management effectiveness evaluation: for the CBD and for better parks Principles for MEE Methodologies Key question: How will the evaluation help management? Before choosing a methodology or undertaking

More information

Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product

Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Michael J. Lewis Ph.D. Student, Department of Earth and Environmental Science University of Texas at San Antonio ABSTRACT

More information

Climate Smart Agriculture - Reducing uncertainty on what, and when to grow rice in Colombia

Climate Smart Agriculture - Reducing uncertainty on what, and when to grow rice in Colombia Climate Smart Agriculture - Reducing uncertainty on what, and when to grow rice in Colombia Camilo Barrios Crop modeler at CIAT - CCAFS c.barrios@cgiar.org Montevideo - Uruguay 12/10/2014 We are vic%ms

More information

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 29 June 2015

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 29 June 2015 ENSO: Recent Evolution, Current Status and Predictions Update prepared by: Climate Prediction Center / NCEP 29 June 2015 Outline Summary Recent Evolution and Current Conditions Oceanic Niño Index (ONI)

More information

Introduction to Spectral Reflectance (passive sensors) Overview. Electromagnetic Radiation (light) 4/4/2014

Introduction to Spectral Reflectance (passive sensors) Overview. Electromagnetic Radiation (light) 4/4/2014 Introduction to Spectral Reflectance (passive sensors) Kelly R. Thorp Research Agricultural Engineer USDA-ARS Arid-Land Agricultural Research Center Overview Electromagnetic Radiation (light) Solar Energy

More information

AP SPANISH LANGUAGE 2011 PRESENTATIONAL WRITING SCORING GUIDELINES

AP SPANISH LANGUAGE 2011 PRESENTATIONAL WRITING SCORING GUIDELINES AP SPANISH LANGUAGE 2011 PRESENTATIONAL WRITING SCORING GUIDELINES SCORE DESCRIPTION TASK COMPLETION TOPIC DEVELOPMENT LANGUAGE USE 5 Demonstrates excellence 4 Demonstrates command 3 Demonstrates competence

More information

Water Resource Management & Climate Variability

Water Resource Management & Climate Variability Water Resource Management & Climate Variability Possibilities for Transboundary Knowledge Transfer on the US-Mexico Border Prepared for presentation at the Open Meeting of the Global Environmental Change

More information

VMware vsphere with Operations Management: Fast Track

VMware vsphere with Operations Management: Fast Track VMware vsphere with Operations Management: Fast Track Duración: 5 Días Código del Curso: VSOMFT Método de Impartición: Curso Cerrado (In-Company) Temario: Curso impartido directamente por VMware This intensive,

More information

En esta guía se encuentran los cursos que se recomiendan los participantes en la implementación de un SGEn en dependencias del Gobierno Federal.

En esta guía se encuentran los cursos que se recomiendan los participantes en la implementación de un SGEn en dependencias del Gobierno Federal. En esta guía se encuentran los cursos que se recomiendan los participantes en la implementación de un SGEn en dependencias del Gobierno Federal. Las lecciones se agrupan en 5 cursos dirigidos cada participante

More information

CONCEPTS OF INDUSTRIAL AUTOMATION. By: Juan Carlos Mena Adolfo Ortiz Rosas Juan Camilo Acosta

CONCEPTS OF INDUSTRIAL AUTOMATION. By: Juan Carlos Mena Adolfo Ortiz Rosas Juan Camilo Acosta CONCEPTS OF By: Juan Carlos Mena Adolfo Ortiz Rosas Juan Camilo Acosta What is industrial automation? Introduction Implementation of normalized technologies for optimization of industrial process Where

More information

Resolutions of Remote Sensing

Resolutions of Remote Sensing Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands) 3. Temporal (time of day/season/year) 4. Radiometric (color depth) Spatial Resolution describes how

More information

Dyna ISSN: 0012-7353 dyna@unalmed.edu.co Universidad Nacional de Colombia Colombia

Dyna ISSN: 0012-7353 dyna@unalmed.edu.co Universidad Nacional de Colombia Colombia Dyna ISSN: 0012-7353 dyna@unalmed.edu.co Universidad Nacional de Colombia Colombia VELÁSQUEZ HENAO, JUAN DAVID; RUEDA MEJIA, VIVIANA MARIA; FRANCO CARDONA, CARLOS JAIME ELECTRICITY DEMAND FORECASTING USING

More information

Potential Climate Impact of Large-Scale Deployment of Renewable Energy Technologies. Chien Wang (MIT)

Potential Climate Impact of Large-Scale Deployment of Renewable Energy Technologies. Chien Wang (MIT) Potential Climate Impact of Large-Scale Deployment of Renewable Energy Technologies Chien Wang (MIT) 1. A large-scale installation of windmills Desired Energy Output: supply 10% of the estimated world

More information

LOS ANGELES UNIFIED SCHOOL DISTRICT REFERENCE GUIDE

LOS ANGELES UNIFIED SCHOOL DISTRICT REFERENCE GUIDE TITLE: Environmental Health Advisory Procedures ROUTING All Schools and Offices NUMBER: ISSUER: Robert Laughton, Director Office of Environmental Health and Safety DATE: March 30, 2015 Thelma Meléndez,

More information

Ask your child what he or she is learning to say in Spanish at school. Encourage your child to act as if he or she is your teacher.

Ask your child what he or she is learning to say in Spanish at school. Encourage your child to act as if he or she is your teacher. Welcome to Descubre el español con Santillana! This year, your child will be learning Spanish by exploring the culture of eight Spanish-speaking countries. Please join us as we travel through each of the

More information

Comments on Draft OECD/IOPS Good Practices on Pension Fund s Use of Alternative Investments and Derivatives

Comments on Draft OECD/IOPS Good Practices on Pension Fund s Use of Alternative Investments and Derivatives Comments on Draft OECD/IOPS Good Practices on Pension Fund s Use of Alternative Investments and Derivatives This document includes comments from various FIAP members, belonging to different countries.

More information

Environmental Education in the Galápagos: Where do we go from here? Galápagos Symposium 2009. By Carl M. Stepath, PhD, Kauai Community College, Hawaii

Environmental Education in the Galápagos: Where do we go from here? Galápagos Symposium 2009. By Carl M. Stepath, PhD, Kauai Community College, Hawaii Environmental Education in the Galápagos: Where do we go from here? Galápagos Symposium 2009 By Carl M. Stepath, PhD, Kauai Community College, Hawaii stepath@hawaii.edu, www.saveourseas.org/saveourseas/stepath.html

More information

VaughanTown. Newsletter 5:...Last Words. Last Words and Recommendations Last Reminder Meeting point map. www.vaughantown.com

VaughanTown. Newsletter 5:...Last Words. Last Words and Recommendations Last Reminder Meeting point map. www.vaughantown.com VaughanTown Newsletter 5:...Last Words Last Words and Recommendations Last Reminder Meeting point map www.vaughantown.com 00 / 01 Años / VaughanTown Escolares en el Extranjero E.S.O & Bachillerato Last

More information

Clouds and the Energy Cycle

Clouds and the Energy Cycle August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and

More information

IntesisBox PA-RC2-xxx-1 SANYO compatibilities

IntesisBox PA-RC2-xxx-1 SANYO compatibilities IntesisBox PA-RC2-xxx-1 SANYO compatibilities In this document the compatible SANYO models with the following IntesisBox RC2 interfaces are listed: / En éste documento se listan los modelos SANYO compatibles

More information

Data Processing Flow Chart

Data Processing Flow Chart Legend Start V1 V2 V3 Completed Version 2 Completion date Data Processing Flow Chart Data: Download a) AVHRR: 1981-1999 b) MODIS:2000-2010 c) SPOT : 1998-2002 No Progressing Started Did not start 03/12/12

More information

A remote sensing instrument collects information about an object or phenomenon within the

A remote sensing instrument collects information about an object or phenomenon within the Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information

More information

Ejercicios propuestos C. Alexander IV.2 Parametric VaR

Ejercicios propuestos C. Alexander IV.2 Parametric VaR Ejercicios propuestos C. Alexander IV.2 Parametric VaR 1. Suppose that a portfolio s daily log returns are normally distributed with a standard deviation of 1% and a mean of 0.01% above the discount rate.

More information

Chapter 10 Physical Development from One to Three

Chapter 10 Physical Development from One to Three Chapter 10 Chapter 10 Physical Development from One to Three Physical Development from One to Three Contents Section 10.1 Growth and Development from One to Three Section 10.2 Caring for Children from

More information

Marta Zorrilla Universidad de Cantabria

Marta Zorrilla Universidad de Cantabria Tipos de problemas Marta Zorrilla Universidad de Cantabria Slides from Tan, P., Steinbach, M., Kumar, V. Introduction to data mining. Pearson Prentice Hall. 2006 Data Mining Tasks Prediction Methods Use

More information

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Graham Emde GEOG 3230 Advanced Remote Sensing February 22, 2013 Lab #1 Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Introduction Wildfires are a common disturbance

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 9 May 2011

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 9 May 2011 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 9 May 2011 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index (ONI)

More information

Application for World Wide Views on Climate and Energy Phoenix, AZ

Application for World Wide Views on Climate and Energy Phoenix, AZ Application for World Wide Views on Climate and Energy Phoenix, AZ Thank you for applying to be part of the Arizona deliberations for World Wide Views on Climate and Energy. To learn more about the global

More information

Hyperspectral Satellite Imaging Planning a Mission

Hyperspectral Satellite Imaging Planning a Mission Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective

More information

Fabrication and evaluation of a Solar Grain Dryer Fabricación y evaluación de una Secadora Solar de Granos

Fabrication and evaluation of a Solar Grain Dryer Fabricación y evaluación de una Secadora Solar de Granos USO DE LA ENERGÍA EN LA AGRICULTURA USE OF THE ENERGY IN AGRICULTURE Fabrication and evaluation of a Solar Grain Dryer Fabricación y evaluación de una Secadora Solar de Granos Yanoy Morejón Mesa 1, Toshiyuki

More information

Climate Change. Lauma M. Jurkevics - DWR, Southern Region Senior Environmental Scientist

Climate Change. Lauma M. Jurkevics - DWR, Southern Region Senior Environmental Scientist Climate Change A n o t h e r F a c t o r i n M a n a g i n g S o u t h e r n C a l i f o r n i a s W a t e r R e s o u r c e s Lauma M. Jurkevics - DWR, Southern Region Senior Environmental Scientist USEPA-Region

More information

Global environmental information Examples of EIS Data sets and applications

Global environmental information Examples of EIS Data sets and applications METIER Graduate Training Course n 2 Montpellier - february 2007 Information Management in Environmental Sciences Global environmental information Examples of EIS Data sets and applications Global datasets

More information

INTEGRATED NATIONAL ADAPTATION PILOT República de Colombia INAP

INTEGRATED NATIONAL ADAPTATION PILOT República de Colombia INAP INTEGRATED NATIONAL ADAPTATION PILOT INAP Ecosystem Based Adaptation High Mountain Ecosystems Angela Andrade Technical Coordinator INAP Klaus Schutze Páez Coordinator Comp B CLIMATE CHANGE IN COLOMBIA

More information

Semantic Representation of Raster Spatial Data

Semantic Representation of Raster Spatial Data ABSTRACT of PhD THESIS Semantic Representation of Raster Spatial Data Representación Semántica de Datos Espaciales Raster Rolando Quintero Téllez Graduated on November 08, 2007 Centro de Investigación

More information

ENVI Classic Tutorial: Atmospherically Correcting Hyperspectral Data using FLAASH 2

ENVI Classic Tutorial: Atmospherically Correcting Hyperspectral Data using FLAASH 2 ENVI Classic Tutorial: Atmospherically Correcting Hyperspectral Data Using FLAASH Atmospherically Correcting Hyperspectral Data using FLAASH 2 Files Used in This Tutorial 2 Opening the Uncorrected AVIRIS

More information

Global Seasonal Phase Lag between Solar Heating and Surface Temperature

Global Seasonal Phase Lag between Solar Heating and Surface Temperature Global Seasonal Phase Lag between Solar Heating and Surface Temperature Summer REU Program Professor Tom Witten By Abstract There is a seasonal phase lag between solar heating from the sun and the surface

More information

NEW TOOLS FOR THE SELECTION OF TECHNOLOGIES; APPLICATION TO SHEET METAL FORMING

NEW TOOLS FOR THE SELECTION OF TECHNOLOGIES; APPLICATION TO SHEET METAL FORMING XI CONGRESO INTERNACIONAL DE INGENIERIA DE PROYECTOS LUGO, 26-28 Septiembre, 2007 NEW TOOLS FOR THE SELECTION OF TECHNOLOGIES; APPLICATION TO SHEET METAL FORMING Abstract David. Cortés Saenz (p), Carles.

More information

The Oceans Role in Seasonal and Longer Term Climate

The Oceans Role in Seasonal and Longer Term Climate The Oceans Role in Seasonal and Longer Term Climate Why the recent cooling is likely just the start Although, I believe ultimately the sun is the primary driver for the changes to global climate, the oceans

More information

Monsoon Variability and Extreme Weather Events

Monsoon Variability and Extreme Weather Events Monsoon Variability and Extreme Weather Events M Rajeevan National Climate Centre India Meteorological Department Pune 411 005 rajeevan@imdpune.gov.in Outline of the presentation Monsoon rainfall Variability

More information

PARTICIPATORY ECOLOGICAL RESTORATION IN THE RIO BLANCO WATERSHED: ECOSYSTEM BASED ADAPTATION ACTIONS TO ADDRESS CLIMATE CHANGE IMPACTS IN THE

PARTICIPATORY ECOLOGICAL RESTORATION IN THE RIO BLANCO WATERSHED: ECOSYSTEM BASED ADAPTATION ACTIONS TO ADDRESS CLIMATE CHANGE IMPACTS IN THE PARTICIPATORY ECOLOGICAL RESTORATION IN THE RIO BLANCO WATERSHED: ECOSYSTEM BASED ADAPTATION ACTIONS TO ADDRESS CLIMATE CHANGE IMPACTS IN THE CHINGAZA MASSIF, HIGH MOUNTAIN ECOSYSTEMS OF COLOMBIA Angela

More information

Response Area 3 - Community Meeting

Response Area 3 - Community Meeting September 2010 Greetings, Welcome to the Independence Division, Response Area 3 monthly community letter. Please check the Independence Division Response Area map at www.cmpd.org/patrol to see which area

More information

REOP. Vol. 15, N o 2, 2 o Semestre, 2004, pp. 5-11 ESTUDIOS FUND UTILISATON FOR GOODS AND SERVICES IN UNIVERSITY PRODUCTION UTILIZACIÓN DE FONDOS ECONÓMICOS DESTINADOS A BIENES Y SERVICIOS DE LA UNIVERSIDAD

More information

Project AGUA Survey Results

Project AGUA Survey Results Project AGUA Survey Results Project AGUA (Arid Garden Underground Aquifer) This survey was conducted after the AGUA Presentation on August 6, 2015 at the Santa Ana Public Library to analyze the public

More information

Climate Change on the Prairie:

Climate Change on the Prairie: Climate Change on the Prairie: A Basic Guide to Climate Change in the High Plains Region - UPDATE Global Climate Change Why does the climate change? The Earth s climate has changed throughout history and

More information

2.3 Mapping Earth s Physical Features A world physical features map shows information about. Physical Features. canyon. Word Bank

2.3 Mapping Earth s Physical Features A world physical features map shows information about. Physical Features. canyon. Word Bank Read Section 2.3. Write one or two sentences describing the type of thematic map you read about. Then match the physical features in the Word Bank to their correct locations on the illustration. An example

More information

Using Remote Sensing to Monitor Soil Carbon Sequestration

Using Remote Sensing to Monitor Soil Carbon Sequestration Using Remote Sensing to Monitor Soil Carbon Sequestration E. Raymond Hunt, Jr. USDA-ARS Hydrology and Remote Sensing Beltsville Agricultural Research Center Beltsville, Maryland Introduction and Overview

More information

What you need TITLE to know about college admission TITLE tests

What you need TITLE to know about college admission TITLE tests Parents What you need to know about college admission tests Your child will want to take a college admission test, such as the SAT or other college entrance exams, when he or she is a junior or senior.

More information

How Landsat Images are Made

How Landsat Images are Made How Landsat Images are Made Presentation by: NASA s Landsat Education and Public Outreach team June 2006 1 More than just a pretty picture Landsat makes pretty weird looking maps, and it isn t always easy

More information

The role of Earth Observation Satellites to observe rainfall. Riko Oki National Space Development Agency of Japan

The role of Earth Observation Satellites to observe rainfall. Riko Oki National Space Development Agency of Japan The role of Earth Observation Satellites to observe rainfall Riko Oki National Space Development Agency of Japan Outline 1. Importance of rain measurement 2. TRMM and Its Achievements 3. Outline of GPM

More information

ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln

ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln REMOTE SENSING (SATELLITE) SYSTEM TECHNOLOGIES Michael A. Okoye and Greg T. Earth Satellite Corporation, Rockville Maryland, USA Keywords: active microwave, advantages of satellite remote sensing, atmospheric

More information

STAR Algorithm and Data Products (ADP) Beta Review. Suomi NPP Surface Reflectance IP ARP Product

STAR Algorithm and Data Products (ADP) Beta Review. Suomi NPP Surface Reflectance IP ARP Product STAR Algorithm and Data Products (ADP) Beta Review Suomi NPP Surface Reflectance IP ARP Product Alexei Lyapustin Surface Reflectance Cal Val Team 11/26/2012 STAR ADP Surface Reflectance ARP Team Member

More information

Chapter 3 Communities, Biomes, and Ecosystems

Chapter 3 Communities, Biomes, and Ecosystems Communities, Biomes, and Ecosystems Section 1: Community Ecology Section 2: Terrestrial Biomes Section 3: Aquatic Ecosystems Click on a lesson name to select. 3.1 Community Ecology Communities A biological

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

DOCUMENT RESUME ED 318 301 FL 800 119 AUTHOR EDRS PRICE DESCRIPTORS

DOCUMENT RESUME ED 318 301 FL 800 119 AUTHOR EDRS PRICE DESCRIPTORS DOCUMENT RESUME ED 318 301 FL 800 119 AUTHOR Spener, David TITLE Setting an Agenda for Study in Home-Based ESL r.lasses with Native Speakers of Spanish. PUB DATE 90 NOTE 7p. PUB TYPE Guides - Classroom

More information

Práctica 1: PL 1a: Entorno de programación MathWorks: Simulink

Práctica 1: PL 1a: Entorno de programación MathWorks: Simulink Práctica 1: PL 1a: Entorno de programación MathWorks: Simulink 1 Objetivo... 3 Introducción Simulink... 3 Open the Simulink Library Browser... 3 Create a New Simulink Model... 4 Simulink Examples... 4

More information

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Centro de Sensores Remotos CONICET CONAE NASA

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Centro de Sensores Remotos CONICET CONAE NASA Monitoring Urban Night-Time Lights Related to Economic Activity (Gross Domestic Product), Urban Heat Island (UHI) and Fires detection in the Paraná Flooding Valley - Argentina using the Observatory SAC-

More information

Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes

Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes Naftaly Goldshleger, *Eyal Ben-Dor,* *Ido Livne,* U. Basson***, and R.Ben-Binyamin*Vladimir

More information

ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES

ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES Joon Mook Kang, Professor Joon Kyu Park, Ph.D Min Gyu Kim, Ph.D._Candidate Dept of Civil Engineering, Chungnam National University 220

More information

A Model for the Financial Assessment of Forest Fire Prevention Plans in Mediterranean Forest Ecosystems 1

A Model for the Financial Assessment of Forest Fire Prevention Plans in Mediterranean Forest Ecosystems 1 Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View A Model for the Financial Assessment of Forest Fire Prevention Plans in Mediterranean Forest Ecosystems

More information

Standardization of the Freshwater Ecosystems in South America

Standardization of the Freshwater Ecosystems in South America A. Title of Proposed Project Standardization of the Freshwater Ecosystems in South America B. Contact Information for Principal Investigator(s) Name: Steven R Schill, PhD Address: The Nature Conservancy

More information

y = Xβ + ε B. Sub-pixel Classification

y = Xβ + ε B. Sub-pixel Classification Sub-pixel Mapping of Sahelian Wetlands using Multi-temporal SPOT VEGETATION Images Jan Verhoeye and Robert De Wulf Laboratory of Forest Management and Spatial Information Techniques Faculty of Agricultural

More information

ORIGINAL REPRODUCTIBILIDAD DEL INSTRUMENTO HC THE HC INSTRUMENT REPRODUCIBILITY

ORIGINAL REPRODUCTIBILIDAD DEL INSTRUMENTO HC THE HC INSTRUMENT REPRODUCIBILITY Rev.int.med.cienc.act.fís.deporte- vol. 11 - número 41 - marzo 2011 - ISSN: 1577-0354 Buendía Lozada, E.R.P. (2011). Reproductibilidad del instrumento HC / The HC instrument reproducibility. Revista Internacional

More information

Landsat Monitoring our Earth s Condition for over 40 years

Landsat Monitoring our Earth s Condition for over 40 years Landsat Monitoring our Earth s Condition for over 40 years Thomas Cecere Land Remote Sensing Program USGS ISPRS:Earth Observing Data and Tools for Health Studies Arlington, VA August 28, 2013 U.S. Department

More information

CURRICULUM VITAE Julio Florentino del Corral Cuervo 26 th September, 2008

CURRICULUM VITAE Julio Florentino del Corral Cuervo 26 th September, 2008 CURRICULUM VITAE Julio Florentino del Corral Cuervo 26 th September, 2008 Personal Data Birth Date: 23/11/1980 Personal Adress: Proffesional Adress: Homepage: E-mail adress: C/ Electra 17, 1º Izquierda,

More information

Modelación y Cartografía Digital de Suelos en Australia. Elisabeth Bui CSIRO Land and Water

Modelación y Cartografía Digital de Suelos en Australia. Elisabeth Bui CSIRO Land and Water Modelación y Cartografía Digital de Suelos en Australia Elisabeth Bui CSIRO Land and Water Australia tiene una larga historia en los inventarios de los recursos de la tierra y en los métodos de evaluación

More information

A New Extension of the Exponential Distribution

A New Extension of the Exponential Distribution Revista Colombiana de Estadística Junio 2014, volumen 37, no. 1, pp. 25 a 34 A New Extension of the Exponential Distribution Una nueva extensión de la distribución exponencial Yolanda M. Gómez 1,a, Heleno

More information

Como sabemos que lo funcional y lo estético son importantes para ti, te ofrecemos diferentes acabados y colores.

Como sabemos que lo funcional y lo estético son importantes para ti, te ofrecemos diferentes acabados y colores. A En Rejiplas fabricamos y comercializamos organizadores y soluciones de espacio para el hogar. Hacemos realidad tus proyectos e ideas optimizando todos los ambientes. Nuestros herrajes y soluciones están

More information

Dynamics of Typha latifolia population in a free water surface flow constructed wetland in Estonia

Dynamics of Typha latifolia population in a free water surface flow constructed wetland in Estonia TÍTULO DEL TRABAJO Dynamics of Typha latifolia population in a free water surface flow constructed wetland in Estonia NOMBRE DE AUTORES Martin Maddison* and Ülo Mander NOMBRE Y DIRECCIÓN DE LAS INSTITUCIONES

More information

Review for Introduction to Remote Sensing: Science Concepts and Technology

Review for Introduction to Remote Sensing: Science Concepts and Technology Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director ann@baremt.com Funded by National Science Foundation Advanced Technological Education program [DUE

More information

INFORMATION DOSSIER WORK EXPERIENCE EUROPEAN SCHOOL ALICANTE

INFORMATION DOSSIER WORK EXPERIENCE EUROPEAN SCHOOL ALICANTE INFORMATION DOSSIER WORK EXPERIENCE EUROPEAN SCHOOL ALICANTE YEAR 2015-2016 INDEX 1. GENERAL 2. INTRODUCTORY LETTER 3. GUIDE FOR BUSINESSES / GUÍA PARA LAS EMPRESAS. 4. CONFIRMATION FORM / CARTA DE CONFIRMACIÓN.

More information

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,

More information

2.3 Spatial Resolution, Pixel Size, and Scale

2.3 Spatial Resolution, Pixel Size, and Scale Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,

More information

Comparative study of visual impact on agricultural constructions and windfarms in Spain *

Comparative study of visual impact on agricultural constructions and windfarms in Spain * Comparative study of visual impact on agricultural constructions and windfarms in Spain * I.Cañas 1 ; C. Lago 2 ; L. García 3 ; M. Ruiz 3 ; F. Maseda 4. ( 1 ) Dr. Ingeniero Agrónomo. E.T.S.Ingenieros Agrónomos.Universidad

More information

TRAYECTORIAS DE HURACANES Y FENOMENOS CLIMATICOS

TRAYECTORIAS DE HURACANES Y FENOMENOS CLIMATICOS CAMBIO CLIMATICO Presentación en FUNGLODE, Rep. Dominicana, 2006 TRAYECTORIAS DE HURACANES Y FENOMENOS CLIMATICOS Joel Perez Joel.perez@cathalac.org CATHALAC WHERE WE ARE Ubicación Cambio Climático & Variabilidad

More information

FORMACIÓN E-LEARNING DE MICROSOFT

FORMACIÓN E-LEARNING DE MICROSOFT FORMACIÓN E-LEARNING DE MICROSOFT NANFOR IBÉRICA S.L PARTNER GLOBAL DE E-LEARNING DE MICROSOFT, único en Europa del Sur e Iberoamérica, y uno de los 9 existentes en todo el mundo. NOVEDADES EN LAS CERTIFICACIONES

More information

Pacific ENSO update INFORMATIVO CLIMATICO E l Niño Southern Oscillation

Pacific ENSO update INFORMATIVO CLIMATICO E l Niño Southern Oscillation Instituto del Mar del Perú Nro. 9 Junio 1997 Pacific ENSO update INFORMATIVO CLIMATICO E l Niño Southern Oscillation I NS TITUTO D EL M AR D E L E R U * * C I E N C I A Y T E C P O N O L A I G EDITADO

More information