Optimizing the Use of Random Access Channels in GSM-GPRS

Size: px
Start display at page:

Download "Optimizing the Use of Random Access Channels in GSM-GPRS"

Transcription

1 Wireless Personal Communications 22: , Kluwer Academic Publishers. Printed in the Netherlands. Optimizing the Use of Random Access Channels in GSM-GPRS JAHANGIR H. SARKER and SEPPO J. HALME Communications Laboratory, Helsinki University of Technology, P.O. Box 2300, FIN HUT, Finland Abstract. The random access channels and traffic channels are utilized, respectively, for call establishment and information transmission in the uplink direction (from mobile to base station) of the Global System for Mobile communications (GSM) networks. A call is either rejected or blocked depending on its inability to succeed either in the random access channels or in the traffic channels. The optimum number of random access slots is directly proportional to the average call arrival rate, being independent of the average channel holding time and the number of traffic channels. The number of slots occupied by a given call can be changed dynamically in the newly developed General Packet Radio Service (GPRS) systems. A complete analysis is executed for the traffic channel utilization and call blocking probability with the exact number of random access slots that provide almost zero call rejection probability. The overall call success probability is derived considering call rejection and call blocking probabilities. Keywords: call blocking, call rejection, GPRS, GSM, random access, traffic channel, overall call success. 1. Introduction The core network of the Universal Mobile Communication Systems (UMTS) will be at least partly based on Global System for Mobile (GSM) [1]. The initial implementation of GSM was for voice communications. Like several other technologies the second-generation system GSM is evolving via General Packet Radio Services (GPRS), High Speed Circuit Switched Data (HSCSD) and Enhanced Data Rates for GSM Evolution (EDGE) towards UMTS [2]. Currently, the EDGE radio interface is being standardized by European Telecommunications Standard Institute (ETSI) and by TIA TR45.3 as a GSM Phase 2+ work item. The new EDGE radio interface deploys 8-PSK modulation instead of GMSK, thus enabling a higher data throughput per slot [3]. In GSM, a fixed number of radio carriers are allocated in each base station. Precisely, the central frequencies of the carriers are positioned every 200 khz within the system frequency band (FDMA aspect). Each carrier is divided into time frames of duration 60/13 ms and again each time frame is divided into 8 parts along the time axis called slots (TDMA aspect). A traffic channel has a single slot in every time frame (or 60/13 ms). In a given base station the number of traffic channels is limited. In the existing GSM system, free traffic channels are given to a circuit-mode voice call on a reserved basis for the whole conversation period on a one traffic channel for one voice call basis. A voice call is blocked when all traffic channels in a base station are occupied. A talker of a voice call does not talk continuously. The slots of a traffic channel are occupied when the talker is active and unoccupied (gaps) when the talker is silent. The circuit mode voice calls (with a given blocking probability in a base station) keep some unused traffic channel(s) and the dynamic silence gap(s) and thus waste some radio resources. The packet-

2 388 Jahangir H. Sarker and Seppo J. Halme mode data transmission technology, GPRS is an effective solution, because it can transmit over the unused traffic channels and silence gaps of existing voice calls in that base station without increasing the voice call blocking probability. A GPRS call can occupy a maximum of 8 slots in a time frame and the number of occupied slots in the next time frames can be changed dynamically [4 8]. Unfortunately, a GPRS call may suffer from a high delay when the network is congested. Some services like video streaming need to transmit data using multiple traffic channels almost with a constant delay. A HSCSD call occupies a multiple number of traffic channels at a time up to completing its whole data transmission time [9]. Thus, HSCSD provides the solution for services like video streaming [10]. If a multiple number of traffic channels are occupied by each HSCSD call from a limited number of traffic channels in a base station then the number of traffic channels for voice calls is reduced, thus increasing the existing voice call blocking probability. Fortunately, for the same voice call blocking probability, the overall channel utilization with continuous multichannel occupied HSCSD calls is higher than the case without HSCSD calls. The overall channel utilization increases with increasing number of HSCSD calls pertaining to the same voice call blocking probability [11]. Such a result encourages the operators to provide different kinds of services using HSCSD with the existing voice services and thus, to increase the different types of calls from mobile terminals. The effective call arrival to the traffic channels depends on the output of the random access channels. The random access scheme of the GSM network is slotted ALOHA based, which is an efficient algorithm for the distributed bursty traffic. Since the call arrival of a GSM base station is bursty in nature, the choice is appropriate. Slotted ALOHA is used mainly for two kinds of purposes: (1) mobile data transmission and, (2) the request for a dedicated mobile channel. In the first kind of purpose, each packet should be received successfully. So, the retransmissions take place up to the successful reception of each data packet. On the other hand, for the request of a dedicated mobile channel, the successful reception of each data packet is not needed. Therefore, the retransmission cut-off occurs after a certain number of retransmissions involved. Slotted ALOHA with retransmission cut-off is discussed in [12 16]. A call is rejected if its requested packet(s) fails to transmit through random access slot(s). Traditionally, excess random access slots are mapped in physical channels of a base station, and a maximum possible number of retransmissions is allowed to reduce the call rejection probability [5, 6, 19]. Most of the earlier papers either analyze the random access channels [12 16] or the traffic channels [7, 8, 10, 11] of a TDMA based cellular system. This paper fills this gap by combining those two types of channels together. Our results will help wireless cellular network operators to properly dimension their wireless access systems. The rest of the paper is organized as follows. Section 2 describes the system model. The efficiency of random access channel is described in Section 3. The average number of channels occupied by a single slot occupied voice and multislot occupied GPRS calls together with the optimization of number of random access slots are presented in Section 4 and Section 5 respectively. The overall call success probability depends on two types of channels: random access channels and the traffic channels and both are considered in Section 6. Finally, Section 7 provides the conclusions.

3 Optimizing the Use of Random Access Channels in GSM-GPRS System Model The ETSI GSM specifications define three classes of mobile stations depending on the simultaneous support of attachment, monitoring activation, invocation and traffic flow on circuit-switched voice and packet-switched data services [17]. (1) Class A mobile stations support simultaneous attachment, monitoring, activation, invocation and traffic flow on both voice and data services [18]. (2) Class B mobile stations support simultaneous attachment, monitoring and activation but invocation and traffic flow are mutually exclusive. (3) Class C mobile stations support only non-simultaneous attachment, monitoring activation, invocation and traffic flow on both circuit-switched voice and packet-switched data services. In this paper a special class C type scenario is considered, where all calls are either circuit-switched voice calls or packet-switched data calls. Consider first the circuit-switched voice calls. The system model is shown in Figure 1. In the case of a normal GSM transmission system, one mobile terminal initiates the call using Random Access CHannel (RACH) [19]. The random access channel scheme is based on slotted ALOHA. Each random access channel consists of a number of slots. A given access packet is first transmitted into a random access slot. If the access packet is unsuccessful then the same packet is transmitted into another random access slot. After a successful reception of an access packet through the random access slot(s), the mobile network realizes that one terminal requires radio resources in a base station. A given base station is considered where a maximum of M voice calls are allowed to transmit voice bursts at a given time. The arrival of voice calls is assumed to have a Poisson distribution with a mean of λ. The number of random access slots in random access channels is x for voice calls. The selection of a random access slot is random in nature. Therefore, the Poisson arrival traffic is distributed uniformly over the random access slots that are also Poisson distributed. The output process of different contention packet broadcasting systems is studied in [20]. We assume that the output of each random access slot is Poisson with a mean of S as shown in Figure 1 (same as the slotted ALOHA throughput or output). Since the addition of Poisson arrivals is also Poisson, the overall output of the random access channels (also the input of the traffic channels) is Poisson where the mean is the addition of multiple output means corresponding to each random access slot. After a successful reception of a voice call (access packet) through the random access channels (slots), the base station allocates a Traffic CHannel (TCH) for that mobile call to transmit its voice bursts if the network has that TCH available. A voice call does not occupy each slot of a traffic channel. A fractional part of the slots is occupied by each voice call and is considered in the next section. Consider now a base station serving only GPRS calls. A GPRS call transmits its bursty packets occupying 0 to 8 slots from a single time frame if needed and the base station has the free slots available to provide them. If the slots are not available during that time, the packets are buffered and transmitted in the next available slots. A particular case is considered in this paper where the radio resource is provided immediately if needed (real-time transmission system). Therefore, queueing is not allowed and as a consequence the number of allowed calls D in a given base station is limited.

4 390 Jahangir H. Sarker and Seppo J. Halme Figure 1. System model. 3. Efficiency of Random Access Channels 3.1. THE NUMBER OF RANDOM ACCESS SLOTS Let the call arrival from all GSM calls be exponentially distributed with a mean rate λ. The number of random access (Slotted ALOHA based) slots is x. In the GSM network, a mobile terminal generates call access packets and transmits those into the random access slots (RACH). Let us assume that the call (packet) arrival is uniformly distributed over the x random access slots. Thus, the call arrival rate per slot is λ/x (packet). The pessimistic assumption made in studies of standard ALOHA networks is that any collision invariably leads to a mutual destruction of all interfering packets presented in that slot. The throughput of Slotted ALOHA can be increased in a system incorporating the socalled capture effect. Capture is defined as the situation when two or more packets collide in a time slot and one of these packets is recovered. Consider a realistic receiver where a test packet is successfully captured if its power is sufficiently higher than that of the interfering packet(s) in the same slot for a certain fraction of time of the total slot duration locking the receiver onto that packet. Consider that the probability of success of a test packet with n other interfering packets is P C (Su/n). The capture effect is defined as follows. In the case of packet collision, a test packet is captured if its power P t is larger than z times the combined power of n other interfering packets power P n, i.e., P C (Su/n) = Pr(P t >zp n ),wherez(z 1) is the capture ratio. This capture phenomenon is defined and analyzed in [21]. For the incoherent

5 Optimizing the Use of Random Access Channels in GSM-GPRS 391 power addition of interfering packets, in which all n + 1 packets are received with equal mean power, the probability of success of a test packet is given by ( ) 1 n P C (Su/n) =. (1) 1 + z It is further assumed that the call (access packet) arrival rate from any mobile terminal is equal. If the first attempt is unsuccessful, the mobile terminal retransmits its access packet after a random delay. Therefore, the aggregate traffic (1st attempt and the retransmitted traffic) generation rate from any terminal is greater than or equal to the call (access packet) arrival rate. Since the selection of a random access slot is random, the aggregate traffic generation rate from any mobile terminal transmitted to any slot can also be considered as equivalent. The system is assumed to be memoryless, where the probability of transmitting a packet in a given slot is independent of the state of the previous slot(s). In the case of an infinite number of users, the distribution of the interfering packets is Poisson and can be written as I(n) = Gn exp( G), (2) n! where G is the average aggregate traffic (1st time call arrival and a certain number of retransmissions arrival) generation rate from all active calls per access slot. Therefore, the unconditional probability of successful capture of an access test packet is P C (Su) = I(n)P C (Su/n) (3) n=0 which after rearranging yields ( P C (Su) = exp G z ). (4) 1 + z According to specifications, a maximum of r retransmissions is allowed for each mobile call during the access period. The parameter r can be set to four different possible values 1, 2, 4 or 7 [19, 22, 23]. A higher retransmission number r reduces the access rejection probability, and hence r = 7 is a widely used setting parameter [5, 6, 19]. Considering this particular case and including the first transmission, the maximum allowed transmission number is 8. The retransmission cut-off scheme is studied in [16] and accordingly, the throughput per slot is redefined as [ S = λ x [1 {1 P C(Su)} 8 ]= λ { ( 1 1 exp G z )} ] 8, (5) x 1 + z where the relation between the new packet arrival rate per random access slot λ/x and the aggregate arrival rate in each access slot G is ( G exp G z ) 1 + z λ/x = { ( 1 1 exp G z )} 8. (6) 1 + z

6 392 Jahangir H. Sarker and Seppo J. Halme The throughput or the successful call access rate per random access slot is S per time slot. The overall successful arrival rate into the traffic channels from all active calls is Sx. Note that the value of S should always be less than one packet per time slot, but the value of Sx might be larger than one, of course its value should be less than or equal to λ. The random access throughput per slot S for different values of capture ratio z and the number of slots, x, is shown in Figure 2. Figure 2(a) indicates that below a certain limit of the call arrival rate, the output of the random access per slot S increases linearly for a given value of capture ratio, z. Beyond that limit, the throughput decreases abruptly. Similarly, Figure 2(b) demonstrates that for a certain number of slots x, the access throughput per slot increases linearly up to a certain value of the average access arrival rate. After that the throughput decreases sharply. We are more interested in this access state to give full availability for all kinds of GSM calls. In the second stage, if all traffic channels are full and the network is unable to provide any service, the network informs the mobile terminal of its blocked call. On the other hand, if the call is rejected in the access stage, a mobile terminal cannot receive any message from the base station. Physically, it is unknown to the network that a terminal tries to access to transmit its information. In this case, the mobile terminal may receive an automatic access rejection signal, which may request the mobile user to try again. The mobile user may think that the network is full and attempt to call later. This is true for the case of call blocking but not for call rejection. Thus, the operators have to stimulate more random access slots to avoid the call rejection. There are five different structures of the RACH [24, 25] with approximately 400,000 and n 780, 000 RACH slots per hour (n = 1, 2, 3, 4). It is interesting to know the exact choice of these five different possibilities. It is well known that the Slotted ALOHA with capture shows its maximum throughput when the aggregate traffic generation rate from all active GSM calls per each random access slot is G = (1 + z)/z. Using this value in Equation (6), the optimum relation between the call arrival rate and the number of slots becomes x = λz 1 (1 e 1 ) 8, (7) (1 + z)e 1 where w is the smallest integer w. The numerical representation of Equation (7) is depicted in Figure 3. In principle, the capture has not been practically used in GSM network. The estimation of the optimum number of random access slots for a given time is the main concern in a new cellular environment. Thus, per slot throughput without capture can be written from Equation (5) as S = λ x [1 {1 exp( G)}8 ], (8) where λ/x is the call (new packet) arrival rate per random access slot and the aggregate packet arrival rate per slot Gis related to λ/x = G exp( G) 1 {1 exp( G)} 8. (9) As a matter of fact, Equation (9) is the fundamental relationship between the aggregate packet generation rate G and the average call arrival rate/slot λ/x.

7 Optimizing the Use of Random Access Channels in GSM-GPRS 393 Figure 2. Random access throughput per slot S vs. average call arrival rate λ for different values of capture ratio z and number of slots x: (a) Number of slots x equal to one. (b) System without capture.

8 394 Jahangir H. Sarker and Seppo J. Halme Figure 3. The optimum number of random access slots x for different capture ratios THE AVERAGE NUMBER OF TRANSMISSIONS The average number of transmissions defines the average number of slots needed for a successful access packet transmission. A GSM user tries to access the base station immediately, if it has any information to transmit. If the first access transmission is unsuccessful, it retransmits its access packet. In GSM maximum 8 time transmissions are allowed. The probability that the packet is successfully transmitted after the kth transmission is Q k ={1 P(Su)} k 1 P(Su) 1 k 8. (10) Obviously, Equation (10) is not the absolute geometric distribution for the access attempt k (1 k 8). Therefore, the modified distribution is Q k = Q k k=1 8 k=1 Q k Q k which yields the modified geometric distribution Q k = {1 P(Su)}k 1 P(Su) 1 {1 P(Su)} 8. (11)

9 Optimizing the Use of Random Access Channels in GSM-GPRS 395 Finally, the access delay or expected number of slots needed for a successful transmission of an access packet is D = 8 kq k = k=1 which after simplification is D = = P(Su) 1 {1 P(Su)} 8 8 k{1 P(Su)} k 1 k=1 P(Su) 1 9{1 P(Su)} 8 + 8{1 P(Su)} 9 = 1 {1 P(Su)} 8 [1 {1 P(Su)}] 2 { ( exp G z )} 8 { ( exp G z )} z 1 + z [ { ( 1 1 exp G z )} ] 8 ( exp G z ), 1 + z 1 + z where the relationship between aggregate packet arrival rate G per time slot and average call arrival rate λ/x per time slot can be obtained from Equation (6). The average number of transmissions without capture is obtained from Equation (12) using z D no capture = 1 9{1 exp( G)}8 + 8{1 exp( G)} 9, (13) [1 {1 exp( G)} 8 ] exp( G) where the relation between λ/x and G is shown in Equation (9). The average number of transmissions of an access packet for a successful call arrival is depicted in Figure 4. Note that the formula includes only the successful call arrival (packets), but not those packets that are finally rejected CALL REJECTION PROBABILITY Another interesting parameter in the random access channels is the call rejection probability. It defines the probability that an access packet is rejected. If an access packet is rejected, a mobile terminal cannot inform the network of its desire for service. For this reason, the network or base station cannot inform the mobile terminal of its access failure. This parameter can be calculated in the following way. The probability that an access packet is successfully transmitted after the first transmission is P(Su). The probability of failure after the first transmission is {1 P(Su)}. The failure probability in each transmission time is assumed to be independent in nature. Since the transmission takes place 8 times (maximum limit), the call rejection probability is { ( R = 1 exp G z )} 8. (14) 1 + z The numerical representation of the call rejection probability is shown in Figure Fractional Channel Occupied Voice Transmission System Consider only voice calls in a base station, where a voice call uses the random access channels to inform the network that it needs a traffic channel for speech burst transmission. The (12)

10 396 Jahangir H. Sarker and Seppo J. Halme Figure 4. Average number of transmissions needed for a successful call arrival: (a) Number of access slots x = 1. (b) System without capture.

11 Optimizing the Use of Random Access Channels in GSM-GPRS 397 Figure 5. Call rejection probability: (a) Number of access slots x = 1. (b) System without capture.

12 398 Jahangir H. Sarker and Seppo J. Halme output traffic of the random access channels directly works as the input traffic of the traffic channels as shown in Figure 1. The call arrival of voice sources is Poisson with a mean λ v. An assumption is made that the random access slot rate is x slots per unit time and those slots are exclusively used for voice calls. If the output of each random access slot is S v, then the average successful call arrival rate to the traffic channels is S v x. If a voice call is successful (neither rejected nor blocked), it holds a traffic channel for the entire conversation period of its user. Let us further assume that the traffic channel (call) holding time of each mobile call is independent and exponentially distributed with a mean 1/µ v. If a maximum of M voice calls are allowed to transmit voice bursts at a time, the probability that voice calls occupy m traffic channels is p(m) = (S vx/µ v ) m /m! M. (15) (S v x/µ v ) i /i! i=0 Therefore, there are m talkers in that network. It is well known that a talker does not talk continuously. Talker activity can be modeled with a two state Markov model. Let the slot duration be τ sec. The talk spurts are assumed to be exponentially distributed with mean 1/σ and the distribution is α = exp( τσ). The transition probability from a talk spurt to the next silence period is µ 2 = 1 α = 1 exp( τσ). The silence periods are also assumed to be exponentially distributed with mean 1/γ and the distribution is β = exp( τγ). The transition from a silence period to the next talk spurt is λ 2 = 1 β = 1 exp( τγ)[26]. It can be shown that a multiple number of exponential voice calls can be modeled as a binomial distribution [27]. Assume that the speech active states and silence states of each voice call are uncorrelated over the GSM slot periods. Defining the states as the situation, where m traffic channels are used for speech transmission, i of these in the speech active state and (m i) in the silence state, whereby the probability of that can be expressed as [27] ( ) m (λ i 2 /µ 2 ) i p(i m) = m ( ) m (λ j 2 /µ 2 ) j (16) = j=0 ( m i ) a i (1 a) m i, where a is the voice traffic activity factor and given by a = λ 2 λ 2 + µ 2. (17) Considering the voice activity factor, the probability that i traffic channels are occupied by all M voice calls can be written as p(i) = M p(i m)p(m) since p(i) = 0form<i. (18) m=i

13 Optimizing the Use of Random Access Channels in GSM-GPRS 399 Therefore, the traffic channel utilization defines the ratio of average number of channels occupied by all voice calls to the maximum number of channels allocated for all voice calls and referring to Appendix A: U = 1 M M i=0 ip(i) = (S vx/µ v ) a[1 p(m)], (19) M where p(m) is the probability that a voice call is blocked because of traffic channel saturation and is given by: p(m) = (S vx/µ v ) M /M! M. (20) (S v x/µ v ) i /i! i=0 The traffic channel utilization with the variation of average call arrival rate is shown in Figure 6. Figure 6(a) shows that the channel utilization increases linearly up to a certain limit of the call arrival rate and later on decreases drastically. The steepness of the linearly increasing curve is proportional to the average channel holding time 1/µ v. Figure 6(b) illustrates that by increasing the number of random access slots x, one can augment the transition point of the average call arrival rate (where channel utilization decreases abruptly). On one hand, the increased number of random access slots decreases the call rejection probability and the channel utilization can achieve its saturation level (Figure 6(b)). On the other hand, the call blocking probability also increases as shown in Figure 7(b). 5. Multislot GPRS Transmission System Consider a base station where only the GPRS data calls are present. The call arrival at that base station has a negative exponential distribution with mean λ D. The base station allocates y random access slots for GPRS calls. If the output of each random access slot is S d, then the average GPRS call arrival rate to the traffic channels is S d y. Assume that the data transmission time of each GPRS call is independent and exponentially distributed with a mean 1/µ D.Ifa maximum of D GPRS calls are allowed to transmit multislot GPRS calls then the probability that n GPRS calls are in that base station is p(n) = (S dy/µ d ) n /n!. (21) (S d y/µ d ) i /i! i=0 A GPRS call can occupy a maximum of 8 slots in a time frame and the number of slots occupied in the next time frames can be changed dynamically. Consider the general analytical case where one GPRS call can occupy a maximum of q (practically 8) slots. Therefore, n data calls occupy a maximum of nq slots within a time frame duration. Assume that the occupation of each slot is independent of each other and the probability of occupying a slot is b. Consequently, the probability that n GPRS calls occupy k slots is given by ( ) nq p(k n) = b k k (1 b) nq k. (22)

14 400 Jahangir H. Sarker and Seppo J. Halme Figure 6. Traffic channel utilization vs. average call arrival rate. (a) For different call holding times 1/µ. (b)for different numbers of random access slots x.

15 Optimizing the Use of Random Access Channels in GSM-GPRS 401 Figure 7. Call blocking probability versus average call arrival rate: (a) For different call holding times 1/µ. (b) For different numbers of random access slots x.

16 402 Jahangir H. Sarker and Seppo J. Halme The probability that all D data calls occupy k slots is given by p(k) = n= k/q p(k n)p(n) since p(k) = 0forn< k/q, (23) where the value of w defines the smallest integer w. Finally, the average number of channels occupied by all the D GPRS data calls can be obtained from Appendix B as U D = kp(k) = (S d y/µ d )bq[1 p(d)], (24) k=0 where p(d) defines the probability that the maximum number of data calls are in the network and can be written from Equation (21) as p(d) = (S dy/µ d ) D /D!. (25) (S d y/µ d ) i /i! i=0 The discontinuous multislot occupied GPRS calls show the similar result to that of discontinuous single slot occupied voice calls. The average channel occupied by the multislot GPRS calls as in Equation (24) is q times larger than that of single slot occupied voice calls (i.e., Equation (19)). The channel occupation probabilities for discontinuous voice and GPRS calls are already defined as a and b, respectively. Therefore, the numerical results of discontinuous multislot occupied GPRS calls resemble the discontinuous single slot occupied voice calls. 6. Call Success Probability The following derivation is based on call rejection probability, which is important in the random access channel analysis and on blocking probability which is important when analyzing the traffic channel performance. Considering that a call is rejected in the random access channels with a probability R, the input probability of the traffic channels is (1 R). A call is blocked in the traffic channels with a probability B. Therefore, the probability that a call is successfully transferred (neither rejected nor blocked) is given by T = (1 R)(1 B). (26) A numerical representation of Equation (26) is depicted in Figure 8 for a few sets of specific values of different parameters that constitute two separate regions: 1. If λ<x(1 + 1/z)e 1 {1 (1 e 1 ) 8 } 1 : (a) The call rejection probability is almost zero. (b) The call blocking probability increases linearly and thus the call success probability decreases linearly. The steepness of these two curves is proportional to the average traffic channel holding time 1/µ, and inversely proportional to the number of traffic channel M. 2. If λ x(1 + 1/z)e 1 {1 (1 e 1 ) 8 } 1 :

17 Optimizing the Use of Random Access Channels in GSM-GPRS 403 Figure 8. Rejection, blocking and success probabilities. (a) The call rejection probability increases abruptly. Thus, most of the calls are rejected in the random access channels. (b) The arrivals to the traffic channels decreases and thus the call blocking probability also decreases. (c) The overall call success probability T, declines abruptly because of a sharp increase in call rejection probability R. Finally, it must be emphasized that the overall call success probability can definitely be calculated using the traditional Erlang formula if and only if the number of random access slots is more than λe{1 (1 e 1 ) 8 }(1 + 1/z) Conclusions We have derived a closed form expression to compute the optimum number of random access slots. The transfer probability (inverse of rejection probability) of the random access channels depends on the number of random access slots. A capture effect is inserted in the random access scheme. The required number of random access slots is directly proportional to the average call arrival rate. This can be reduced by an increase of the capture effect (capture effect increases with the decrease of capture ratio z and a receiver works without capture if the value of z tends to infinity). The number of random access slots is proportional to (1+1/z) 1. The anticipated number of random access slots x is obtained by adjusting the optimum aggregate traffic generation rate per time slot G (Equation (7)). The reasons are as follows. The retransmission cut-off is strongly recommended for the stable operation of random access if the average call arrival rate per time slot λ/x,ismorethan(1 + 1/z)e 1, otherwise throughput decreases abruptly [16]. This transition point is obtained from the optimum aggregate

18 404 Jahangir H. Sarker and Seppo J. Halme traffic generation rate. The maximum number of transmission is 8, equivalent to the case without retransmission cut-off [16]. Thus the required number of random access slots (or the optimum number of random access slots) can be calculated from the optimum aggregate traffic generation rate that maximizes the random access throughput. The traffic channel utilization for different numbers of random access slots is derived. If a lesser number of random access slots is involved then the traffic channel utilization deteriorates significantly. The reasoning is that more calls are rejected in the access channels. A greater number of random access slots can reduce the call rejection probability and hence increase the traffic channel utilization. However, this leads to a higher call blocking probability. The overall call success probability experiences a detrimental effect if the number of random access slots is less than λe{1 (1 e 1 ) 8 }(1 + 1/z) 1,where w is the smallest integer w and λ has the same unit (Figure 8). Obviously, the number of random access slots in random access channels depends exclusively on the average call arrival rate λ,andthe capture ratio z. Acknowledgements The authors would like to thank the reviewers for their constructive comments and suggestions. References 1. P. Chaudhury, W. Mohr and S. Onoe, The 3GPP Proposal for IMT-2000, IEEE Communications Magazine, Vol. 37, No. 12, pp , W. Mohr, Development of Mobile Communications Systems Beyond Third Generation, Wireless Personal Communications, Vol. 17, Nos. 2 3, pp , S. Nanda, K. Balachandran and S. Kumar, Adaptation Techniques in Wireless Packet Data Services, IEEE Communications Magazine, Vol. 38, No. 1, pp , S. Faccin, Hsu. Liangchi, R. Koodli, Le. Khiem and R. Purnadi, GPRS and IS-136 Integration for Flexible Network and Services Evolution, IEEE Personal Communications, Vol. 6, No. 3, pp , C. Jain and D.J. Goodman, General Packet Radio Service in GSM, IEEE Communications Magazine, Vol. 35, No. 10, pp , G. Brasche and B. Walke, Concepts, Services, and Protocols of the New GSM Phase 2+ General Packet Radio Service, IEEE Communications Magazine, Vol. 35, No. 8, pp , J.H. Sarker and S.J. Halme, Efficiency of the GSM-GPRS Air Interface for Real-Time IP Traffic Flows With and Without Packet Dropping, Wireless Personal Communications, Vol. 21, No. 1, pp , C.-C. Lee and R. Steele, Signal-to-Interference Calculations for Modern TDMA Cellular Communication Systems, IEE Proceedings- Communications, Vol. 142, No. 1, pp , GSM 02.34, V5.1.0, Digital Cellular Telecommunication System (Phase 2+); High Speed Circuit Switched Data (HSCSD)-Stage 1, March J. Dunlop, Potential for Compressed Video Transmission over the GSM HSCSD Service, Electronics Letters, Vol. 33, No. 2, pp , J.H. Sarker, S.H. Halme and M. Rinne, Performance Analysis of GSM Traffic Channel Capacity With(out) High Speed Circuit Switched Data, in IEEE VTC2000 Fall, Boston, U.S.A., Sept , 2000, pp S.W. Kim, Frequency-Hopped Speed-Spectrum Random Access with Retransmission Cutoff and Code Rate Adjustment, IEEE Journal of Selected Areas in Communications, Vol. 10, No. 2, pp , K. Sakakibara, H. Muta and Y. Yuba, The Effect of Limiting the Number of Retransmission Trials on the Stability of Slotted ALOHA Systems, IEEE Transactions on Vehicular Technology, Vol. 47, No. 4, pp , 2000.

19 Optimizing the Use of Random Access Channels in GSM-GPRS C. Luders and R. Haferbeck, The Performance of the GSM Random Access Procedure, in IEEE 44th Veh. Tech. Conf. 94 (VTC 94), Stockholm, Sweden, June 8 10, 1994, pp J.H. Sarker and S.J. Halme, The Prudence Transmission Method I (PTM I): A Retransmission Cut-Off Method for Contention Based Multiple-Access Communication Systems, in IEEE 47th Veh. Tech. Conf. 97 (VTC 97), Phoenix, AZ, U.S.A., May 4 7, 1997, pp J.H. Sarker and S.J. Halme, An Optimum Retransmission Cut-Off Scheme for Slotted ALOHA, Wireless Personal Communications, Vol. 13, Nos. 1 2, pp , GSM 02.60, Digital Cellular Telecommunications System (Phase 2+); General Packet Radio Service (GPRS); Service Description; Stage 1, ETSI. 18. M. Pecen and A. Howell, Simultaneous Voice and Data Operation for GPRS/EDGE: Class A Dual Transfer Mode, IEEE Personal Communications, Vol. 8, No. 2, pp , M. Mouly and M.-B. Pautet, The GSM System for Mobile Communications, published by authors, H. Takagi and L. Kleinrock, Output Process in Contention Packet Broadcasting Systems, IEEE Transactions on Communications, Vol. COM-33, No. 11, pp , J.C. Arnbak and van Blitterswijk, Capacity of Slotted ALOHA in Rayleigh-Fading Channels, IEEE Journal of Selected Area on Communications, pp , ETSI-GSM Technical Specification, GSM 04.08, Version 4.4.0, Mobile Radio Interface-Layer 3 Specification, April ETSI EN , GSM Version 7.1.2, Digital Cellular Telecommunications System (Phase 2+); Mobile Radio Interface Layer 3 Specification, ETSI-GSM Technical Specification, GSM 05.02, Version 4.2.0, Physical Layer on the Radio Path, Multiplexing and Multiple Access on the Radio Path, April EN , GSM Version 6.4.1, Digital Cellular Telecommunications System (Phase 2+); Multiplexing and Multiple Access on the Radio Path, S. Nanda, Stability Evaluation and Design of the PRMA Joint Voice Data System, IEEE Transactions on Communications, Vol. 42, No. 5, pp , J.H. Sarker, Voice and Data Transmission over the TDMA Based Networks, Master s thesis, Helsinki University of Technology, Finland, Appendix A: Derivation of Equation (19) The channel utilization/efficiency for the discontinuous voice traffic over a circuit-switched based network with voice activity is M ip(i) i=0 U = M = 1 M M i p(i/m)p(m) M = 1 M i=1 i=1 m=i M M i m=i = (S vx/µ v )a M (S v x/µ v ) m ( /m! m M i (S v x/µ v ) m /m! m=0 M M i=1 m=i (S v x/µ v ) m 1 (m 1)! M (S v x/µ v ) m /m! m=0 ) a i (1 a) m i (m 1)! (m i)!(i 1)! a i 1 (1 a) m i. 1

20 406 Jahangir H. Sarker and Seppo J. Halme Let m = m 1 (S vx/µ v )a M = (S vx/µ v )a M M 1 M 1 i=0 m =i M M i=0 m =i (S v x/µ v ) m m! M (S v x/µ v ) m /m! m=0 (S v x/µ v ) m m! M (S v x/µ v ) m /m! m=0 m! (m i)!i! a i (1 a) m i 1 m! (m i)!i! a i (1 a) m i 1 (S v x/µ v ) M M!. M (S v x/µ v ) k k! k=0 The first term inside the third bracket is equal to 1 and the second term is call blocking probability as in Equation (20). Thus, U = (S vx/µ v )a [1 p(m)]. M Appendix B: Derivation of Equation (24) The average number of channel occupied by all D numbers of GPRS data calls is U D = = = = Dq k=0 Dq k=1 Dq k=1 Dq kp(k) k k n= k/q n= k/q k=1 n= k/q p(k n)p(n) (S d y/µ d ) n /n! (S d y/µ d ) n /n! n=0 (S d y/µ d ) n (n 1)! (S d y/µ d ) n /n! n=0 ( nq k ) b k (1 b) nq k q(nq 1)! (nq k)!(k 1)! b k (1 b) nq q. 1

21 Let n = n 1 (D 1)q (S d y/µ d )bq k=0 Dq = (S d y/µ d )bq k=0 Optimizing the Use of Random Access Channels in GSM-GPRS 407 D 1 n = k/q n = k/q (S d y/µ d ) n n! (S d y/µ d ) n /n! n=0 (S d y/µ d ) n n! (S d y/µ d ) n /n! n=0 (n q)! (n q k)!k! b k (1 b) n q k 1 (n q)! (n q k)!k! b k (1 b) n q k 1 (S d y/µ d ) D D! (S d y/µ d ) n n! The first term inside the third bracket is equal to 1 and the second term is the GPRS call blocking probability given in Equation (25). Therefore, U D = (S d y/µ d )bq[1 p(d)]. n=0

22 408 Jahangir H. Sarker and Seppo J. Halme Jahangir H. Sarker received B.Sc. degree in electrical and electronics engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, in 1991, and M.Tech. and Licentiate Tech. degrees in electrical and communication engineering from Helsinki University of Technology, Finland in 1996 and 2000 respectively. From July 1994 to September 1996, he was a research assistant in communication laboratory of Helsinki University of Technology. Since October 1996, he is serving as a research scientist in communication laboratory of Helsinki University of Technology. Mr. Sarker received Qualcomm Inc., research award in 1997, for his contribution to the IEEE International Conference on Personal Wireless Communications (ICPWC 97). His research interests include packet access, radio resource allocation, and queueing theory. He is a member of IEEE. Seppo J. Halme was born in Ruokolahti, Finland, on May 17, He received the degree of Diploma Engineer (Honors) in 1962, and the degree of Licentiate in Engineering in 1966, both in electrical engineering, from the Helsinki University of Technology, Helsinki, Finland, and the Ph.D. degree in communications from the Massachusetts Institute of Technology, Cambridge, in He was nominated assistant professor in 1970 and professor of communication engineering in He has also served as dean of Electrical Engineering Department in Helsinki University of Technology. Dr. Halme has published over 500 scientific articles, reports, and books.

RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS

RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS Edward Nowicki and John Murphy 1 ABSTRACT The General Packet Radio Service (GPRS) is a new bearer service for GSM that greatly simplify wireless

More information

Radio Resource Allocation in GSM/GPRS Networks

Radio Resource Allocation in GSM/GPRS Networks Radio Resource Allocation in GSM/GPRS Networks Jean-Lien C. Wu 1, Wei-Yeh Chen 2, and Hung-Huan Liu 1 1 Department of Electronic Engineering, National Taiwan University of Science and Technology, 43, Keelung

More information

Packet Queueing Delay in Wireless Networks with Multiple Base Stations and Cellular Frequency Reuse

Packet Queueing Delay in Wireless Networks with Multiple Base Stations and Cellular Frequency Reuse Packet Queueing Delay in Wireless Networks with Multiple Base Stations and Cellular Frequency Reuse Abstract - Cellular frequency reuse is known to be an efficient method to allow many wireless telephone

More information

CURRENT wireless personal communication systems are

CURRENT wireless personal communication systems are Efficient Radio Resource Allocation in a GSM and GPRS Cellular Network David E Vannucci & Peter J Chitamu Centre for Telecommunications Access and Services School of Electrical and Information Engineering

More information

Wireless Access of GSM

Wireless Access of GSM Wireless Access of GSM Project Report FALL, 1999 Wireless Access of GSM Abstract: Global System for Mobile communications (GSM) started to be developed by Europeans when the removal of many European trade

More information

PERFORMANCE OF THE GPRS RLC/MAC PROTOCOLS WITH VOIP TRAFFIC

PERFORMANCE OF THE GPRS RLC/MAC PROTOCOLS WITH VOIP TRAFFIC PERFORMANCE OF THE GPRS RLC/MAC PROTOCOLS WITH VOIP TRAFFIC Boris Bellalta 1, Miquel Oliver 1, David Rincón 2 1 Universitat Pompeu Fabra, Psg. Circumval lació 8, 83 - Barcelona, Spain, boris.bellalta,

More information

Introduction to EDGE. 2.1 What Is EDGE?

Introduction to EDGE. 2.1 What Is EDGE? 2 Introduction to EDGE This chapter is the first of a series dedicated to EDGE. It introduces the different EDGE concepts from a global point of view, explaining how they have been introduced into the

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA

More information

DYNAMIC RADIO RESOURCE MANAGEMENT IN GSM/GPRS USING SCALABLE RESOURCE ALLOCATION TECHNIQUE

DYNAMIC RADIO RESOURCE MANAGEMENT IN GSM/GPRS USING SCALABLE RESOURCE ALLOCATION TECHNIQUE DYNAMIC RADIO RESOURCE MANAGEMENT IN GSM/GPRS USING SCALABLE RESOURCE ALLOCATION TECHNIQUE Seok Y Tang, Shyamalie Thilakawardana and Rahim Tafazolli Mobile Communications Research Group Centre for Communications

More information

3GPP Wireless Standard

3GPP Wireless Standard 3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation

More information

How To Understand The Gsm And Mts Mobile Network Evolution

How To Understand The Gsm And Mts Mobile Network Evolution Mobile Network Evolution Part 1 GSM and UMTS GSM Cell layout Architecture Call setup Mobility management Security GPRS Architecture Protocols QoS EDGE UMTS Architecture Integrated Communication Systems

More information

How To Improve Data Rates For Global Evolution (Edge)

How To Improve Data Rates For Global Evolution (Edge) EDGE: Enhanced Data Rates for GSM Evolution SIDDARTH WANDRE ID: 999-29-3194 CS 548: Broadband Networks ILLINOIS INSTITUTE OF TECHNOLOGY Abstract:- This paper gives an overview of the EDGE concept. It gives

More information

Wireless Cellular Networks: 3G

Wireless Cellular Networks: 3G Wireless Cellular Networks: 3G Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 7-1 Overview Wireless

More information

AN ANALYSIS OF DELAY OF SMALL IP PACKETS IN CELLULAR DATA NETWORKS

AN ANALYSIS OF DELAY OF SMALL IP PACKETS IN CELLULAR DATA NETWORKS AN ANALYSIS OF DELAY OF SMALL IP PACKETS IN CELLULAR DATA NETWORKS Hubert GRAJA, Philip PERRY and John MURPHY Performance Engineering Laboratory, School of Electronic Engineering, Dublin City University,

More information

TCOM 370 NOTES 99-12 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL

TCOM 370 NOTES 99-12 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL 1. Local Area Networks TCOM 370 NOTES 99-12 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL These are networks spanning relatively short distances (e.g. within one building) for local point-to-point and point-to-multipoint

More information

Priority-Coupling A Semi-Persistent MAC Scheduling Scheme for VoIP Traffic on 3G LTE

Priority-Coupling A Semi-Persistent MAC Scheduling Scheme for VoIP Traffic on 3G LTE Priority-Coupling A Semi-Persistent MAC Scheduling Scheme for VoIP Traffic on 3G LTE S. Saha * and R. Quazi ** * Helsinki University of Technology, Helsinki, Finland ** University of Dhaka, Dhaka, Bangladesh

More information

NOVEL PRIORITISED EGPRS MEDIUM ACCESS REGIME FOR REDUCED FILE TRANSFER DELAY DURING CONGESTED PERIODS

NOVEL PRIORITISED EGPRS MEDIUM ACCESS REGIME FOR REDUCED FILE TRANSFER DELAY DURING CONGESTED PERIODS NOVEL PRIORITISED EGPRS MEDIUM ACCESS REGIME FOR REDUCED FILE TRANSFER DELAY DURING CONGESTED PERIODS D. Todinca, P. Perry and J. Murphy Dublin City University, Ireland ABSTRACT The goal of this paper

More information

GPRS Systems Performance Analysis

GPRS Systems Performance Analysis GPRS Systems Performance Analysis Fátima de Lima Procópio Duarte, Antonio A.F. Loureiro, Leonardo Barbosa e Oliveira, Cláudio Márcio de Souza Vicente Federal University of Minas Gerais, Belo Horizonte,

More information

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular

More information

GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving

GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving 1 Space Division Multiple Access of the signals from the MSs A BTS with n directed antennae covers mobile stations

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: j.cao@student.rmit.edu.au

More information

ECE 333: Introduction to Communication Networks Fall 2002

ECE 333: Introduction to Communication Networks Fall 2002 ECE 333: Introduction to Communication Networks Fall 2002 Lecture 14: Medium Access Control II Dynamic Channel Allocation Pure Aloha In the last lecture we began discussing medium access control protocols

More information

SERVICE DISCIPLINES PERFORMANCE FOR BEST-EFFORT POLICIES IN WWW TRAFFIC OVER PACKET-SWITCHED WIRELESS CELLULAR NETWORKS

SERVICE DISCIPLINES PERFORMANCE FOR BEST-EFFORT POLICIES IN WWW TRAFFIC OVER PACKET-SWITCHED WIRELESS CELLULAR NETWORKS SERVICE DISCIPLINES PERFORMANCE FOR BEST-EFFORT POLICIES IN WWW TRAFFIC OVER PACKET-SWITCHED WIRELESS CELLULAR NETWORKS Wessam AJIB * wajib@infres.enst.fr Philippe GODLEWSKI * godlewski@infres.enst.fr

More information

PERFORMANCE AND EFFICIENCY EVALUATION OF CHANNEL ALLOCATION SCHEMES FOR HSCSD IN GSM

PERFORMANCE AND EFFICIENCY EVALUATION OF CHANNEL ALLOCATION SCHEMES FOR HSCSD IN GSM Generol Conference (Port B) PERFORMANCE AND EFFICIENCY EVALUATION OF CHANNEL ALLOCATION SCHEMES FOR HSCSD IN GSM Dayong Zhou and Moshe Zukerman Department of Electrical and Electronic Engineering The University

More information

8. Cellular Systems. 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992.

8. Cellular Systems. 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992. 8. Cellular Systems References 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992. 3. G. Calhoun, Digital Cellular Radio, Artech House,

More information

Guide to Wireless Communications. Digital Cellular Telephony. Learning Objectives. Digital Cellular Telephony. Chapter 8

Guide to Wireless Communications. Digital Cellular Telephony. Learning Objectives. Digital Cellular Telephony. Chapter 8 Guide to Wireless Communications Digital Cellular Telephony Chapter 2 Learning Objectives Digital Cellular Telephony 3 Describe the applications that can be used on a digital cellular telephone Explain

More information

CDMA Performance under Fading Channel

CDMA Performance under Fading Channel CDMA Performance under Fading Channel Ashwini Dyahadray 05307901 Under the guidance of: Prof Girish P Saraph Department of Electrical Engineering Overview Wireless channel fading characteristics Large

More information

Controlled Random Access Methods

Controlled Random Access Methods Helsinki University of Technology S-72.333 Postgraduate Seminar on Radio Communications Controlled Random Access Methods Er Liu liuer@cc.hut.fi Communications Laboratory 09.03.2004 Content of Presentation

More information

Improved Channel Allocation and RLC block scheduling for Downlink traffic in GPRS

Improved Channel Allocation and RLC block scheduling for Downlink traffic in GPRS Improved Channel Allocation and RLC block scheduling for Downlink traffic in GPRS Haibo Wang, Devendra Prasad, Xin Zhou Jimena Martinez Llorente, François Delawarde, Gwénaël Coget, Patrick Eggers, Hans

More information

CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY

CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY 4.1. INTRODUCTION In recent years, the rapid growth of wireless communication technology has improved the transmission data rate and communication distance.

More information

Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks

Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks Jian Chen and Victor C.M. Leung Department of Electrical and Computer Engineering The

More information

ANALYSIS OF LONG DISTANCE 3-WAY CONFERENCE CALLING WITH VOIP

ANALYSIS OF LONG DISTANCE 3-WAY CONFERENCE CALLING WITH VOIP ENSC 427: Communication Networks ANALYSIS OF LONG DISTANCE 3-WAY CONFERENCE CALLING WITH VOIP Spring 2010 Final Project Group #6: Gurpal Singh Sandhu Sasan Naderi Claret Ramos (gss7@sfu.ca) (sna14@sfu.ca)

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1. Motivation Network performance analysis, and the underlying queueing theory, was born at the beginning of the 20th Century when two Scandinavian engineers, Erlang 1 and Engset

More information

Mobile Communications TCS 455

Mobile Communications TCS 455 Mobile Communications TCS 455 Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 26 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Announcements Read the following from the SIIT online

More information

2G/3G Mobile Communication Systems

2G/3G Mobile Communication Systems 2G/3G Mobile Communication Systems Winter 2012/13 Integrated Communication Systems Group Ilmenau University of Technology Outline 2G Review: GSM Services Architecture Protocols Call setup Mobility management

More information

EPL 657 Wireless Networks

EPL 657 Wireless Networks EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing

More information

Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse

Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse Cellular Network Organization Cellular Wireless Networks Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of

More information

GSM GPRS. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides)

GSM GPRS. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides) GSM Example of a PLMN (Public Land Mobile Network) At present most successful cellular mobile system (over 200 million subscribers worldwide) Digital (2 nd Generation) cellular mobile system operating

More information

Collision of wireless signals. The MAC layer in wireless networks. Wireless MAC protocols classification. Evolutionary perspective of distributed MAC

Collision of wireless signals. The MAC layer in wireless networks. Wireless MAC protocols classification. Evolutionary perspective of distributed MAC The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

Channel assignment for GSM half-rate and full-rate traffic

Channel assignment for GSM half-rate and full-rate traffic Computer Communications 23 (2000) 476 482 www.elsevier.com/locate/comcom Channel assignment for GSM half-rate and full-rate traffic P. Lin, Y.-B. Lin* Department of Computer Science and Information Engineering,

More information

A Performance Evaluation of Internet Access via the General Packet Radio Service of GSM

A Performance Evaluation of Internet Access via the General Packet Radio Service of GSM A Performance Evaluation of Internet Access via the General Packet Radio Service of GSM Simon Hoff, Michael Meyer, Andreas Schieder Ericsson Eurolab Deutschland Ericsson Allee 1, 52134 Herzogenrath, Germany

More information

A Multiple Access Protocol for Multimedia Transmission over Wireless Networks

A Multiple Access Protocol for Multimedia Transmission over Wireless Networks A Multiple Access Protocol for Multimedia Transmission over Wireless Networks Hong Yu and Mohammed Arozullah Department of Electrical Engineering and Computer Science Capitol College, Maryland, USA yhong@capitol-college.edu

More information

Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur

Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur ABSTRACT W-CDMA (Wideband Code-Division Multiple Access), an ITU standard derived

More information

Chapter 3 ATM and Multimedia Traffic

Chapter 3 ATM and Multimedia Traffic In the middle of the 1980, the telecommunications world started the design of a network technology that could act as a great unifier to support all digital services, including low-speed telephony and very

More information

EDGE, ENHANCED DATA RATES FOR GSM AND TDMA/136 EVOLUTION

EDGE, ENHANCED DATA RATES FOR GSM AND TDMA/136 EVOLUTION EDGE, ENHANCED DATA RATES FOR GSM AND TDMA/136 EVOLUTION Anders Furuskär, Sara Mazur, Frank Müller and Håkan Olofsson Ericsson Radio Systems S-164 8 Stockholm, Sweden ABSTRACT Two of the major second generation

More information

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency

More information

Imre Földes THE EVOLUTION OF MODERN CELLULAR NETWORKS

Imre Földes THE EVOLUTION OF MODERN CELLULAR NETWORKS Budapest University of Technology and Economics Faculty of Electrical Engineering and Informatics Imre Földes THE EVOLUTION OF MODERN CELLULAR NETWORKS Research Report BUDAPEST, 2015 Contents 1 The early

More information

Performance Issues of TCP and MPEG-4 4 over UMTS

Performance Issues of TCP and MPEG-4 4 over UMTS Performance Issues of TCP and MPEG-4 4 over UMTS Anthony Lo A.Lo@ewi.tudelft.nl 1 Wiskunde end Informatica Outline UMTS Overview TCP and MPEG-4 Performance Summary 2 1 Universal Mobile Telecommunications

More information

Implementation of Mobile Measurement-based Frequency Planning in GSM

Implementation of Mobile Measurement-based Frequency Planning in GSM Implementation of Mobile Measurement-based Frequency Planning in GSM Comp.Eng. Serkan Kayacan (*), Prof. Levent Toker (**) (*): Ege University, The Institute of Science, Computer Engineering, M.S. Student

More information

Measured Performance of GSM HSCSD and GPRS

Measured Performance of GSM HSCSD and GPRS Measured Performance of GSM HSCSD and Jouni Korhonen Olli Aalto Andrei Gurtov Heimo Laamanen Sonera Corporation P.O.Box 97 51 Helsinki, Finland Abstract In this paper we present results of measurements

More information

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2 On the Traffic Capacity of Cellular Data Networks T. Bonald 1,2, A. Proutière 1,2 1 France Telecom Division R&D, 38-40 rue du Général Leclerc, 92794 Issy-les-Moulineaux, France {thomas.bonald, alexandre.proutiere}@francetelecom.com

More information

Evolution of the Air Interface From 2G Through 4G and Beyond

Evolution of the Air Interface From 2G Through 4G and Beyond Evolution of the Air Interface From 2G Through 4G and Beyond Presentation to IEEE Ottawa Section / Alliance of IEEE Consultants Network (AICN) - 2nd May 2012 Frank Rayal BLiNQ Networks/ Telesystem Innovations

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com

More information

Cooperative Multiple Access for Wireless Networks: Protocols Design and Stability Analysis

Cooperative Multiple Access for Wireless Networks: Protocols Design and Stability Analysis Cooperative Multiple Access for Wireless Networks: Protocols Design and Stability Analysis Ahmed K. Sadek, K. J. Ray Liu, and Anthony Ephremides Department of Electrical and Computer Engineering, and Institute

More information

Inter-Cell Interference Coordination (ICIC) Technology

Inter-Cell Interference Coordination (ICIC) Technology Inter-Cell Interference Coordination (ICIC) Technology Dai Kimura Hiroyuki Seki Long Term Evolution (LTE) is a promising standard for next-generation cellular systems targeted to have a peak downlink bit

More information

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks LANs Local Area Networks via the Media Access Control (MAC) SubLayer 1 Local Area Networks Aloha Slotted Aloha CSMA (non-persistent, 1-persistent, p-persistent) CSMA/CD Ethernet Token Ring 2 Network Layer

More information

Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks

Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks Tim Farnham, Brian Foxon* Home Communications Department HP Laboratories Bristol HPL-98-123 June, 1998 broadband,

More information

Voice Service Support over Cognitive Radio Networks

Voice Service Support over Cognitive Radio Networks Voice Service Support over Cognitive Radio Networks Ping Wang, Dusit Niyato, and Hai Jiang Centre For Multimedia And Network Technology (CeMNeT), School of Computer Engineering, Nanyang Technological University,

More information

Joint Radio Resource Management and QoS Implications of Software Downloading for SDR Terminals

Joint Radio Resource Management and QoS Implications of Software Downloading for SDR Terminals Joint Radio Resource Management and QoS Implications of Software Downloading for SDR Terminals Nicolas Motte, Robert Rümmler 2, David Grandblaise, Lucas Elicegui, Didier Bourse, Eiko Seidel 3 - Motorola

More information

CHAPTER 1 1 INTRODUCTION

CHAPTER 1 1 INTRODUCTION CHAPTER 1 1 INTRODUCTION 1.1 Wireless Networks Background 1.1.1 Evolution of Wireless Networks Figure 1.1 shows a general view of the evolution of wireless networks. It is well known that the first successful

More information

Figure 1: cellular system architecture

Figure 1: cellular system architecture Question 1: (30 marks) Consider a FDM cellular system with 120 cites, a frequency reuse factor of N=12, and 900 overall two-way channels. Omni-directional antennas are used: Figure 1 shows some of the

More information

Efficient Delivery of Frequent Small Data for U-healthcare Applications Over LTE-Advanced Networks

Efficient Delivery of Frequent Small Data for U-healthcare Applications Over LTE-Advanced Networks Efficient Delivery of Frequent Small Data for U-healthcare Applications Over LTE-Advanced Networks Revak R. Tyagi SenSIP Center & Industry Consortium School of ECEE Arizona State University Tempe, AZ 85287

More information

Analysis and Enhancement of QoS in Cognitive Radio Network for Efficient VoIP Performance

Analysis and Enhancement of QoS in Cognitive Radio Network for Efficient VoIP Performance Analysis and Enhancement of QoS in Cognitive Radio Network for Efficient VoIP Performance Tamal Chakraborty 1, Atri Mukhopadhyay 2 1 Dept. of Electronics and Telecommunication Engineering 2 School of Mobile

More information

General Packet Radio Service (GPRS): Mobility- and Session Management

General Packet Radio Service (GPRS): Mobility- and Session Management ehrstuhl für ommunikationsnetze Prof. Dr.-Ing. Jörg Eberspächer General Packet Radio Service (GPRS): Mobility- and Session Management ITG-Fachgruppe 5.2.4 "IP und Mobility June 20, 2001. Tagung amp-intfort

More information

How To Make A Multi-User Communication Efficient

How To Make A Multi-User Communication Efficient Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the

More information

GSM Frequency Planning with Band Segregation for the Broadcast Channel Carriers

GSM Frequency Planning with Band Segregation for the Broadcast Channel Carriers GSM Frequency Planning with Band Segregation for the Broadcast Channel Carriers F. Galliano (1), N.P. Magnani (1), G. Minerva (1), A. Rolando (2), P. Zanini (3) (1) CSELT - Via G. Reiss Romoli, 274 - Torino

More information

LTE VoIP Capacity with Soft Frequency Reuse. Dipl.-Ing. Maciej Mühleisen ComNets TUHH FFV Workshop 15.3.2013

LTE VoIP Capacity with Soft Frequency Reuse. Dipl.-Ing. Maciej Mühleisen ComNets TUHH FFV Workshop 15.3.2013 LTE VoIP Capacity with Soft Frequency Reuse Dipl.-Ing. Maciej Mühleisen ComNets TUHH FFV Workshop 15.3.2013 1 Outline Motivation VoIP Scheduling Soft Frequency Reuse Scheduler Concept Scenario & Results

More information

GSM v. CDMA: Technical Comparison of M2M Technologies

GSM v. CDMA: Technical Comparison of M2M Technologies GSM v. CDMA: Technical Comparison of M2M Technologies Introduction Aeris provides network and data analytics services for Machine-to- Machine ( M2M ) and Internet of Things ( IoT ) applications using multiple

More information

CS 8803 - Cellular and Mobile Network Security: GSM - In Detail

CS 8803 - Cellular and Mobile Network Security: GSM - In Detail CS 8803 - Cellular and Mobile Network Security: GSM - In Detail Professor Patrick Traynor 9/27/12 Cellular Telecommunications Architecture Background Air Interfaces Network Protocols Application: Messaging

More information

Unlicensed Mobile Access (UMA) Handover and Packet Data Performance Analysis

Unlicensed Mobile Access (UMA) Handover and Packet Data Performance Analysis Unlicensed Mobile Access (UMA) Handover and Packet Data Performance Analysis Andres Arjona Nokia Siemens Networks andres.arjona@nsn.com Hannu Verkasalo Helsinki University of Technology hannu.verkasalo@tkk.fi

More information

TABLE OF CONTENTS. Dedication. Table of Contents. Preface. Overview of Wireless Networks. vii 1.1 1.2 1.3 1.4 1.5 1.6 1.7. xvii

TABLE OF CONTENTS. Dedication. Table of Contents. Preface. Overview of Wireless Networks. vii 1.1 1.2 1.3 1.4 1.5 1.6 1.7. xvii TABLE OF CONTENTS Dedication Table of Contents Preface v vii xvii Chapter 1 Overview of Wireless Networks 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Signal Coverage Propagation Mechanisms 1.2.1 Multipath 1.2.2 Delay

More information

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29. Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

More information

Latency on a Switched Ethernet Network

Latency on a Switched Ethernet Network Application Note 8 Latency on a Switched Ethernet Network Introduction: This document serves to explain the sources of latency on a switched Ethernet network and describe how to calculate cumulative latency

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

Revision of Lecture Eighteen

Revision of Lecture Eighteen Revision of Lecture Eighteen Previous lecture has discussed equalisation using Viterbi algorithm: Note similarity with channel decoding using maximum likelihood sequence estimation principle It also discusses

More information

Multiplexing on Wireline Telephone Systems

Multiplexing on Wireline Telephone Systems Multiplexing on Wireline Telephone Systems Isha Batra, Divya Raheja Information Technology, Dronacharya College of Engineering Farrukh Nagar, Gurgaon, India ABSTRACT- This Paper Outlines a research multiplexing

More information

LTE BACKHAUL REQUIREMENTS: A REALITY CHECK

LTE BACKHAUL REQUIREMENTS: A REALITY CHECK By: Peter Croy, Sr. Network Architect, Aviat Networks INTRODUCTION LTE mobile broadband technology is now being launched across the world with more than 140 service providers committed to implement it

More information

Admission Control for Variable Spreading Gain CDMA Wireless Packet Networks

Admission Control for Variable Spreading Gain CDMA Wireless Packet Networks IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 2, MARCH 2000 565 Admission Control for Variable Spreading Gain CDMA Wireless Packet Networks Tsern-Huei Lee, Senior Member, IEEE, and Jui Teng Wang,

More information

Planning of UMTS Cellular Networks for Data Services Based on HSDPA

Planning of UMTS Cellular Networks for Data Services Based on HSDPA Planning of UMTS Cellular Networks for Data Services Based on HSDPA Diana Ladeira, Pedro Costa, Luís M. Correia 1, Luís Santo 2 1 IST/IT Technical University of Lisbon, Lisbon, Portugal 2 Optimus, Lisbon,

More information

How To Understand And Understand The Power Of A Cdma/Ds System

How To Understand And Understand The Power Of A Cdma/Ds System CDMA Technology : Pr. Dr. W. Skupin www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : Introduction to Spread Spectrum Technology CDMA / DS : Principle

More information

Deployment Aspects for VoIP Services over HSPA Networks

Deployment Aspects for VoIP Services over HSPA Networks Nash Technologies Your partner for world-class custom software solutions & consulting Deployment Aspects for VoIP Services over HSPA Networks Jens Mueckenheim, Enrico Jugl, Thomas Wagner, Michael Link,

More information

Dimensioning, configuration and deployment of Radio Access Networks. Lecture 2.1: Voice in GSM

Dimensioning, configuration and deployment of Radio Access Networks. Lecture 2.1: Voice in GSM Dimensioning, configuration and deployment of Radio Access Networks. Lecture.: Voice in GSM GSM Specified by ETSI Frequency Division Duplex TDMA system Originally at 900MHz, but today also at 800, 800,

More information

Extended-rtPS Algorithm for VoIP Services in IEEE 802.16 systems

Extended-rtPS Algorithm for VoIP Services in IEEE 802.16 systems Extended-rtPS Algorithm for VoIP Services in IEEE 802.16 systems Howon Lee, Taesoo Kwon and Dong-Ho Cho Department of Electrical Engineering and Computer Science Korea Advanced Institute of Science and

More information

GSM - Global System for Mobile Communications

GSM - Global System for Mobile Communications GSM - Global System for Mobile Communications VLR BTS BSC GMSC PSTN MS HLR 1) Overview of GSM architecture 2) GSM channel structure 05-1 GSM - Global System for Mobile Communications VLR BTS BSC GMSC PSTN

More information

GSM: PHYSICAL & LOGICAL CHANNELS

GSM: PHYSICAL & LOGICAL CHANNELS GSM: PHYSICAL & LOGICAL CHANNELS AN OVERVIEW Prepared by Learntelecom.com 1. GSM: PHYSICAL AND LOGICAL CHANNELS GSM uses a mix of Frequency Division Multiple Access (FDMA) and Time Division Multiple Access

More information

Interference Analysis of a Total Frequency Hopping GSM Cordless Telephony System 1

Interference Analysis of a Total Frequency Hopping GSM Cordless Telephony System 1 Interference Analysis of a Total Frequency Hopping GSM Cordless Telephony System 1 Jürgen Deißner, André Noll Barreto, Ulrich Barth*, and Gerhard Fettweis Endowed Chair for Mobile Communications Systems

More information

Analyzing Mission Critical Voice over IP Networks. Michael Todd Gardner

Analyzing Mission Critical Voice over IP Networks. Michael Todd Gardner Analyzing Mission Critical Voice over IP Networks Michael Todd Gardner Organization What is Mission Critical Voice? Why Study Mission Critical Voice over IP? Approach to Analyze Mission Critical Voice

More information

QoS issues in Voice over IP

QoS issues in Voice over IP COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This

More information

Solution. (Chapters 5-6-7-8) Dr. Hasan Qunoo. The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department

Solution. (Chapters 5-6-7-8) Dr. Hasan Qunoo. The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department The Islamic University of Gaza Faculty of Engineering Computer Engineering Department Data Communications ECOM 4314 Solution (Chapters 5-6-7-8) Dr. Hasan Qunoo Eng. Wafaa Audah Eng. Waleed Mousa 1. A cable

More information

Basic principles of Voice over IP

Basic principles of Voice over IP Basic principles of Voice over IP Dr. Peter Počta {pocta@fel.uniza.sk} Department of Telecommunications and Multimedia Faculty of Electrical Engineering University of Žilina, Slovakia Outline VoIP Transmission

More information

VOICE OVER WI-FI CAPACITY PLANNING

VOICE OVER WI-FI CAPACITY PLANNING VOICE OVER WI-FI CAPACITY PLANNING Version 1.0 Copyright 2003 Table of Contents Introduction...3 Wi-Fi RF Technology Options...3 Spectrum Availability and Non-Overlapping Wi-Fi Channels...4 Limited

More information

Performance Evaluation of Access Selection Algorithms for VoIP on Wireless Multi-Access Networks

Performance Evaluation of Access Selection Algorithms for VoIP on Wireless Multi-Access Networks VI INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM (ITS26), SEPTEMBER 3-6, 26, FORTALEZA-CE, BRAZIL Performance Evaluation of Access Selection Algorithms for VoIP on Wireless Multi-Access Networks A. P. da

More information

1 Introduction to mobile telecommunications

1 Introduction to mobile telecommunications 1 Introduction to mobile telecommunications Mobile phones were first introduced in the early 1980s. In the succeeding years, the underlying technology has gone through three phases, known as generations.

More information

System Design in Wireless Communication. Ali Khawaja

System Design in Wireless Communication. Ali Khawaja System Design in Wireless Communication Ali Khawaja University of Texas at Dallas December 6, 1999 1 Abstract This paper deals with the micro and macro aspects of a wireless system design. With the growing

More information

GSM VOICE CAPACITY EVOLUTION WITH VAMOS Strategic White Paper

GSM VOICE CAPACITY EVOLUTION WITH VAMOS Strategic White Paper GSM VOICE CAPACITY EVOLUTION WITH VAMOS Strategic White Paper Table of contents VAMOS increases your GSM voice capacity at minimum investment / 1 Take the full benefit of VAMOS / 1 Standard aspects / 1

More information

Mobile Wireless Overview

Mobile Wireless Overview Mobile Wireless Overview A fast-paced technological transition is occurring today in the world of internetworking. This transition is marked by the convergence of the telecommunications infrastructure

More information

Examining Self-Similarity Network Traffic intervals

Examining Self-Similarity Network Traffic intervals Examining Self-Similarity Network Traffic intervals Hengky Susanto Byung-Guk Kim Computer Science Department University of Massachusetts at Lowell {hsusanto, kim}@cs.uml.edu Abstract Many studies have

More information

Hello viewers, welcome to today s lecture on cellular telephone systems.

Hello viewers, welcome to today s lecture on cellular telephone systems. Data Communications Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture minus 31 Cellular Telephone Systems Hello viewers, welcome to today s lecture

More information

How To Determine The Capacity Of An 802.11B Network

How To Determine The Capacity Of An 802.11B Network Capacity of an IEEE 802.11b Wireless LAN supporting VoIP To appear in Proc. IEEE Int. Conference on Communications (ICC) 2004 David P. Hole and Fouad A. Tobagi Dept. of Electrical Engineering, Stanford

More information